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 30 

Summary: 31 

GWAS have identified 108 loci that confer risk for schizophrenia, but risk mechanisms for 32 
individual loci are largely unknown. Using developmental, genetic, and illness-based RNA 33 
sequencing expression analysis, we characterized the human brain transcriptome around these 34 
loci and found enrichment for developmentally regulated genes with novel examples of shifting 35 
isoform usage across pre- and post-natal life. We found widespread expression quantitative trait 36 
loci (eQTLs), including many with transcript specificity and previously unannotated sequence 37 
that were independently replicated. We leveraged this eQTL database to show that 48.1% of 38 
risk variants for schizophrenia associated with nearby expression. Within patients and controls, 39 
we implemented a novel algorithm for RNA quality adjustment, and identified 237 genes 40 
significantly associated with diagnosis that replicated in an independent case-control dataset. 41 
These genes implicated synaptic processes and were strongly regulated in early development 42 
(p < 10-20). These data offer new targets for modeling schizophrenia risk in cellular systems.  43 

 44 

 45 
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 48 

Introduction: 49 

Schizophrenia (SCZD) is a prevalent neuropsychiatric disorder with a combination of 50 
genetic and environmental risk factors. Research over the last several decades has suggested 51 
that SZCD is a neurodevelopmental disorder arising through altered connectivity and plasticity 52 
in relevant neural circuits. However, discovering the causative mechanisms of these putatively 53 
developmental deficits has been very challenging1. The most consistent evidence of etiologic 54 
mechanisms related to SCZD has come from a recent genome-wide association study (GWAS) 55 
in which over a hundred independent single nucleotide polymorphisms (SNPs) were identified 56 
having a significant allele frequency difference between patients with schizophrenia and 57 
unaffected controls2. While these findings have identified regions in the genome harboring 58 
genetic risk variants, almost all of the associated SNPs are non-coding, located in intronic or 59 
intergenic sequence, and hypothesized to have some role in regulating expression3. However, 60 
the exact gene(s) and transcript(s) potentially regulated by risk-associated genetic variation are 61 
uncertain, as most of these genomic regions contain multiple genes. In principle, the effects of 62 
non-coding genetic variation, by whatever mechanisms (e.g. promoter, enhancer, splicing, 63 
noncoding RNA, epigenetics, etc), should be observed in the transcriptome. Therefore, to better 64 
understand how these regions of genetic risk and their underlying genotypes may confer risk of 65 
schizophrenia and to better characterize the molecular biology of the disease state, we 66 
sequenced the polyA+ transcriptomes from the prefrontal cortex of 495 individuals with ages 67 
across the lifespan, ranging from the second trimester of fetal life to 85 years of age (see Table 68 
S1), including 175 patients with schizophrenia (see Figure S1). 69 

Here we identify novel expression associations with genetic risk and with illness state 70 
and explore developmentally regulated features, including a subset of genes with previously 71 
uncharacterized isoform shifts in expression patterns across the fetal-postnatal developmental 72 
transition. We further identify many more expression quantitative loci (eQTLs) in schizophrenia 73 
risk regions than previously observed by surveying the full spectrum of associated expression 74 
features to generate potential molecular mechanisms underlying genetic risk. We also explore 75 
differential gene expression associated with the state of illness in a comparison of the 76 
postmortem brains of patients with schizophrenia with non-psychiatric controls.  By 77 
incorporating a novel, experiment-based algorithm to account for RNA quality differences which 78 
have not been adequately controlled in earlier studies, we report a high degree of replication 79 
across independent case-control gene expression datasets4,5. By combining genetic risk at the 80 
population-level with eQTLs and case-control differences, we identify putative human frontal 81 
cortex mechanisms underlying risk for schizophrenia and replicable molecular features of the 82 
illness state.  83 

 84 

Results 85 

We performed deep polyA+ RNA-sequencing of 495 individuals, ranging in age from the 86 
second trimester of fetal life to 85 years old (see Table S1), including 175 patients with 87 
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schizophrenia (see Figure S1). We quantified expression across multiple transcript features, 88 
including: annotated 1) genes and 2) exons, 3) annotation-guided transcripts4 as well as 89 
alignment-based 4) exon-exon splice junctions5 and 5) expressed regions (ERs)6. These last 90 
two expression features were selected to reduce reliance on the potentially incomplete 91 
annotation of the brain transcriptome7 (Results S1). We find a large number of moderately 92 
expressed and previously unannotated splice junctions that tag potential transcripts with 93 
alternative exonic boundaries or exon skipping (Figure S2), 95% of which are also found in 94 
other large RNA-seq datasets, including a subset that were brain-specific (Table S2). Similarly, 95 
we find that only 56.1% of ERs were annotated to strictly exonic sequence – many ERs 96 
annotated to strictly intronic (22.3%) or intergenic (8.5%) sequence, or were transcribed beyond 97 
existing annotation (e.g. extended UTRs, extended exonic sequence).  98 

 99 

Developmental regulation of transcription and shifting isoform usage  100 

Characterizing expression changes in unaffected individuals, particularly across brain 101 
development beginning with prenatal life, has previously offered disease-relevant insights into 102 
particular genomic loci 8-12. Specifically, we and others 7,13,14 have shown that genomic risk loci 103 
associated with neurodevelopmental disorders including schizophrenia are enriched for 104 
transcript features showing differential expression between fetal and postnatal brains. Here too, 105 
among the 320 control samples, the strongest component of expression change corresponded 106 
to large expression changes in the contrast of pre-natal and early postnatal life, in line with 107 
previous data 7 (Figure 1A). We further defined a developmental regulation statistic for each 108 
expressed feature using a generalized additive model (see Methods) and found widespread 109 
developmental regulation of these expressed features (Results S2, Table S3, Figure S3), 110 
including previously unannotated sequence (Table S4). Motivated in part by previous reports of 111 
preferential fetal isoform use among schizophrenia candidate risk genes10,11 (e.g predominant 112 
fetal versus predominant postnatal isoforms), we next formally identified the subset of genes 113 
showing alternative isoform expression patterns across  fetal and postnatal life using those 114 
exons, junctions, transcripts, and ERs that meet the statistical criteria for developmental 115 
regulation (i.e. those genes with at least one developmentally changing feature, see Methods). 116 
We highlight a representative gene with isoform shifts in Figure S4 involving CRTC2, a 117 
transcription co-activator. There were 6672 Ensembl genes (23.7% of the set of 118 
developmentally regulated genes) with both positive and negative expression features having 119 
genome-wide significant correlations with age (each with pbonf<0.05, Figure 1B, Table S5, Figure 120 
S5). In other words, these represent alternate transcript isoforms of the same gene that show 121 
opposite patterns of expression across the prenatal-postnatal transition.  In principle, this 122 
interaction would obscure developmental expression variation measured at the gene level.   123 

We performed gene set analyses of those genes with shifting isoform usage compared 124 
to the larger set of genes with at least one developmentally regulated feature but without shifting 125 
isoform usage to identify more specific biological functions of this unique form of developmental 126 
regulation (Table S6). The set of developmentally shifting isoforms was relatively enriched for 127 
localization, catalytic activity, signaling-related processes, including synaptic transmission and 128 
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cell communication, and neuronal development, among many others. Interestingly, genes 129 
identified with shifting isoforms across development based exclusively on junction counts were 130 
enriched for both dopaminergic (FDR=1.67x10-4) and glutamatergic (FDR=2.04x10-4) synapse 131 
KEGG pathways (Figure 1C), the two neurotransmitter systems most prominently implicated in 132 
schizophrenia pathogenesis and treatment.  133 

Schizophrenia risk is associated with novel shifting isoform usage across brain development 134 

Based on the KEGG analysis, we hypothesized that the genes with developmentally 135 
regulated isoform shifts may relate to risk for schizophrenia. Indeed, genes within the SCZD 136 
GWAS risk loci were more likely to harbor these novel isoform shifts occurring in the fetal-137 
postnatal developmental transition compared with the rest of the expressed transcriptome 138 
(Figure 1D). For example, genes with developmental isoform shifts identified by exon, junction 139 
and expressed region counts were 75% (p=9.51x10-6), 84% (p=1.63x10-7) and 71% (p=2.0x10-4) 140 
more likely to lie within the PGC2 risk regions (with permutation-based p=0.02, p=0.01, and 141 
p=0.03 respectively, see Methods) than developmentally regulated genes without isoforms 142 
shifts (Table S7). These results further underscore the role of changes in the regulation of 143 
transcription and splicing in the early brain developmental components of schizophrenia risk. 144 

 145 

Large-scale genetic regulation of transcript-specific and previously unannotated sequences 146 

