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Abstract 

Salt-inducible kinase 3 (SIK3) plays a crucial role in various aspects of 

metabolism. In the course of investigating metabolic defects in Sik3-deficient mice 

(Sik3
-/-

), we observed that circadian rhythmicity of the metabolisms was phase-

delayed. Sik3
-/-

 mice also exhibited other circadian abnormalities, including lengthening 

of the period, impaired entrainment to the light-dark cycle, phase variation in locomotor 

activities, and aberrant physiological rhythms. Ex vivo suprachiasmatic nucleus slices 

from Sik3
-/-

 mice exhibited destabilized and desynchronized molecular rhythms among 

individual neurons. In cultured cells, Sik3-knockdown resulted in abnormal 

bioluminescence rhythms. Expression levels of PER2, a clock protein, were elevated 

in Sik3-knockdown cells but down-regulated in Sik3-overexpressing cells, which could 

be attributed to a phosphorylation-dependent decrease in PER2 protein stability. This 

was further confirmed by PER2 accumulation in the Sik3
-/-

 fibroblasts and liver. 

Collectively, SIK3 plays key roles in circadian rhythms by facilitating phosphorylation-

dependent PER2 destabilization, either directly or indirectly.
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Introduction 

Circadian rhythms in mammals are governed by the master oscillator located in 

the hypothalamic suprachiasmatic nucleus (SCN). A growing body of evidence suggests 

that oscillation of the circadian clock is generated by the transcriptional-translational 

feedback loop composed of the circadian clock genes and their products, including the 

transcriptional activators CLOCK and brain/muscle ARNT-like protein 1 (BMAL1), and 

their negative regulators PERIODs (PER1/2/3) and CHRYPTOCHROMEs (CRY1/2) 

(Brown et al., 2012; Takahashi, 2015). These factors and their modulators contribute to 

determination and fine-tuning of the circadian period and the phase. For example, Cry1 

and Cry2 knockout (KO) mice, respectively, demonstrate shortened and lengthened 

periods of the locomotor activity rhythms in constant dark condition (van der Horst et 

al., 1999). Tau mutant hamster or mice harboring a missense mutation in casein kinase I 

epsilon (Csnk1e, CKIɛ) exhibit shortened circadian periods and the phase was advanced 

in behavioral and physiological rhythms (Meng et al., 2008; Ralph and Menaker, 1988). 

These lines of evidence suggest that the transcriptional-translational feedback loop 

mediated by the clock genes, and the post-translational modification of their products, 

are indispensable to the circadian clock machinery. However, the molecular 

mechanisms underlying the determination or stabilization of the circadian period and 

phase remain to be investigated in mammals. 

Previous reports have suggested that protein kinases play important roles in the 

regulation of circadian clocks (Reischl and Kramer, 2011). For example, CSNK1d/e 

(CKI/ɛ) phosphorylates PER1 and PER2 proteins, and promotes their proteasomal 
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degradation (Akashi et al., 2002; Eide et al., 2005; Meng et al., 2008). CRY1 are also 

phosphorylated by 5′ AMP-activated protein kinase (AMPK) and DNA-dependent 

protein kinase (DNA-PK) (Gao et al., 2013; Lamia et al., 2009). CRY2 is specifically 

phosphorylated by dual-specificity tyrosine-phosphorylation-regulated kinase 1A 

(DYRK1A) and glycogen synthase kinase 3 beta (GSK3ß), leading to degradation via a 

ubiquitin-proteasomal pathway (Gao et al., 2013; Kurabayashi et al., 2010; Lamia et al., 

2009). We previously reported that mitogen-activated protein kinase (MAPK/ERK) 

contributes to robust circadian oscillation within individual SCN neurons (Akashi et al., 

2008). Furthermore, the significance of protein kinases in human circadian rhythms has 

also been studied. Toh et al. reported that a point mutation in the clock gene Per2 results 

in familial advanced sleep phase syndrome (FASPS) in a human kindred (Toh et al., 

2001). A patient with FASPS exhibits an inherited abnormal sleep pattern in which the 

circadian clock is phase-advanced by approximately 4 h. The FASPS mutation causes 

hypo-phosphorylation of PER2 protein by CSNK1e. CSNK1e requires a priming kinase 

for phosphorylation, which is yet to be identified. Overall, these data suggest that post-

translational modifications of clock proteins by a series of protein kinases play critical 

roles in regulation of the circadian clock. In the current study, we focused on salt-

inducible kinase 3 (SIK3) because we found an abnormal circadian rhythmicity in 

metabolism while we were studying Sik3 knockout (KO) mice (Uebi et al., 2012). 