In order to elucidate the RNA features associated with schizophrenia risk variants 147 
themselves, rather than positional LD regions, we first performed a genome-wide cis (<500kb) 148 
expression quantitative trait loci (eQTL) analysis within the 412 post-adolescent subjects (see 149 
Methods) across the five convergent transcript features (Table 1). We hypothesized that, in 150 
general, analyzing transcript features like exons and junctions would increase statistical power 151 
for eQTL discovery if genetic variation regulated the expression levels of specific mRNA 152 
transcripts. At the gene-level, which collapses data from all transcripts into a single measure, 153 
which is the most common feature summarization for eQTL discovery, the vast majority of 154 
expressed genes were associated with the expression of at least one nearby genetic variant. 155 
There were eQTLs to 6748 Ensembl Gene IDs (of which 4955 genes had HGC symbols) at 156 
stringent Bonferroni-adjusted significance (p < 8.41x10-9, see Methods), and eQTLs to 18,416 157 
Ensembl Gene IDs at more liberal FDR < 1% significance (p < 1.84x10-4). However, we found a 158 
larger number of genes with eQTLs using exon-level analysis – 48,031 exons mapping to 8386 159 
Ensembl IDs - at Bonferroni significance (“eExons”, p < 7.64x10-10). Exon-level analysis showed 160 
widespread transcript-specificity of eQTL associations. Almost all eExons mapped to genes with 161 
more than one annotated transcript (N=45,239, 94.2%), and the majority of these showed eQTL 162 
associations to exons belonging to a single transcript isoform (N=30,283, 66.9%). This 163 
transcript-specificity was also evident in the eQTL effect sizes, as the median additive effect 164 
size was approximately two-fold higher for exon- than gene-level analysis (15.6% versus 7.0% 165 
expression change per allele copy). Interestingly, while transcript-specific by nature, we actually 166 
found the fewest eQTLs to assembled-and-quantified transcripts (3,263 eTxns at p < 1.73x10-9), 167 
in line with previous reports highlighting the difficulties in merging assemblies across 168 
replicates15.  Lastly, there were an additional 3,022 eGenes identified with exon-level analysis 169 
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compared to the 5364 eGenes identified with both summarization levels. These results 170 
demonstrate extensive transcript specificity of many eQTL signals that are missed by gene-level 171 
analyses. 172 

We next explored the extent of eQTLs to previously unannotated transcribed sequence 173 
using junction- and expressed-region feature summarizations which do not rely on existing gene 174 
annotation for quantification. Among the 18908 junctions with eQTL signal at Bonferroni 175 
significance (“eJxns”, p<1.1x10-9), 21.6% (N=4089) were previously unannotated, including 176 
1312 eJxns to exon-skipping splicing events and 2777 eJxns to shifted exonic boundaries 177 
(acceptor or donor splice sites). The eJxns also highlight a large degree of potential transcript 178 
specificity, both in the 4089 unannotated junctions as well as 3388 additional annotated eJxns 179 
that delineate individual transcript isoforms (when multiple isoforms are present for the gene). At 180 
the expressed region-level, among the 27,643 ERs with eQTL signal at Bonferroni significance 181 
(“eERs”, p<1.28x10-9), 14,890 were either fully or partially unannotated, with partial events 182 
including 4521 exon extensions into neighboring intronic sequence and 769 extended 183 
untranslated regions (UTRs) and fully unannotated events being strictly intronic (N=6,255) and 184 
intergenic (N=3,345) sequences. These two feature classes also had the largest eQTL effect 185 
sizes of the tested features, with 41.4% and 29.2% change in expression per allele copy for 186 
eJxns and eERs. Lastly, we found that 1,042 Ensembl genes had eQTLs exclusively to 187 
unannotated sequence with no corresponding eQTL signal to annotated features in the genes. 188 
Genetic regulation of previously unannotated sequence provides further evidence for biological 189 
relevance in the human brain.  190 

Given the large degree of genetic regulation of transcript-specificity and unannotated 191 
sequences, we sought to assess the replication of the identified eQTLs (“LIBD”) in independent 192 
human brain RNA-seq data. We downloaded alignment-level data from the CommonMind 193 
Consortium (“CMC”) project, and quantified expression across the same five feature 194 
summarizations (in Table 1). Among those significant eQTL SNP-feature pairs that were well-195 
imputed, polymorphic and expressed in the replication dataset (~84% of pairs, ~95% of 196 
eFeatures, see Methods, Figure S6), >94% had consistent directionality in the two datasets, 197 
between 75.7% (eTxns) and 81.5% (eJxns) were directionally consistent and marginally 198 
significant (at p < 0.01), and just over half (52.1%-57.0%) were directionally consistent and 199 
FDR-corrected significant (published set, p<10-5) in the DLPFC replication dataset. Meta-200 
analysis between datasets demonstrated extensive significance and replication of the 9.3M 201 
SNP-feature Bonferroni-significant eQTL pairs including 97.6% at p < 1x10-5 and 82.0% at p < 202 
10-9. We further reprocessed and quantified GTEx v6 RNA-seq brain data (“GTEx”) from raw 203 
reads using the same pipeline, and assessed replication and regional specificity in these data 204 
using meta-analysis across 13 brains regions compared to frontal cortex alone. Here we found 205 
that many of the DLPFC-identified eQTLs showed strong concordant signal across all brain 206 
regions, suggesting an overall lack of regional specificity for the majority of our identified eQTLs 207 
(Figure S7). All significant eQTLs are searchable on our publicly available database: 208 
eqtl.brainseq.org/phase1/eqtl/ which provides visualizations and eQTL statistics across three 209 
independent datasets.  210 

 211 
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Clinical enrichment of eQTL associations for schizophrenia and other traits 212 

We sought to better determine the clinical relevance of our significant eQTLs particularly in the 213 
context of transcript feature-level and previously unannotated sequence associations. We cross-214 
referenced our identified eQTLs with genome-wide association study (GWAS) risk variants. 215 
Here we used 3 significance levels to associate eQTLs with GWAS variants: a) more liberal 216 
FDR-significant eQTLs in the discovery dataset, b) these FDR-significant eQTLs with additional 217 
replication data support (meta-analysis p-values with CMC < 10-8), and c) Bonferroni-significant 218 
eQTLs in the discovery dataset, e.g. Table 1, First we considered the proportion of common 219 
(MAF > 5%) and well-measured risk variants from the 128 index variants (N=106, see Methods) 220 
published in the latest PGC2 GWAS for schizophrenia 2 and their highly correlated proxies (see 221 
Methods). We identified FDR-significant eQTL associations to 51 risk SNP signals (of 106 222 
tested, 48.1%, Table S8), a substantially higher proportion of risk variants classified as brain 223 
eQTLs than previously reported16 (Table 2). In total, there were 1,244 unique SNP-feature pairs 224 
that were genome-wide FDR-significant eQTLs (83 genes, 553 exons, 49 transcripts, 192 225 
junctions and 367 ERs) mapping to 194 unique Ensembl Gene IDs (of which 162 have HUGO 226 
gene symbols). Among these 51 risk SNPs, 17 were eQTLs only to exons, junctions or 227 
expressed regions, and 7 were eQTLs to only unannotated transcribed sequence. There were 228 
17 loci with annotated eQTLs to only a single gene and another 10 loci with eQTLs to two 229 
genes. More stringent meta-analysis significance (p<10-8) retained eQTL evidence for 37 230 
variants including 17 to exons, junctions, and ERs, of which 6 were unannotated.   231 

We also assessed enrichment of 23704 GWAS risk SNPs from the NHGRI GWAS catalog 232 
present and common in our genetic data (of 44,738 available), and found eQTL evidence for 233 
8988 variants (37.9%) at FDR < 0.01. These GWAS variants that were identified as eQTLs were 234 
from GWAS for the majority of all tested traits in the literature (68.1%, 1415 of 2078 present) 235 
across all sites in the body, suggesting that many of the identified eQTLs in brain are likely 236 
shared with other tissue sites as previously described 17. Of the 8988 GWAS eQTL variants, 237 
2982 were eQTLs only to exons, junctions or expressed regions, of which 995 were only to 238 
unannotated sequence (Table 2). More stringent meta-analysis significance (p<10-8) retained 239 
eQTL evidence for 5490 variants including 1824 to exons, junctions, and ERs, of which 671 240 
were unannotated.  These results highlight the ability to identify more eQTL signal for clinical 241 
risk variants by casting a wider net of RNA-seq feature summarization, including previously 242 
unannotated transcribed sequences.  243 

Refining risk transcripts through conditional analyses 244 

We further sought to filter the eQTL hits to schizophrenia GWAS regions using 245 
conditional analysis in order to identify perhaps the most immediate downstream features of 246 
genetic risk. For each of the 51 eQTL-positive GWAS variants noted above, we conditioned on 247 
the most significant eQTL feature for each variant and then performed eQTL reanalysis of all 248 
other features. We then retained those eQTL features that remained at least marginally 249 
significant (at p <0.05) and repeated the conditional analysis now based on the two most 250 
independently associated expression features. We iteratively performed these conditional 251 
analyses until no other features were conditionally significantly associated eQTLs. These 252 
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analyses resulted in only 220 conditionally-independent SNP-feature eQTLs (35 genes, 66 253 
exons, 8 transcripts, 50 junctions and 61 ERs) to the 51 schizophrenia GWAS variants (Table 254 
S8) which mapped to 131 unique Ensembl Gene IDs (of which 106 have HUGO gene symbols). 255 
Conditional analysis resulted in an additional locus with eQTLs to a single gene (totaling 18 loci) 256 
and an additional four loci with eQTLs to features in two genes (totaling 14 loci, Table 3). 257 
Interestingly, these conditional analyses further highlighted the potential importance of 258 
transcript-specific and previously-unannotated eQTLs, as more loci were associated only with 259 
exons, junctions and ERs (27 versus 17), more were strictly unannotated (11 versus 7), and 260 
more showed eQTL associations to a single transcript isoform (18 versus 11).  261 

We highlighted several representative eQTLs in Figure 2 for different classes of 262 
associations. The top GWAS risk variant rs1233578 associated with strictly intergenic sequence 263 
downstream of ZSCAN23 (Figure 2A,2B, p=2.7x10-8) with replication in both CMC (p=0.01) and 264 
GTEx (T=3.1), suggesting potential novel transcribed sequence linked to schizophrenia risk. We 265 
also found significant eQTL signal to specific 5’ junction and exon sequences of CTNNA1 to 266 
rs3849046 (Figure 2C,2D; discovery p=6.2x10-8, CMC replication p=1.4x10-8). Another example 267 
of eQTL associations of partially annotated sequence was rs9841616 exclusively associating 268 
with the 3’ sequence of the most proximal short transcript isoform of SOX2-OT (Figure 2E,2F; 269 
discovery p=8.2x10-12, replication p=2.9x10-8). We also found novel eQTL associations to 270 
annotated exons in CD46 (Figure 2G, p=9.2x10-38, replication p = 2.9x10-14), SRR (Figure 2H, 271 
p=2.0x10-12, replication p=4.7x10-6) and GPM6A (Figure 2I, p=2.8x10-6, replication p=0.02). 272 

We also found significant enrichment of these conditionally independent schizophrenia 273 
risk-associated eQTLs among genes with developmental isoform shits identified above – 44.0% 274 
of genes with eQTLs compared to 23.6% without eQTLs (OR=2.54, p=5.38x10-8).  These 275 
conditional analyses could suggest potential regulatory roles of these unannotated transcribed 276 
sequences on annotated transcripts that play a putative role in the manifestation of 277 
schizophrenia risk in the brain. More generally, these eQTL results highlight significant and 278 
independently-replicated risk-associated schizophrenia candidate genes and their specific 279 
transcripts that comprise links in the causative chain of schizophrenia in the human brain.  280 

Expression associations with chronic schizophrenia illness  281 

 We lastly explored the expression landscape of the prefrontal cortex of the 282 
schizophrenia illness state and its potential link with developmental regulation and genetic risk. 283 
We performed differential expression modeling using 351 high quality adult samples (age >16, 284 
196 controls, 155 cases), and found extensive bias by RNA degradation within both univariate 285 
analysis (where 12,686 genes were differentially expressed at FDR<5%) and even after 286 
adjusting for standard measured levels of RNA quality typical of all prior studies (Figure S6). We 287 
therefore implemented a novel statistical framework based on an independent molecular 288 
degradation experiment (see Methods, Results S3), called “quality surrogate variable analysis” 289 
(qSVA, see Methods)18. We further utilized potential replication RNA-seq data from the 290 
CommonMind Consortium (CMC) dataset, using a subset of age range-matched 159 291 
schizophrenia patients and 172 controls. Interestingly, adjusting for observed factors related to 292 
RNA quality that characterize all earlier studies of gene expression in schizophrenic brain, 293 
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including an earlier report using the CMC data 16, the proportion of genes with differentially 294 
expressed features at genome wide significant FDR < 5% that replicate (with directionality and 295 
marginal significance at p<0.05) in the CMC dataset was small (only 11.0%, 244/2,215). In 296 
contrast, using our new statistical qSVA approach, 40.1% of differentially expressed genes at 297 
FDR < 5% (N=75/183) replicate in the CMC dataset.  At genome-wide significant FDR<10% 298 
(see Methods), we identified 237 genes with 556 DE features that replicated in the CMC dataset 299 
(33.6% gene-level replication rate, Table S9, Table S10).  300 

The differences in expression levels between cases and controls of these DE features 301 
were generally small in both our discovery and the replication datasets (Figure 3A, Figure S8), 302 
perhaps a direct result of the clinical and molecular heterogeneity of this disorder 13,19. Gene 303 
ontology analysis implicated transporter- and channel-related signaling as significantly 304 
consistently downregulated in patients compared to controls across genes annotated in all three 305 
expression summarizations (Figure 3B, Table S11). These results suggested decreased 306 
signaling in patients with schizophrenia, but could raise the possibility that these replicated 307 
expression differences between patients and controls relate to epiphenomena of illness, such as 308 
treatment with antipsychotics which affect signaling in the brain14, as the majority of patients 309 
were on anti-psychotics at the time of death (64%, Table S1). Only two genes (KLC1 and 310 
PPP2R3A) in the significant 108 schizophrenia GWAS loci were significantly differentially 311 
expressed. However, in an exploratory analysis, we found that overall the differential expression 312 
statistics within the loci were significantly different than those features outside the loci (Results 313 
S4, Figure S9, Table S12).  We also investigated the relationships between transcription and 314 
genomic risk for schizophrenia using genome wide Polygene Risk Scores (PRS) from each 315 
subject calculated as previously described2 (see Methods). Using the subset of 209 Caucasian 316 
samples, we largely found a lack of association between PRS and expression of individual 317 
expression features. We further found a lack of enrichment of PRS on expression comparing the 318 
differentially expressed and replicated case-control features to the rest of the transcriptome, as 319 
well as lack of directionally consistency between PRS- and diagnosis-associated statistics 320 
among expressed features (Table S13). These results further suggest that the significant case-321 
control expression differences show little overlap with genetic risk for the disorder.  322 

In an earlier study of the epigenetic landscape of frontal cortex of patients with 323 
schizophrenia, we showed that DNA methylation levels in patients were closer to fetal 324 
methylation levels than to those of adult control samples20. Here we tested for analogous effects 325 
in the RNA-seq data related to the illness state. Every significant gene with differentially 326 
expressed features in the adult case-control analysis and replicated in the independent dataset 327 
showed evidence for developmental regulation across at least two expression feature types. We 328 
further found that expression features more highly expressed in postnatal life tended to be more 329 
lowly expressed in patients compared to controls (max: p=3.24x10-11, min: p=1.05x10-70, Figure 330 
3C) and features more highly expressed in fetal life tended to be more highly expressed in 331 
patients with schizophrenia compared to controls (max: p=6.86x10-33, min: p < 10-100, Figure 332 
3D). Analogous analyses for developmental regulation of schizophrenia-associated features 333 
without adjusting for the RNA quality qSVs were significant in the opposite directions, namely 334 
that schizophrenia-associated changes were further from, rather than closer to, fetal expression 335 
levels, as might be predicted as a confounding artifact of residual RNA quality differences (as 336 
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the quality of the samples rank as fetal > adult control > adult SZ, see Table S1).These results 337 
further converge on a role for genes changing during brain development and maturation in the 338 
pathogenesis of schizophrenia, specifically that both DNA methylation and expression levels in 339 
adult patients appear to reflect levels in the developing brain more strongly than do those of 340 
unaffected individuals.  These results also underscore the risk of spurious findings based on 341 
uncorrected RNA quality confounding.   342 

 343 

Discussion 344 

 We have explored the diverse landscape of expression correlates of schizophrenia risk 345 
and illness state in the postmortem human frontal cortex across the lifespan. Using deep RNA 346 
sequencing to define convergent measures of gene expression and early brain development, 347 
we identified widespread developmental regulation of transcription, including novel discoveries 348 
related to preferential isoform usage across brain development.  These unexpected isoform 349 
“shifts” were associated with genetic risk for schizophrenia, and the directionality of 350 
dysregulation of developmentally regulated features suggest a more fetal-like expression profile 351 
in patients with schizophrenia compared with controls. Our approach to transcript 352 
characterization, which included extensive characterization of unannotated sequence, revealed 353 
that many more schizophrenia risk associated SNPs are brain eQTLs than previously reported - 354 
many risk SNPs only associate with a single gene, or even a single transcript, and many of 355 
these adult-identified eQTLs show overlap with genes with dynamic isoform regulation across 356 
human brain development. Lastly, we identified significant and replicated genes differentially 357 
expressed in patients with schizophrenia compared to unaffected controls using a new 358 
experiment-based statistical framework to estimate and reduce the effects of latent RNA 359 
degradation bias which had not been accounted for in earlier studies. Without this new 360 
approach to RNA quality adjustment, replication across datasets is markedly limited if not 361 
negligible, and the directionality of the association with developmental isoform shifts is 362 
anomalous. These data suggest a convergence of developmental regulation and genetic risk for 363 
schizophrenia that appears relatively stable in patients ascertained at death, following decades 364 
of illness after diagnosis.  We previously observed analogous stability of epigenetic marks 365 
highlighting prenatal life in adult patients with schizophrenia20, suggesting that both genetic and 366 
environmental risk factors implicated in schizophrenia illness involve early developmental 367 
events that are still observable in the brain tissue of adult individuals despite many years of 368 
illness.   369 