SIK1-3 are Ser/Thr kinase members of the AMPK family, which is known as an energy 

sensor, and regulates various aspects of metabolism in both vertebrates and 

invertebrates (Katoh et al., 2004; Wang et al., 2011). Previous studies suggest critical 
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roles for mammalian SIK3 in the metabolism of glucose, cholesterol, and bile acid, and 

in retinoid metabolism and skeletal development (Sasagawa et al., 2012; Uebi et al., 

2012). Sik3
-/-

 mice exhibit severe metabolic symptoms, such as hypolipidemia and 

hypoglycemia, and very frequently die on the first day after birth (Uebi et al., 2012). 

Furthermore, they exhibit severe defects in chondrocyte hypertrophy, expanded growth 

plate or cartilage, accumulation of chondrocytes, and impaired skull bone formation 

(Sasagawa et al., 2012). In the present study, we found that Sik3 KO mice also 

demonstrate abnormal circadian phenotypes, which are similar in part, but distinct from 

those of Csnk1 mutants.  

 

Results 

Sik3
-/-

 mice exhibit abnormal circadian rhythms in physiology and behavior 

While studying metabolic phenotypes in Sik3
-/-

 mice, we observed that the 

average oxygen consumption rhythm, representing the circadian rhythmicity of 

metabolism, was significantly phase-delayed by approximately 6 h compared with wild-

type (WT) littermates (Fig. 1a). We also found that other physiological rhythms related 

to rectal temperature and food consumption were phase-delayed to similar degrees (Fig. 

1b, c).  

 These data raised the possibility that SIK3 plays a role in the circadian clock 

machinery. We performed in situ hybridization on mouse brain sections, and found that 

Sik3 messenger RNA (mRNA) is expressed in the SCN, the central circadian oscillator 

(Figure 1-figure supplement 1a, arrowhead), although Sik3 mRNA levels are not 
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regulated in a circadian manner (Figure 2-figure supplement 1b). We then performed 

behavioral analysis of the Sik3
-/-

 mice and WT (Sik3
+/+

) littermates. In 12-h light-dark 

(LD) cycle conditions (LD 12:12), Sik3
+/+

 mice exhibited nocturnal activity profiles in 

which they were entrained to the LD cycle, with activity onset at light-off (ZT12, 

zeitgeber time representing light-on as ZT0 and light-off as ZT12 in LD 12:12 

conditions) and the activity offset at light-on (ZT0). In stark contrast, Sik3
-/-

 mice failed 

to become completely entrained to the LD cycle, (i.e., re-entrainment from DD to LD 

causes “splitting” phenotype, in which a part of the locomotor activity is entrained to 

the LD cycle but the other part appears to be free running), although they did still retain 

nocturnality (Fig. 1d, upper panels). Their activity onset and offset in the LD cycle did 

not correspond exactly with the light-off and light-on times, respectively, and they 

fluctuated significantly with regard to light-on/light-off. These data suggest that Sik3
-/-

 

mice have a defect in a light-input pathway. In constant dark (DD) conditions, the free-

running period of the wheel-running activity rhythms of the Sik3
-/-

 mice (24.17 ± 0.09 h 

[n = 13]) was significantly longer than that of Sik3
+/+

 mice (23.80 ± 0.05 h [n = 15]) 