 While our approach utilizing convergent expression features – genes, exons, transcripts, 370 
junctions, and expressed regions – results in more complicated data processing and analysis, it 371 
can potentially cast a wider net in the search for valid biological signals in RNA sequencing 372 
datasets. Using all convergent features overcomes the limitations related to any given feature 373 
summarization, including the inability to measure and interrogate unannotated or novel 374 
transcribed sequences using gene and exon counts, and the difficulties in full transcript 375 
assembly from short sequencing reads 21. We note that both quantifying and analyzing splice 376 
junctions, and also transcript-level data, rely on junction-spanning reads for statistical power. In 377 
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our data, there were approximately 3 times (IQR: 2.86-3.24) more reads available by gene/exon 378 
counting approaches than those that contain splice junctions, likely explaining why gene counts 379 
discovered more differentially expressed genes in the schizophrenia diagnosis analyses. Two 380 
relatively new approaches utilized here – direct quantification and statistical analyses of splice 381 
junction counts and expressed regions – can identify differential expression signal when it is 382 
outside of the annotated transcriptome. The junction-level approach can also identify previously 383 
uncharacterized novel transcribed sequences, which we replicated in other large publicly 384 
available datasets, as well as delineate individual transcripts or classes of transcripts that share 385 
a particular splice junction. As read lengths increase, the proportion of reads containing splice 386 
junctions will increase, making junction- and transcript-based approaches even more powerful, 387 
including those recently developed to identify splicing QTLs 22.  388 

 Our analysis of RNA-seq data identified widespread shifts in preferential isoform use 389 
across brain development, which would have been impossible to identify using only gene-level 390 
data and incomplete with only exon-level data (Figure 2). The genes with these isoform shifts 391 
were significantly enriched for neurodevelopmental and cellular signaling processes, and as well 392 
as for genes in regions of genetic risk for schizophrenia. A prevalent hypothesis suggests that 393 
schizophrenia is a neurodevelopmental disorder that arises because of altered connectivity and 394 
plasticity in the early assembly of relevant neural circuits23, and the potential convergence of 395 
genetic risk with developing signaling processes across human brain development should  point 396 
to specific candidate molecular disruptions occurring during the wiring of the fetal brain. Indeed, 397 
inefficient or disrupted signaling and tuning is thought to underlie the expression of illness in the 398 
adult brain 23, and the most successful therapeutics work through improving these processes14. 399 
Consistent with this hypothesis, we find evidence for differences in the expression of genes 400 
coding for subunits of ion channels in the cortices of patients with schizophrenia compared to 401 
controls. We observed significant differential expression of both voltage-gated (KCNA1, KCNC3, 402 
KCNK1, KCNN1, SCN9A) and ligand gated ion channels (GRIN3A, GABRA5, GABRB3), 403 
transporters (SLC16A2, ALC25A33, SLC26A11, SLC35F2, SLC7A3), and ion channel auxiliary 404 
subunits (KCNIP3, SCN1B), supporting other evidence that the clinical phenomenology of 405 
schizophrenia is associated with altered neuronal excitability 24.  While these findings implicating 406 
basic mechanisms of cortical circuit dynamics may underlie fundamental aspects of the clinical 407 
disorder, the possibility that they are driven by the effects of pharmacological treatment and are 408 
thus state dependent epiphenomena cannot be excluded.  Indeed, our failure to find association 409 
of genomic risk scores and differential gene expression in the illness state adds weight to the 410 
latter interpretation.   411 

Our eQTL analyses are among the largest and most comprehensive to date in human 412 
brain tissue, based on stringent genome-wide significance and independent replication, and 413 
offer additional insights into the genetic regulation of RNA expression levels. Our data also 414 
suggest more widespread regulation of specific transcript isoforms, which we were able to 415 
identify using exon- and junction-level analyses. This transcript-specific genetic regulation was 416 
particularly prevalent among schizophrenia risk variants, where 66.9% of loci containing multiple 417 
transcripts showed clinically- and molecularly-consistent eQTL signal to a single Ensembl 418 
transcript isoform. Overall, we have identified many more eQTLs to genome-wide significant 419 
schizophrenia risk variants – 48.1% - than previously reported, experimentally implicating far 420 
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more potential “risk” genes within these loci than previously characterized. Our database of 421 
eQTLs – available at eqtl.brainseq.org/phase1/eqtl – is searchable for candidate genes or SNPs 422 
and provides publication-ready visualizations (e.g. boxplots in Figure 2) and statistics eQTL 423 
associations. The database can serve as a “one stop shop” for eQTL statistics across three 424 
independent studies (LIBD, CMC, and GTEx) for both annotated and unannotated transcribed 425 
sequence in the human cortex, and can export results to the UCSC Genome Browser 25 for 426 
additional interrogation.  427 

These eQTL associations within the genome-wide significant schizophrenia loci identify 428 
novel putative biological mechanisms underlying risk for the disorder. We have highlighted 429 
GWAS loci that contain significant and statistically independent eQTLs, as they often point to 430 
individual “risk” genes or even more specific “risk” transcripts. These “risk” genes and transcripts 431 
are targetable entry points for more focused cellular assays and model organism work to better 432 
characterize schizophrenia risk mechanisms. Moreover, these eQTLs of specific transcript 433 
features identifies a compelling strategy and directionality for target rescue, specifically to 434 
increase or decrease the function of the target transcript(s) and downstream effectors. Focusing 435 
solely on increased or decreased expression in brains of patients compared to controls, without 436 
considering genetic risk variants and their regulation of local gene expression, will likely 437 
predominantly highlight molecular changes resulting from the schizophrenia illness state, as we 438 
suggest with consistent down-regulation of ion channels. We stress the priority of identifying the 439 
most relevant cellular consequences of genetic risk, which we view as production of particular 440 
isoforms with predicted directionality, rather than trying to identify “causal” mutations tagged by 441 
“marker” risk SNPs from the GWAS.  We suggest that identifying convergence between genetic 442 
risk and potential molecular consequences of the disorder is likely to result in better, or at least 443 
more consistent support for, targets for drug discovery efforts.  444 

 445 
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 516 

Figure Legends 517 

Figure 1: Developmental regulation of expression. (A) Principal component #1 of the gene-level 518 
expression data versus age; PCW: post-conception weeks, remaining ages are in years. (B) 519 
Expression features fall into two main development regulation signatures, increasing in 520 
expression from fetal to postnatal life (orange) or decreasing from fetal to postnatal life (blue). Y-521 
axis is Z-scaled expression (to standard normal), dark lines represent median expression levels, 522 
and confidence bands represent 25th-75th percentiles of expression levels for each class of 523 
features. (C) KEGG pathways enriched for genes with isoform shifts, stratified by which feature 524 
type identified the gene as having a switch. Coloring/scaling represents -log10(FDR) for gene 525 
set enrichment. Analogous data for GO gene sets (biological processes, BP, and molecular 526 
function, MF) are available in Table S6. DER: differentially expressed region. Enrichment 527 
analyses for isoform shift genes among PGC2 schizophrenia GWAS risk loci with exon and 528 
junction counts using both (D) parametric p-values) and (E) permutation-based p-values. OR: 529 
odds ratio. 530 

Figure 2: Clinical enrichment of schizophrenia risk using representative eQTLs. (A) Association 531 
between rs1233578 and intergenic sequence downstream (B) of ZSCAN23. (B) Association 532 
between rs3849046 and a splice junction (C) of a particular longer isoform (D) of CNNTA1. (E) 533 
Association between rs9841616 and very proximal extended UTR (F) of SOX2-OT. 534 
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Associations between risk SNPs and annotated sequences are shown for (G) CD46, (H) SRR 535 
and (I) GPM6A. In panels B, D, and F: thicker/dark blue: exon, thinner/light blue: intron; 536 
coordinates relative to hg19. 537 

Figure 3: Differential expression comparing patients with schizophrenia to controls. (A) 538 
Histogram of fold changes of the diagnosis effect of those features that were significant and 539 
independently replicated, colored by feature type. (B) Gene set analyses of genes with 540 
decreased expression in patients compared to controls by feature type. Coloring/scaling 541 
represents -log10(FDR) for gene set enrichment. Significant directional effects of developmental 542 
regulation among diagnosis-associated features for those features that (C) increased and (D) 543 
decreased across development (i.e. those features shown in Figure 1B). P-values provided for 544 
Wilcoxon rank sign test for those features developmentally regulated among case-control 545 
differences to those not developmentally regulated. 546 