(Fig. 1d, e). The ability of Sik3
-/-

 mice to entrain to a new LD cycle was examined by 

photic re-entrainment experiments, in which mice housed in DD conditions were 

transferred to an LD cycle, the phase of which was shifted substantially from the free-

running activity rhythm. The free-running locomotor rhythms of Sik3
+/+

 mice rapidly 

re-entrained to the new LD cycle, in contrast, Sik3
-/-

 mice exhibited slower re-

entrainment (Fig. 1d, lower panels). Even after 2 weeks in the new LD cycle, a 

component of the free-running rhythm formed under the DD condition (red dotted line 
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in Fig. 1d, lower right panel) was still observed, although the majority of the locomotor 

rhythm components were entrained to the LD condition. The acrophase of the activities 

of individual Sik3
-/-

 and Sik3
+/+

 mice were then compared in LD (Fig. 1f). Acrophase 

means did not differ significantly between the two genotypes, but the individual 

variation (standard deviation) in the acrophase distribution in Sik3
-/-

 mice was 

significantly greater than that of Sik3
+/+

 mice (p < 0.001, F-test). These data indicated 

that SIK3 plays a crucial role in controlling and sustaining robust circadian behavioral 

rhythmicity in addition to contributing to the photic entrainment. Notably, Sik3
-/-

 mice 

were relatively less active at night than Sik3
+/+

 mice and more active during the day, 

which resulted in lower amplitude in the locomotor activity rhythms (Fig. 1d, g). It 

should also be noted that significant differences in locomotor activity rhythms of 

individual Sik3
-/- 

mice, which include circadian period, acrophase, and activity patterns 

at light-re-entrainment, were observed. 

 

Molecular rhythms are desynchronized and circadian periods and phases are 

varied in ex vivo SCN  

To explore how SIK3 deficiency affects the circadian clocks in the SCN and 

periphery, Sik3
-/-

 mice were crossed with Per2::Luciferase knockin (KI) mice (Per2
Luc

) 

expressing PER2-luciferase fusion protein in place of PER2, which monitors the 

circadian oscillation of PER2-luciferase fusion protein both in SCN explants and in 

cultured cells (Yoo et al., 2004). Brain slices including the SCN were prepared from 

Sik3
-/-

; Per2
Luc/Luc

 double-homozygous mice for ex vivo bioluminescence imaging at the 
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single-cell level (Fig. 2). As previously reported (Akashi et al., 2008; Fukuda et al., 

2011; Yoo et al., 2004), Sik3
+/+

 SCN explants exhibited robust circadian 

bioluminescence rhythms and the individual cells were well synchronized with one 

another (Fig. 2a, d, Fig. 2-video 1). In contrast, the circadian periods and phases of the 

individual cells in Sik3
-/-

 SCN slices were varied and their bioluminescence rhythms 

became gradually desynchronized with time (Fig. 2e, h, Fig. 2-video 2). To further 

evaluate the difference in the SCN rhythms between the two genotypes, we performed 

quantitative analyses on the periods and phases of the imaging data (Fig. 2a–h). The 

number of oscillating cells in Sik3
-/-

 SCN, calculated as the percentage of oscillating 

pixels within the SCN, was significantly lower than that of Sik3
+/+

 controls (95.9% in 

Sik3
+/+

 SCN vs. 83.3% in Sik3
-/-

 SCN, p < 0.01 [chi-squared periodogram]). Although 

the average periods of the individual SCN cells in the Sik3
-/-

 and Sik3
+/+

 slices were 

comparable with one another, the variation (standard deviation) was significantly 

greater in the Sik3
-/-

 cells than in the Sik3
+/+

 cells (Fig. 2b, f, i; p < 0.0001 [F-test]). 

Similarly, the average acrophases of the Per2
Luc

 rhythms of individual SCN cells were 

comparable between the two genotypes, but the variation in the Sik3
-/-

 cells was 

significantly greater than that in the Sik3
+/+

 cells (Fig. 2c, g, j; p < 0.0001 [F-test]). 

Overall, our data demonstrated that Sik3 deficiency reduced the number of oscillating 

cells and impaired the circadian rhythmicity of oscillating cells, i.e., it was associated 

with instability in circadian period and phase, and desynchrony among SCN cells. 

 

In vitro Sik3-knockdown destabilizes circadian periods 
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Fluctuation of the circadian period and phase in Sik3
-/-

 mice in vivo and ex vivo 

prompted the examination of whether alteration of SIK3 expression levels affected 

cellular circadian rhythms in culture. NIH3T3 cells were transfected with vectors 

expressing four different Sik3 short-hairpin RNAs (shRNAs), and cellular rhythms were 

monitored via a Bmal1-luc reporter gene (Fig. 2k, l, Figure 2-figure supplement 1a). 