 547 

Tables 548 

Table 1: eQTL summary statistics at FDR and Bonferroni significance thresholds across five 549 
feature summarizations. “logFC” is the log2 fold change in expression per minor allele copy and 550 
“% Unann” is the percent of features that were not strictly annotated.  551 

 
Type eQTLs # SNPs # Features p-cutoff

Ensembl 
Genes 

Symbol 
Genes 

log2FC % Unann

F
D

R
 <

 1
%

 

Gene 1815172 1055186 18416 1.84E-04 18416 12874 0.061 NA 

Exon 13255860 1390362 157923 1.00E-04 20696 15697 0.13 NA 

Transcript 1465179 616346 26870 3.07E-05 11272 11219 0.094 50.7% 

Junction 4813472 1092615 67358 6.39E-05 14792 13204 0.33 21.3% 

ER 8115891 1367619 94200 1.25E-04 16379 12914 0.22 47.4% 

B
o

n
f 

<
 5

%
 

Gene 648597 431704 6748 8.41E-09 6748 4955 0.097 NA 

Exon 4019197 529237 48031 7.64E-10 8386 6439 0.21 NA 

Transcript 514563 236633 6349 1.73E-09 3263 3249 0.15 46.9% 

Junction 1557370 439920 18908 1.10E-09 5827 5205 0.55 21.6% 

ER 2575655 533978 27643 1.28E-09 6822 5643 0.37 53.9% 

 552 

  553 
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 554 

Table 2: eQTL summary metrics for GWAS variants from the latest schizophrenia GWAS and 555 
the more general genome-wide suggestive loci from the NHGRI GWAS catalog. “# SNPs 556 
Tested” were those that were observed or imputed with high quality and that were relatively 557 
common in our samples (MAF > 5%). “Unann” = unannotated, “Tx” = transcript 558 

SCZD GWAS NHGRI GWAS Catalog 
FDR<1% FDR+Meta Bonf<5% FDR<1% FDR+Meta Bonf<5% 

# SNPs Tested 106 106 106 23704 23704 23704 
# SNP eQTLs 51 37 26 8988 5490 4255 
> # w/o Gene 21 17 9 3763 2370 1891 

> # w/o Gene+Tx 17 15 8 2982 1824 1445 
> # Unann 47 28 17 5858 3470 2579 

> # Only unann 7 6 3 995 671 589 
> # Single Tx 11 10 5 1933 1156 976 

 559 

  560 
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 561 

Table 3: GWAS-significant index variants and eQTL associations, for those GWAS loci 562 
associating with only one or two genes following conditional analysis.  563 

SZ GWAS  
Locus SNP Gene SZ GWAS 

Locus SNP Gene 

1 rs1233578 Intergenic 59 rs10520163 CLCN3 
1 rs1233578 ZSCAN26 63 rs9420 Intergenic 
5 rs4129585 TSNARE1 73 rs3849046 CTNNA1 
7 rs10650434 MAD1L1 82 rs6704641 SATB2 
7 rs10650434 FTSJ2 84 rs1106568 GPM6A 

11 rs4702 FES 86 rs10043984 FAM53C 
11 rs4702 AC068831.1 86 rs10043984 NME5 
12 rs75968099 LRRFIP2 88 rs7819570 AC090568.2 
12 rs75968099 AC011816.1 96 rs8082590 ATPAF2 
16 rs13240464 LRRN3 96 rs8082590 DRG2 
16 rs13240464 IMMP2L 98 rs12325245 GOT2 
17 rs10791097 SNX19 98 rs12325245 NDRG4 
20 rs7893279 NSUN6 103 rs324017 STAT6 
23 rs6704768 C2orf82 106 rs9841616 SOX2-OT 
23 rs6704768 GIGYF2 109 rs149009306 DFNA5 
24 rs55661361 NRGN 114 rs12421382 AP003049.1 
30 rs11682175 FANCL 114 rs12421382 Intergenic 
42 rs7432375 AC117382.2 117 rs75575209 FANCL 
42 rs7432375 PCCB 119 rs14403 AKT3 
47 rs4523957 SRR 119 rs14403 SDCCAG8 
47 rs4523957 TSR1 120 rs6670165 BRINP2 
52 rs140505938 Intergenic 120 rs6670165 Intergenic 
57 rs34269918 RERE 121 rs7523273 CD46 
57 rs34269918 SNORA77       

  564 
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 632 

 633 

Methods 634 

 635 

Postmortem brain samples  636 
Post-mortem human brain tissue was obtained by autopsy primarily from the Offices of the Chief 637 
Medical Examiner of the District of Columbia, and of the Commonwealth of Virginia, Northern 638 
District, all with informed consent from the legal next of kin (protocol 90-M-0142 approved by the 639 
NIMH/NIH Institutional Review Board). Additional post-mortem fetal, infant, child and adolescent 640 
brain tissue samples were provided by the National Institute of Child Health and Human 641 
Development Brain and Tissue Bank for Developmental Disorders (http://www.BTBank.org) 642 
under contracts NO1-HD-4-3368 and NO1-HD-4-3383. The Institutional Review Board of the 643 
University of Maryland at Baltimore and the State of Maryland approved the protocol, and the 644 
tissue was donated to the Lieber Institute for Brain Development under the terms of a Material 645 
Transfer Agreement. Clinical characterization, diagnoses, and macro- and microscopic 646 
neuropathological examinations were performed on all samples using a standardized paradigm, 647 
and subjects with evidence of macro- or microscopic neuropathology were excluded. Details of 648 
tissue acquisition, handling, processing, dissection, clinical characterization, diagnoses, 649 
neuropathological examinations, RNA extraction and quality control measures were described 650 
previously in Lipska, et al. 26. The Brain and Tissue Bank cases were handled in a similar 651 
fashion (http://medschool.umaryland.edu/BTBank/ProtocolMethods.html). Antipsychotic use 652 
was measured using toxicology at time of death. 653 
 654 

RNA extraction and sequencing 655 
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Post-mortem tissue homogenates of dorsolateral prefrontal cortex grey matter (DLPFC) 656 
approximating BA46/9 in postnatal samples and the corresponding region of PFC in fetal 657 
samples were obtained from all subjects. Total RNA was extracted from ~100 mg of tissue using 658 
the RNeasy kit (Qiagen) according to the manufacturer’s protocol. The poly-A containing RNA 659 
molecules were purified from 1 µg DNAse treated total RNA and sequencing libraries were 660 
constructed using the Illumina TruSeq© RNA Sample Preparation v2 kit. Sequencing 661 
indices/barcodes were inserted into Illumina adapters allowing samples to be multiplexed in 662 
across lanes in each flow cell. These products were then purified and enriched with PCR to 663 
create the final cDNA library for high throughput sequencing using an Illumina HiSeq 2000 with 664 
paired end 2x100bp reads. 665 

 666 

RNA sequencing data processing 667 
 668 
The Illumina Real Time Analysis (RTA) module performed image analysis, base calling, and the 669 
BCL Converter (CASAVA v1.8.2), generating FASTQ files containing the sequencing reads. 670 
These reads were aligned to the human genome (UCSC hg19 build) using the spliced-read 671 
mapper TopHat (v2.0.4) using the reference transcriptome to initially guide alignment, based on 672 
known transcripts of the previous Ensembl build GRCh37.67 (the “–G” argument in the 673 
software) 27. We achieved a median of 85.3 million (IQR: 71.7M-111.2M) aligned reads per 674 
sample (see Table S1).  675 
 676 
We characterized the transcriptomes of these 495 samples using five convergent 677 
measurements of expression (“feature summarizations”)– (1) gene and (2) exon counts, and (3) 678 
transcript-level quantifications that rely on existing gene annotation, and two annotation-679 
agnostic approaches we have developed that are determined solely from the read alignments – 680 
(4) read coverage supporting exon-exon splice junctions (e.g. coordinates of potentially intronic 681 
sequence that are spliced out of mature transcripts captured by a single read) and (5) read 682 
coverage overlapping each base in each sample which we have summarized into contiguous 683 
“expressed regions” (ERs, see Methods, Figure S1). These last three measurements generate 684 
expression for features of interest that can “tag” elements of transcripts in the data that are not 685 
constrained by limitations or incompleteness of existing annotation, and the counts for these 686 
features can then be directly used for differential expression analysis.  687 
1. Gene counts were generated using the featureCounts tool28  (v1.4.3-p1) based on the more 688 

recent Ensembl v75, which was the last stable release for the hg19 genome build, using 689 
single end read counting [featureCounts –a $GTF –o $OUT $BAM]. We converted counts to 690 
RPKM values using the total number of aligned reads across the autosomal and sex 691 
chromosomes (dropping reads mapping to the mitochondria chromosome). 692 

2. Exon counts were also generated using the featureCounts tool28 (v1.4.3-p1) based on the 693 
more recent Ensembl v75, using single end read counting, and allowing reads to be 694 
assigned to multiple exons (e.g. those with splice junctions) [featureCounts –O –f –a $GTF –695 
o $OUT $BAM]. We converted counts to RPKM values using the total number of aligned 696 
reads across the autosomal and sex chromosomes (dropping reads mapping to the 697 
mitochondria chromosome). 698 
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3. Junction counts were generated by first filtering the TopHat BAM file to primary alignments 699 
only [samtools view -bh -F 0x100 $BAM > $NEWBAM ] and regtools 29 (v 0.1.0) was used to 700 
extract analogous junction information (coordinates and number of reads supporting) as the 701 
TopHat output. We found that native TopHat output (junctions.bed) was based on both 702 
primary and secondary alignments, which could influence the degree of potentially novel 703 
splice junctions. We used a modified version of TopHat’s “bed_to_juncs” program to retain 704 
the number of supporting reads (in addition to returning the coordinates of the spliced 705 
sequence, rather than the maximum fragment range), and used R code (see Supplementary 706 
Code) to combine and annotate these junctions across all samples. We identified splice 707 
junctions using Ensembl v75 – while the initial alignment was guided by Ensembl v67, novel 708 
junctions, by definition, are identified in the second genome alignment, rather than the initial 709 
guided transcriptome alignment step. We converted counts to “RP80M” values, or “reads per 710 
80 million mapped” using the total number of aligned reads across the autosomal and sex 711 
chromosomes (dropping reads mapping to the mitochondria chromosome), which can be 712 
interpreted as the number of reads supporting the junction in an average library size (we 713 
were targeting 80M reads in the sequencing). Most junctions were lowly expressed in our 714 
homogenate tissue, with fewer than 1 average normalized supporting read (N=3,330,642; 715 
92.98%) including approximately half unique to a single individual (N= 1,779,241, 49.67%).   716 

4. Transcripts were assembled using StringTie4 (version 1.1.2) guided by Ensembl v75 717 
annotation within each sample [stringtie $BAM –o $OUT –G $GTF]. We then used 718 
“CuffMerge” 30 to merge all assembled transcriptomes across all samples, and then re-719 
quantified the expression of each transcript isoform in each sample again using StringTie to 720 
this global set of transcripts [stringtie $BAM –B –e  –o $OUT –G $GTF_ALL] to have 721 
expression measurements on the same transcripts across all samples. We then used the 722 
“ballgown” tool31 to merge all assembled and quantified transcripts across all samples (N= 723 
733,339), and used liberal filtering to remove lowly or uniquely expressed transcripts (mean 724 
FPKM > 0.025), resulting in 188,578 transcripts across the 495 samples.  725 

5. Expressed regions (ERs) were calculated using the “derfinder” R Bioconductor package6 726 
using a cutoff of 5 normalized (to 80M reads) read coverage, which identified 389,797 ERs. 727 
We retained the 275,885 ERs that were at least 12 basepairs, and annotated the ERs to 728 
Ensembl v75.  729 

 730 
Genotype data processing 731 
SNP genotyping with HumanHap650Y_V3 (N=135), Human 1M-Duo_V3 (N=357), and Omni5 732 
(N=3) BeadChips (Illumina, San Diego, CA) was carried out according to the manufacturer’s 733 
instructions with DNA extracted from cerebellar tissue. Genotype data were processed and 734 
normalized with the crlmm R/Bioconductor package32 separately by platform. Genotype 735 
imputation was performed on high-quality observed genotypes (removing low quality and rare 736 
variants) using the prephasing/imputation stepwise approach implemented in IMPUTE233 and 737 
Shape-IT34, with the imputation reference set from the full 1000 Human Genomes Project Phase 738 
3 data set, separately by platform. We retained common SNPs (MAF > 5%) that were present in 739 
the majority of samples (missingness < 10%) that were in Hardy Weinberg equilibrium (at p > 740 
1x10-6) using the Plink35 version 1.9 tool kit [`plink --bfile $BFILE --geno 0.1 --maf 0.05  --hwe 741 
0.000001`]. We then identified linkage disequilibrium (LD)-independent SNPs to use in genome-742 
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wide clustering of samples and in the number of independent eQTL tests performed [`plink –743 
bfile $BFILE --indep 100 10 1.25`]. Multidimensional scaling (MDS) was performed on the 744 
autosomal LD-independent construct genomic ancestry components on each sample, which can 745 
be interpreted as quantitative levels of ethnicity – the first component separated the Caucasian 746 
and African American samples. This processing and quality control steps resulted in 7,421,423 747 
common variants in this dataset of 495 subjects. 748 
 749 

Polygene risk score (PRS) analysis: Using the allelic dosage files following imputation described 750 
above and the SNPs from provided by the PGC to the Lieber Institute that did not contain 751 
completely different clinical subjects used in the GWAS2. We considered expression 752 
associations at the gene, exon and junction-level to the PRS scores from the first 5 clinical SNP 753 
sets, corresponding to GWAS p-value thresholds of p < 5e-8 (s1), p < 1e-6 (s2), p < 1e-4 (s3), p 754 
< 0.001 (s4), and p < 0.01 (s5) – subsequent SNP sets were ignored due to clinical risk 755 
plateauing at s5. We also focused only on Caucasian individuals (96 cases, 113 controls), as 756 
the s5 PRS was increased in patients relative to controls in this sample (p=3.2x10-5), but did not 757 
differ among African Americans (p=0.9). Within each expression feature type, we modeled 758 
expression levels as a function of each PRS set (s1-s5), adjusting for 3 MDS components of the 759 
genotype data, sex, and the first K principal components (PCs) of the normalized expression 760 
features, where K was calculated using the Buja and Eyuboglu permutation-based algorithm36 in 761 
the “sva” Bioconductor package37. The resulting p-values of PRS on expression, adjusting for 762 
the above factors, were subject to false discovery rate (FDR) control to account for multiple 763 
testing. 764 

 765 

Public data processing 766 

GTEx: Raw RNA-seq reads from all brain samples with corresponding genotype data were 767 
downloaded from SRA and aligned to the genome using TopHat2 27 (version 2.0.14) using the 768 
iGenomes transcriptome and genome annotations based on hg19. As above, featureCounts 28 769 
was used to quantify expression of genes and exons relative to Ensembl v75, and junctions 770 
were quantified with regtools29 as above. We used StringTie with the assembled merged GTF 771 
from the LIBD DLPFC samples on the GTEx BAM files to quantify the same transcripts, and 772 
used bwtool38 to quantify the coverage of the same expressed regions from the GTEx brain 773 
samples. Genotype data from the two platforms (Illumina Omni 5M and 2.5M) were imputed 774 
separately as described above and merged into a single plink35 set.  775 

GEUVADIS: Raw RNA-seq reads from all LCL samples were downloaded from SRA and 776 
aligned to the genome using TopHat2 27 (version 2.0.9) using the iGenomes transcriptome and 777 
genome annotations based on hg19. As above, featureCounts28 was used to quantify 778 
expression of genes and exons relative to Ensembl v75, and junctions were quantified with 779 
regtools29 as above. We used StringTie with the assembled merged GTF from the LIBD DLPFC 780 
samples on the GEUVADIS BAM files to quantify the same transcripts, and used bwtool to 781 
quantify the coverage of the same expressed regions from the GEUVADIS LCL samples. 782 
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CommonMind Consortium (CMC): 547 BAM files were downloaded from Synapse, which were 783 
aligned with TopHat2 (version 2.0.9) using Ensembl v70 transcriptome annotation and the hg19 784 
genome. As above, featureCounts 28 was used to quantify expression of genes and exons 785 
relative to Ensembl v75, and junctions were quantified with regtools 29 as above. We used 786 
StringTie with the assembled merged GTF from the LIBD DLPFC samples on the CMC BAM 787 
files to quantify the same transcripts, and used bwtool to quantify the coverage of the same 788 
expressed regions from the CMC brain samples. Genotypes were converted to plink file sets 789 
from GEN files obtained from Synapse using posterior probabilities > 90%, resulting in genotype 790 
data across 9,506,038 SNPs and 547 samples. 791 