Unexpectedly, the average periods of all the Sik3-knockdown (Sik3-KD) cells were 

significantly shorter than those of WT controls (Figure 2-figure supplement 1b). 

Detailed period analyses revealed that all Sik3-KD cells exhibited asymmetry in the 

rhythmic pattern of Bmal1-luc half-periods, representing individual peak-to-trough or 

trough-to-peak periods, and fluctuated in all knockdown (KD) cells examined during 1 

week of monitoring, with a characteristic of longer trough-to-peak period and shorter 

peak-to-trough period (Fig. 2m, Figure 2-figure supplement 1c). The similar phenotype 

of distorted bioluminescence rhythms was also observed in some mutant mice, such as 

Tau mutant mice and Afh mice (Meng et al., 2008; Godinho et al., 2007). Consistent 

with the ex vivo SCN explant data (Fig. 2i, h), these results suggest that SIK3 is 

involved in circadian rhythm stability. 

 

PER2 expression levels are altered in Sik3-KD cells and Sik3-overexpressing cells  

Previous reports indicate that phosphorylation-mediated modulation of clock 

protein stability is mediated by multiple protein kinases (Reischl and Kramer, 2011). To 

explore whether SIK3 modifies the phosphorylation status of the clock proteins, western 

blotting of cellular lysates expressing several types of clock proteins with different 
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expression levels of SIK3 were performed. PER2 protein level was found to be largely 

affected by SIK3. Sik3-overexpression (Sik3-OX) in NIH3T3 cells resulted in a 

significant reduction in PER2 protein levels, but not PER1, compared with control cells 

(non-OX, Fig. 3a, Figure 3-figure supplement 1). Cells expressing the constitutive-

active SIK3 mutant T163E (Katoh et al., 2006), exhibited significantly reduced PER2 

protein level in HEK293T17 cells (Fig. 3a) and NIH3T3 cells (Figure 3-figure 

supplement 1), whereas in cells expressing the kinase-deficient SIK3 mutant K37M 

(Katoh et al., 2006), PER2 protein levels were comparable with those of control cells 

(Fig. 3a, Figure 3-figure supplement 1). This suggests that the kinase activity of SIK3 is 

required for PER2 destabilization. Remarkably, it was observed that the relative level of 

the up-shifted PER2 band (relative to the total of the PER2 bands) was elevated in Sik3-

OX cells compared with controls (Fig. 3b, Figure 3-figure supplement 2a). Protein 

phosphatase (PPase) treatment reduced these up-shifted PER2 bands, which confirmed 

that the shifted bands were phosphorylated forms of PER2 (Fig. 3c). Further 

investigated was whether Sik3-OX induced PER2 instability or degradation. When 

protein synthesis was inhibited by treatment with cycloheximide (CHX), PER2 levels 

decreased rapidly in SIK3-OX cells compared with the control cells, indicating that 

SIK3 accelerates PER2 degradation (Fig. 3d, Figure 3-figure supplement 2b). To further 

confirm SIK3-dependent degradation of PER2, four different shRNA constructs were 

used for Sik3 knockdown, and both PER2 abundance and its phosphorylation status 

were examined. All Sik3-KD cells expressing each Sik3 shRNA exhibited elevated 

levels of PER2 protein (Figs. 3e, Figure 3-figure supplement 3a, b), and the relative 
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levels of the up-shifted PER2 bands were significantly reduced (Fig. 3f, Figure 3-figure 

supplement 3c). Reduced up-shifted band of PER2 by Sik3-KD was phosphorylation-

dependent band, which was confirmed by PPase treatment of these cells (Fig. 3g). 

Degradation of PER2 protein levels in any of the Sik3-KD cells was significantly 

delayed, for as long as 6 h after CHX treatment (Fig. 3h). These data strongly suggest 

that SIK3 regulates PER2 abundance and stability by mediating its phosphorylation. 

 

Elevated PER2 protein levels are also observed in Sik3-/- fibroblasts and liver 

     To investigate whether alteration of endogenous PER2 protein levels is 

observed in the absence of SIK3, western blot analyses were performed on mouse 

embryonic fibroblasts (MEFs) isolated either from Sik3
-/- 

or Sik3
+/+

 mice (Fig. 4a). 

Expression levels of PER2 were significantly elevated in Sik3
-/- 

fibroblasts compared 

with Sik3
+/+ 

counterparts at all time points examined. To further examine the abnormal 

accumulation of PER2 in Sik3
-/- 

mice in vivo, mouse liver was prepared from Sik3
-/- 

and littermate Sik3
-/+ 

mice at ZT22, when PER2 protein levels and its phosphorylation 

levels are both high (Fig. 4b, left). Western blot analyses demonstrated increased 

PER2 levels in Sik3
-/- 

liver compared with the heterozygous mice (Fig. 4b, right), 

which confirmed SIK3-dependent regulation of PER2 stability. 

 

Phosphorylation and degradation of PER2 by SIK3 through a CSNK1e-

independent pathway 

SIK3-catalyzed phosphorylation of PER2 was examined via an in vitro kinase 
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assay. The up-shifted band of PER2 was significantly increased after incubation of 

PER2 with SIK3, and the total amount of PER2 was reduced in a manner dependent on 

the amount of SIK3 added (Fig. 5a). PER2 protein level was decreased by degradation 

when PER2 was incubated with higher amounts of SIK3 (400 ng and 600 ng), even 

after purification of tagged PER2 from cell lysate. The effect of phosphatase treatment 

before SIK3 kinase assay was then examined. It is well known that CSNK1 requires a 

priming phosphorylation to bind to PER2 leading to further phosphorylation. In contrast, 

an in vitro phosphatase/kinase assay demonstrated that the down-shifting effect of 

phosphatase pre-treatment on the PER2 band was counteracted by the addition of SIK3 

(Fig. 5b). When PER2 was treated with PPase after incubation with SIK3, the up-

shifted PER2 band was significantly reduced, confirming that the up-shifted band was a 

form of PER2 that was phosphorylated via SIK3 signaling (Fig. 5c). These data suggest 

that priming phosphorylation is not needed for SIK3-dependent phosphorylation and 

degradation of PER2, unlike CSNK1-mediated ones. 

     As mentioned above, CSNK1 is known to phosphorylate PER2 and induce 

PER2 degradation through a proteasomal pathway (Akashi et al., 2002; Eide et al., 

2005; Meng et al., 2008). It has also been reported that CSNK1 requires an unidentified 

priming kinase prior to phosphorylate its substrates (Gallego and Virshup, 2007). To 

address the question of whether SIK3-induced phosphorylation of PER2 is independent 

of phosphorylation by CSNK1 (Akashi et al., 2002; Eide et al., 2005; Meng et al., 2008), 

NIH3T3 cells co-transfected with Per2 and Sik3 were incubated with the CSNK1 

inhibitor IC261. IC261 did not affect PER2 degradation mediated by SIK3, suggesting 
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that SIK3-dependent PER2 degradation is independent of CSNK1-mediated PER2 

degradation (Fig. 5d). Conversely, we performed KD experiments of Sik3 and examined 

the effect on CSNK1-mediated phosphorylation and degradation of PER2. As shown in 

Fig. 3e, KD of Sik3 increased the basal level of PER2 proteins, but had no significant 

effect on the CSNK1-dependent phosphorylation states and degradation (Fig. 5e). 

Collectively, these data indicated that PER2 phosphorylation mediated by two different 

kinases, CSNK1 and SIK3, are independent events.  