 792 

Differential expression across brain development 793 

We modeled differential expression across age at each of the five feature summarizations 794 
(gene, exon, junction, transcript, and ER) in the 320 control subjects across the lifespan. We 795 
modeled expression, after transforming with log2 with an offset of 1, as a function of age after 796 
creating using linear splines with breakpoints at ages: birth (0), 1, 10, 20, and 50, further 797 
adjusting for sex and ancestry/ethnicity (first 3 MDS components). F-statistics were computed 798 
comparing the model containing age (including the linear splines), sex, and ethnicity, to a 799 
statistical model with just sex and ethnicity, with corresponding p-values calculated based on an 800 
F-distribution with 11 and 308 degrees of freedom, and Bonferroni adjustment within each 801 
feature type was performed using the number of features with non-zero expression (gene 802 
RPKM > 0.01, exon RPKM > 0.1, and junction RP80M > 0.2 with non-novel annotation) across 803 
all samples as the number of tests (which varied by feature type). We also computed post-hoc 804 
statistics on the data, including the Pearson correlation between “cleaned” expression (after 805 
regressing out the effects of sex and ethnicity, holding the age effects constant), and age to 806 
determine if the expression of the fetal rose or fell across the lifespan, and also measured the 807 
fetal versus postnatal log2 fold changes.  808 

Preferential isoform usage across aging was determined by identifying the subset of genes (by 809 
Ensembl ID) that contained at least one Bonferroni-significant feature that had positive 810 
correlation with age and another Bonferroni-significant feature that had negative correlation with 811 
age. We also computed the difference in positive and negative correlations as a measure of the 812 
magnitude of the preferential isoform use. Gene set analyses using pre-defined gene ontology 813 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) sets were performed using the 814 
clusterProfiler R/Bioconductor package39, here using the genes (mapping from Ensembl to 815 
Entrez ID) that had such preferential isoform use to those that were developmentally regulated 816 
(having at least one feature that was associate with age at Bonferroni significance). 817 
Enrichments with the PGC2 schizophrenia risk loci – defined by the chr:start-end roughly 818 
corresponding to linkage disequilibrium blocks in the published manuscript - were performed 819 
both parametrically, by overlapping the genomic coordinates of the 108 risk regions with those 820 
genes that had preferential isoform usage, compared to a background of all genes with each set 821 
of expressed features, as well as by permuting the locations of the 108 regions across the 822 
genome 10,000 times and each time, re-computing the overlap within these null regions – see 823 
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additional details in Jaffe et al 20157. Empirical p-values were calculated by counting the 824 
number of the odds ratios across the 10,000 null permutations to each observed odds ratio. 825 

 826 

 827 

eQTL discovery analyses 828 

We performed eQTL analyses separately by feature type (gene, exon, junction, transcript, and 829 
ER) allowing for a 500kb window around each of the 7,421,423 common SNPs in the 412 age > 830 
13 samples, adjusting for ancestry (first three MDS components from the genotype data), sex, 831 
diagnosis, and the first K principal components (PCs) of the normalized expression features, 832 
where K was calculated separately by feature type using the Buja and Eyuboglu permutation-833 
based algorithm36 in the “sva” Bioconductor package37 (gene: 22 PCs, exon: 19 PCs, junction: 834 
26 PCs, transcript: 25 PCs, expressed regions: 20 PCs). The eQTL analyses were run using the 835 
MatrixEQTL R package40, which returned the log2 fold change per allele copy, and 836 
corresponding T-statistic, p-value, and FDR for each SNP-feature pair. We further used the LD-837 
independent SNPs to estimate the effective number of tests (by counting the number of features 838 
within a 500kb window around each LD independent SNP) for a more conservative Bonferroni 839 
adjustment. For all five feature types, we retained all eQTLs with FDR < 1%.  840 

 841 

eQTL replication analyses 842 

We sought to replicate all significant SNP-Feature pairs for each eQTL in two independent 843 
datasets across all five feature summarizations: CommonMind Consortium and the GTEx 844 
project. We used chromosome and position of variants to attempt to match across dataset –845 
almost all SNPs in the discovery sample were present in each replication samples. Within each 846 
dataset, we tested all polymorphic SNPs (e.g. not monomorphic) and corresponding expressed 847 
features, adjusting for the first 10 PCs of each feature summarization type and the first 5 MDS 848 
components of the corresponding common genotype data. Analyses within CMC were 849 
performed on the 285 controls and analyses in GTEx were performed within each brain region 850 
separately. After identifying and matching back on SNP-feature eQTL pairs, we checked 851 
whether the counted alleles were the same within the discovery and replication datasets and 852 
flipped the directionality of eQTL associations where the alleles were discordant. Note that in 853 
GTEx, some residual discordancy was still present across dataset (e.g. off-diagonal points in 854 
Figures S6, S7A and S7B) but not within a dataset (Figure S7C). Meta-analysis between 855 
discovery (LIBD) and CMC was performed using Stouffer’s Methods 41, by summing the T-856 
statistics and dividing by the square-root of the number of datasets (N=2). Meta-analysis within 857 
GTEx brain regions was performed using the same approach, here dividing by the square root 858 
of number of datasets/brain regions (N=13). When replication statistics were not present in 859 
replication datasets due no/low expression or being monomorphic, the discovery eQTL was 860 
“penalized” by setting the replication statistic to 0 prior to meta-analysis.  861 

 862 
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eQTL clinical enrichment analyses 863 

We downloaded the 128 linkage-disequilibrium-independent variants that reached genome-wide 864 
significance in combined analysis from the latest schizophrenia GWAS (their Supplementary 865 
Table 2) and matched those variants to our data by chromosome and position relative to hg19. 866 
Of the 128 variants, only 106 were present in our final QC’d and common (MAF>5%) genotype 867 
data. Most were excluded due to MAFs less than 5% although several variants were dropped 868 
for other reasons (not present in 1000 Genomes, failed Hardy Weinberg equilibrium, poorly 869 
imputed, etc). We therefore interrogated only those 106 schizophrenia-associated variants 870 
among our eQTL associations. We utilized a similar strategy for the latest NHGRI GWAS 871 
catalog (downloaded 7/24/2017) with an additional step of lifting over our variants to hg38 and 872 
again matching by variant coordinates. Here, only approximately half of the variants were well-873 
measured in our samples (see Table 2).  874 

 875 

eQTL conditional analyses 876 

We performed conditional analyses within the eQTLs for each schizophrenia risk variant to 877 
remove highly correlated signal and improve resolution of associations. We used the residuals 878 
of the statistical model described above within each feature type (regressing out PCs, MDS 879 
components and diagnosis) to allow for analyses across feature types. We iteratively 880 
conditioned on the expression level of the most significant eQTL feature and recomputed the 881 
eQTL p-values for all other features to the risk SNP. Those features that were still marginally 882 
significantly (at p<0.05) were retained, and then next-best expression feature (following 883 
conditioning) was additionally adjusted for in the statistical model. This procedure of iteratively 884 
testing for conditional independence among remaining features and subsequently adjusting for 885 
the most significant feature continued until no additional features were independently associated 886 
with the genetic risk variant at p < 0.05. This procedure was performed separately within each of 887 
the 51 loci with eQTL signal. 888 

 889 

Schizophrenia differential expression analyses 890 

Discovery dataset analysis: we first filtered the subjects with RNA-seq to retain a more stringent 891 
set of 155 SCZD cases and 196 controls (criteria: ages between 17-80, gene assignment rate > 892 
0.5, mapping rate > 0.7, RIN > 6, not outlying on 2nd ancestry PC, only self-reported 893 
Caucasians and African Americans). We fit three statistical models across each of the 894 
expression summarizations, modeling log2 transformed expression (with an offset of 1) as a 895 
function of: 896 

(1) Adjusted ("_adj" suffix in supplementary tables): SCZD diagnosis, adjusting for age, sex, 897 
ancestry (SNP PCs 1, 5, 6, 9, 10, which were at least marginally associated with diagnosis), and 898 
then observed measures related to RNA quality: RIN, mitochondrial mapping rate, and gene 899 
assignment rate.  900 
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(2) Adjusted + Quality Surrogate Variables ("_qsva" suffix in supplementary tables): SCZD 901 
diagnosis adjusting for "Adjusted" model as well as the first 12 PCs from the degradation matrix 902 
(see below) based on polyA+ libraries (selected using to using the BE algorithm 36 in the sva 903 
Bioconductor package37 while providing the adjusted model as input).  904 

(3) Adjusted + Principal Components ("_pca" suffix in supplementary tables): SCZD diagnosis 905 
adjusting for "Adjusted" model as well as the first k PCs from the expressed features (using the 906 
50000 most variable features) depending on the feature type (gene: 23 PCs, exon: 20 PCs, 907 
transcript: 26 PCs, junction: 26 PCs, ERs: 23 PCs). 908 

We used the `lmTest` and `ebayes` functions in the limma Bioconductor package 42 to fit all of 909 
the statistical models to estimate log2 fold changes, moderated T-statistics, and corresponding 910 
p-values. Multiple testing correction via the false discovery rate (FDR) was applied using the set 911 
of expressed features in this sample set for each summarization type: 24,122 genes (mean 912 
RPKM > 0.1), 420,022 exons (mean RPKM > 0.2), 61,950 transcripts (mean FPKM > 0.2), 913 
229,846 junctions (mean RP80M > 1), and the 275,885 ERs.  914 