 

Discussion 

In the current study, we found that SIK3 promotes phosphorylation of PER2 and 

regulates the abundance of the protein by accelerating its degradation. Interestingly, 

while both CSNK1d/e and SIK3-mediated phosphorylation of PER2 and promote its 

degradation, the underlying mechanisms appear to differ from one another (Fig. 5d and 

e). However, two questions remain: how do they share or divide roles in terms of the 

regulation of PER2 stability and abundance, and why are two kinases that induce 

distinct degradation systems required for a common substrate? To address these 

questions, it is worth noting that Sik3
-/-

 mice exhibit unique circadian phenotypes 

compared with those of Tau, a Csnk1e mutant, although both of these mutants also have 

features in common. While Tau mutant hamsters and mice demonstrate significant 

phase advance and shorter periods in physiological and behavioral rhythms (Meng et al., 

2008; Ralph and Menaker, 1988), Sik3
-/-

 mice, which are loss-of-function mutants, 

exhibit significant phase delay and longer circadian periods as shown in the current 
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study (Fig. 1). It has also been reported that Csnk1d KO liver exhibits significantly 

longer period in Per2
Luc

 rhythms (Etchegaray et al., 2009). These data suggest that both 

SIK3 and CSNK1 contribute to precise circadian period determination, and that 

deficiency of either protein results in period shortening along with stabilization of PER2. 

By contrast, unique circadian phenotypes observed in Sik3
-/-

 mice include the following: 

(i) fluctuating circadian periods and phases both in vivo (Fig. 1a–f) and in vitro SCN 

cells (Fig. 2i and 2j), (ii) impaired light-entrainment (Fig. 1d), (iii) reduced amplitude in 

locomotor activity rhythm (Fig. 1g), and (iv) desynchrony of rhythmicity among SCN 

cells (Fig. 2d, h, Fig. 2-video 1, Fig. 2-video 2), none of which have been reported in 

Csnk1 mutants, except that reduced amplitude in Per2
Luc

 rhythms was observed in 

Csnk1d KO liver (Etchegaray et al., 2009). Thus, data from the current study suggest 

that while CSNK1 is involved in determination of precise circadian period length and 

phase, SIK3 is more important for stabilization of circadian periods and phase via 

intercellular coupling, as well as for photic entrainment (Fig. 5f). In other words, while 

the two kinases may have an overlapping role(s) with regard to phosphorylating and 

destabilizing PER2, SIK3 and CSNK1 contribute differentially to circadian clock 

regulation.  

It is also interesting to note that the above-described phenotypic differences 

between Tau mutants and Sik3
-/-

 mice may, at least partly, be explained by differential 

roles of the two protein kinases outside of the SCN. For example, SIK3 is expressed in 

the eye (Lizcano et al., 2004) as well as in the SCN and, hence, disruption of this gene 

may affect the circadian light-input pathway involving the retina, which is critical for 
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photic-entrainment. This hypothesis, however, needs to be validated by further 

experiments such as a study investigating conditional KO mice to assess whether SIK3 

in the eye plays a role in the entrainment. In addition, involvement of CSNK1 in the 

photic-entrainment cannot be excluded because of potential expression of Csnk1 in the 

eye. 

As shown in Fig. 1d and g, in some cases, the actograms of Sik3
-/- 

mice suggest 

weakened rhythms. These data suggest the possibility that loss of SIK3-mediated 

signaling affects rhythm intensity, i.e., less active at night and more active during the 

day. However, we found a wide variety of phenotypic differences in the individual Sik3
-

/ -
 mice. Because SIK3 is involved in the regulation of metabolism(s), as previously 

shown, and also because average blood glucose level in Sik3
-/- 

mice is significantly 

lower than that of controls, it may be a requirement for at least some of the KO mice to 

“keep seeking food” even during a resting period, which may result in a change in 

rhythm strength. We believe that further studies, such as those investigating Sik3 

conditional KO mice or transgenic rescue mice, would enable us to distinguish the dual 

effects on behavioral rhythms (i.e., effects from the circadian clock and metabolism). 

It is also noteworthy that light re-entrainment experiments shown in Fig. 1d, some 

of the Sik3
-/- 

mice exhibited quite intriguing behaviors as mentioned above. It appears 

that, after transition from DD to LD, a part of the locomotor activities free-run even in 

the light phase (red dotted lines), but the rest of the activities were gradually entrained 

to LD cycles (Fig. 1d, right), which is not observed in the controls (Fig. 1d, left). There 

are a couple of possible interpretations: (i) “relative coordination,” in which free-
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running rhythms are affected by a Zeitgeber (entrainment agent) or other rhythms; and 

(ii) incomplete re-entrainment and/or insufficient negative masking by light due to 

defect(s) in the light-input pathway. 

It has previously been shown that constitutive expression of Per2 causes 

arrhythmia in vitro and in vivo (Chen et al., 2009; Yamamoto et al., 2005). This may 

partly explain the aberrant rhythmicity in Sik3
-/-

 mice due to accumulation of PER2 

protein. Desynchrony among SCN cells, which has been observed in circadian rhythm 

mutants (Maywood et al., 2006), may lead to insufficient light-entrainment or 

inconstant behavioral rhythms. Finally, the Sik3 gene is highly conserved in evolution, 

from nematodes to mammals (Okamoto et al., 2004), and Sik3 deficiency results in 

severe phenotypes such as high lethality after birth, and metabolic and skeletal 

abnormalities (Sasagawa et al., 2012; Uebi et al., 2012). These previous studies suggest 

that SIK3 plays an essential role in various tissues and organs. Considering that animal 

behavior is influenced by physiological states, we cannot exclude the possibility that 

behavioral and physiological abnormalities in circadian rhythms in Sik3
-/-

 mice, such as 

those observed in the current study, are due to defects not only in the SCN, but in other 

parts of the brain or in other organs or tissues. Conditional Sik3
-/-

 mouse may be a 

suitable tool for addressing these questions in the future. In addition, the present study 

demonstrated that SIK3-mediated phosphorylation regulates protein stability of PER2; 

however, this does not exclude the possibility that other clock/clock-related protein(s) is 

also a target of SIK3. 

It has been reported that SIK1, another isoform of the SIK subfamily, is involved 
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in photic entrainment of the master circadian clock (Jagannath et al., 2013), although its 

involvement in the central circadian clock remains uncertain. Notably, while the present 

study demonstrated that SIK3 regulates photic-entrainment, light responses in behavior 

observed in Sik1-KD mice (Jagannath et al., 2013) and Sik3
-/-

 mice are contrary to one 

another: rapid vs. delayed re-entrainment, respectively. In addition, CREB-regulated 

transcription coactivator 1 (CRTC1) was proposed as a target of SIK1, which 

contributes to light-induced phase reset (Jagannath et al., 2013). Although further 

studies are necessary to elucidate the involvement of the two SIK isoforms in light-

resetting mechanisms, the current study suggests that SIK3 contributes to the light-input 

pathway in addition to the circadian clock machinery in a manner that differs from SIK1, 

by regulating different substrates and signaling pathways.  

     Strikingly, Funato et al. recently reported that, by large-scale forward-genetics 

screen in mice to seek dominant sleep abnormalities, a splicing mutation of Sik3 

(referred to as a Sleepy mutant) resulted in significant decrease in wake time caused by 

extended non-REM (NREM) sleep (Funato et al., 2016). In the Sleepy mutants in which 

a point mutation resulting in a lack of a protein kinase A (PKA) recognition site of the 

SIK3 protein, the authors also described that locomotor activity rhythms in the mutants 

were normal. Although the results were in contrast to our present data, the discrepancy 

could be explained by a difference in introduced mutations, i.e., a partial deletion in the 

Sleepy mutants versus null mutation in our Sik3 KO mice.  

   More recently, a study in Drosophila suggested effects of SIK3 homolog on 

coupling of different oscillator cells and with alternative period-lengthening and 
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shortening in different cell types (Fujii et al., 2017). Interestingly, the present study in 

mice also observed abnormality in extracellular coupling among clock cells in Sik3-

knockout mice (Fig. 2). Fujii et al. described clearly that the amplitude of dPER protein 

rhythms in clock neurons (DN1p) was damped in Sik3-knockdown flies under constant 

darkness, while they did not propose a role for SIK3 in the phosphorylation and 

degradation of dPER. Instead, they proposed HDAC4 as a target of SIK3 since HDAC4 

is one of well-established targets of SIK3 in fly. Thus, it is possible that SIK3 regulates 

the mammalian circadian clock by modulating activity of HDAC4 besides PER2 or that 

the effect of SIK3 on PER2 degradation is mediated by some kinases or degradation 

proteins, which are transcriptionally regulated by HDAC4. 
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Figures and legends 