 915 

RNA quality correction: We summarize the RNA quality correction approach here – for more 916 
detail, see the companion paper by Jaffe et al 2017. Briefly, the quality surrogate variable 917 
analysis (qSVA) uses RNA sequencing data generated from five DLPFC tissue samples left 918 
unfrozen for 0, 15, 30 and 60 minutes, resulting in 20 RNA samples. These samples were 919 
sequenced with both polyA+ and RiboZero library preparations, and gene, exon and junction 920 
counts were derived as above. We utilized the gene-level effects of degradation in these data in 921 
Figure S5 to demonstrate residual confounding by RNA quality, which we call the “DEQual Plot”.  922 

For a given preparation type, we identified the genomic regions most susceptible to degradation 923 
by correlating coverage at expressed regions 6 to degradation time, adjusting for donor. This 924 
statistical modeling identified 515 regions significantly susceptible to degradation (at Bonferroni 925 
significance) in the RiboZero libraries and the top 1000 regions most susceptible to degradation 926 
(among the 35,287 at Bonferroni significance) in the polyA+ libraries – the BED files for these 927 
degradation-susceptible regions are available in Jaffe et al 201718 928 

The algorithm then involves selecting the set of regions for a particular library type and 929 
calculating total coverage within each region in the new user-provided samples (e.g. the 495 930 
DLPFC RNA-seq polyA+ samples) to form the degradation matrix (which is either 515 or 1000 931 
rows by N samples). Then PCA is performed on the log2 transformed degradation matrix (with 932 
an offset of 1) and the top K PCs are selected, for example using the BE algorithm 36, and 933 
extracted – the set of these PCs are referred to as quality surrogate variables (qSVs), and are 934 
included as adjustment variables in subsequent differential expression analyses.  935 

Replication dataset analysis: we performed analogous sample selection procedures as in the 936 
discovery dataset to select 159 patients and 172 controls (total gene assignment rate > 0.3, 937 
alignment rate > 0.8, RIN > 6, ages between 18-80, non-outlying on genetic ancestry PCs 3 and 938 
5 and keeping only reported Caucasians and African Americans). We similarly fit the three sets 939 
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of statistical models to all five feature summarizations, with the following differences compared 940 
to the discovery analysis: 941 

(1) Adjusted model: the model here was diagnosis adjusting for age, sex, race, brain bank, RIN, 942 
gene assignment rate, alignment rate. 943 

(2) qSVA model: the degradation matrix was constructed using the 515 regions based on the 944 
RiboZero libraries in the degradation experiment.  945 

(3) PC adjustment: for each feature summarization type, we included: 27 PCs for genes, 29 PCs 946 
for exons, 39 PCs for transcripts, 39 PCs for junctions, and 33 PCs for ERs.   947 

In these replication data we did not perform FDR correction. We were using the study for 948 
replication, not discovery, and therefore only used the features that were expressed in our data 949 
regardless of the expression levels in CMC. We considered features independently replicated if 950 
they had the same directionality for the SCZD versus control log2 fold change and were 951 
marginally significant (at p < 0.05) in the CMC dataset.  952 

Gene set analyses on replicated differentially expressed features and genes were performed 953 
with clusterProfiler39 as described above. Set-level analyses on features in the GWAS risk 954 
regions were conducted by assigning each expressed feature a binary variable for whether it 955 
was in the risk regions or not. Then we fit a linear regression model of the t-statistics for 956 
diagnosis, adjusted by the qSVA approach, as a function as whether the feature was in the risk 957 
region, adjusting for its average expression level. This analysis was conducted across and then 958 
within each of the five feature summarization types.  959 
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Supplementary Information 1029 

Supplementary Figure Legends: 1030 

Figure S1: Study overview and cartoon describing quantifying the five different expression 1031 
summarizations. 1032 

Figure S2: Cartoon describing the four different splice junction annotation classes, relative to 1033 
annotated exons (dark blue rectangles). (A) Annotated splice junctions map between two exons 1034 
in a known transcript. (B) Exon-skipping splice junctions map to two annotated exons in different 1035 
transcripts. (C) Alternative start/exon junctions map to only one annotated exon on either the 5’ 1036 
or 3’ end. (D) Completely novel junction do not map to any known exon.   1037 

Figure S3: Venn diagram of developmentally regulated features mapped back to Ensembl 1038 
Gene IDs by the five feature summarization methods. DER: differentially expressed region.  1039 

Figure S4: Example of CRTC2 (A) containing a developmental isoform shift. (B) Gene-level 1040 
analysis shows no developmental regulation but at the junction-level (C) one splice junction 1041 
significantly decreases in expression and (D) another splice junction significantly increases in 1042 
expression over the lifespan. Exons in panels (E), (F), and (H) show some marginal increases in 1043 
expression across the lifespan, but only the exon in (G) is unique to a single isoform and shows 1044 
significant decreases in expression. 1045 

Figure S5: Venn diagram of Ensembl Gene IDs that contain significant isoform shifts by the four 1046 
feature summarization methods that allow for multiple features per gene. DER: differentially 1047 
expressed region. 1048 

Figure S6: Discovery (LIBD) and replication (CMC) T-statistics for eQTLs identified in the 1049 
DLPFC for the best SNP-feature pair for each feature across 5 feature summarization types.  1050 

Figure S7: Assessing regional specificity of eQTLs in GTEx for the best SNP-feature pair for 1051 
each feature across 5 feature summarization types. (A) Significant replication of many eQTLs 1052 
within discovery (LIBD) and Frontal Cortex samples. (B) These DLPFC-identified eQTLs 1053 
showed very significant meta-analysis T-statistics across the 13 brain regions in GTEx. (C) 1054 
These DLPFC-identified eQTLs showed lack of regional specificity even within GTEx.  1055 

Figure S8: Scatter plot of effect sizes (fold changes) in discovery and replication datasets for 1056 
those features significant and replicated. Colors have the same legend as Figure 3A.  1057 

Figure S9: GWAS loci set-level analysis for (A) all features together and then stratified by only 1058 
(B) genes, (C) exons, (D) junctions, (E) transcripts and (F) expressed regions. P-values were 1059 
based on the Wilcoxon rank sign test. 1060 

Supplementary Table Legends: 1061 
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Table S1: Demographic information for subjects in the present study, stratified by age and 1062 
diagnosis group. Dx: diagnosis, N: sample size, F: Female, Cauc: Caucasian, SD: standard 1063 
deviation, PCW: post-conception weeks. Antipsychotic use was measured using toxicology at 1064 
time of death. P-values for diagnosis differences in continuous variables are based on linear 1065 
regression and P-values for categorical variables are based on chi-squared tests.   1066 

Table S2: Splice junction annotation and characterization in GTEx and GEUVADIS for any 1067 
junction or highly expressed junctions (mean reads per 80M mapped reads, RP80M > 0, > 1 1068 
and > 5). Each column represents a 2x2 table for presence of identified junctions in 495 DLPFC 1069 
samples in two independent polyA+ datasets.  1070 

Table S3: Summary statistics for those features significantly developmentally regulated in the 1071 
control-only analyses across the lifespan.  1072 

Table S4: Significant developmentally regulated features collapsed to Ensembl Gene ID, used 1073 
to make Figure S3 1074 

Table S5: Isoform shifts by Ensembl Gene ID and feature summarization type.  1075 

Table S6: Gene set analyses for those genes with significant isoform shift, stratified by feature 1076 
summarization type. Q-values, which control the false discovery rate, FDR, are shown. 1077 

Table S7: Genes within the PGC schizophrenia GWAS risk regions that contain isoform shifts 1078 
by feature summarization type. 21.8% of PGC2 genes had developmental isoform shifts using 1079 
exon counts (N=96/440) and 31.9% showed this isoform shift association based on junction 1080 
counts (N=137/430) 1081 

Table S8: Significant eQTLs to schizophrenia GWAS index variants, including replication 1082 
statistics and additional annotation metrics for variants and expressed features. “condIndep” 1083 
column refers to those associations that were conditionally independent.   1084 

Table S9: Differential expression statistics for those features that were significant and replicated 1085 
in case-control comparisons. 1086 

Table S10: Genes consistently differentially expressed by case-control analysis for the different 1087 
feature summarizations.  1088 

Table S11: Gene set analysis for genes with features differentially expressed by case-control 1089 
status, stratified by directionality and feature summarization type.  1090 

Table S12: GWAS region set-level analyses for diagnosis-associated differentially expressed 1091 
features, testing whether features in the PGC risk loci were more or less expressed as a set in 1092 
cases compared to controls. Qual: qSVA adjusted analysis, Adj: observed covariate adjusted 1093 
analysis. 1094 

Table S13: Associations between diagnosis, RPS and expression at gene and exon levels. First 1095 
two columns for each feature: p-values for gene set tests for the significant case-control 1096 
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features among statistics capturing the effect of RPS on expression. Second two columns for 1097 
each feature: directionality between RPS on expression associations and diagnosis on  1098 

 1099 
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