Figure 1. Sik3
-/-

 mice exhibit aberrant circadian rhythms in physiology and 

behavior.  

a. Oxygen consumption rhythm was measured in Sik3
-/-

 mice and Sik3
+/+

 controls for 

two days (n = 3 per group), and mean values are shown. The peak in the Sik3
-/-

 mice 

(blue line) was phase-delayed by approximately 6 h compared with that of Sik3
+/+

 mice 

(black line). b. Rectal temperature rhythm in the Sik3
-/-

 mice was phase-delayed (n = 3 

each). c. Food consumption rhythm also exhibited delayed phase (n = 3 per each). Note 

that continuous food intake was observed in the Sik3
-/-

 mice during the resting phase 

(daytime). d. Locomotor activity rhythms in the Sik3
-/-

 mice and Sik3
+/+

 controls. Upper 

panels demonstrate impaired entrainment to the light-dark (LD) cycles, low amplitude, 

variable phases, and significantly longer free-running periods in Sik3
-/-

 mice compared 

with Sik3
+/+

 controls (see angles of red lines). Lower panels show light re-entrainment 

experiments. In contrast to Sik3
+/+

 mice, in which behavioral rhythms entrained to LD 

cycles after transition from constant dark (DD) to LD, it took more than 2 weeks for 

Sik3
-/-

 mice to become entrained to LD. In addition, a portion of the activity rhythms in 

DD persistently free-ran for as long as 3 weeks after conversion from DD to LD in the 

Sik3
-/-

 mice (see dotted lines). e. Average free-running periods in the Sik3
-/-

 mice (n = 

13) and Sik3
+/+

 mice (n = 15). f. Distribution of average acrophase in individual Sik3
-/-

 

(n = 15) and Sik3
+/+

 (n = 16) mice. p < 0.001 for the test for equality of variance (F-test) 

vs. Sik3
+/+

. g. Averaged activity plots of Sik3
+/+

 mice (black line, n = 16, average of 16 

days) and Sik3
-/-

 mice (blue line, n = 15) in LD. *p < 0.05, **p < 0.01, ***p < 0.001 vs. 
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Sik3
+/+

 (Student’s t-test). 

 

Figure 2. Varied circadian periods and phases in individual cells of the Sik3
-/-

 

suprachiasmatic nucleus (SCN). 

Time-lapse single-cell bioluminescence images of ex vivo SCN explant cultures of (a) 

Sik3
+/+

; Per2
Luc/Luc

 and (e) Sik3
-/-

; Per2
 Luc/Luc

 mice were used for the following analyses: 

Period distribution on SCN slices of Sik3
+/+

 (b) and Sik3
-/-

 (f). Acrophase distribution on 

SCN slices of Sik3
+/+

 (c) and Sik3
-/-

 (g). Time series of the bioluminescence signals 

observed on a Sik3
+/+

 SCN slice along the bold line indicated in a (d), and those from a 

Sik3
+/+

 SCN slice along the bold line indicated in b (h). The original signals were 

smoothed via a moving average filter, and then normalized. i. Period distribution in 

representative Sik3
+/+

 and control slices. p < 0.0001 vs. Sik3
-/-

 (test for equality of 

variance, F-test). j. Acrophase distribution of representative Sik3
+/+

 and Sik3
-/-

 slices. p < 

0.0001 vs. Sik3
-/-

 (F-test). k and l. Representative Bmal1-luc rhythms of Sik3-KD 

NIH3T3 (sh #2 and #3, red) and control cells (blue). m. Averaged sequential half-

periods (peak-to-trough or trough-to-peak) of Bmal1-luc rhythms in KD and control 

NIH3T3 cells as shown in k and l (n = 4 per group). Numbers (1–5) on the x-axis 

present the first half-period (hours from first trough to second peak) to the fifth
 
half-

period (hours from 3rd trough to 4th peak). 

 

Figure 3. SIK3 alters expression levels and phosphorylation states of PER2 protein.  

a. HEK293T17 cells were transfected with SIK3 and PER2 expressing constructs, and 
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the effect on PER2 expression levels was examined by western blotting analysis. 

Overexpression of SIK3 (SIK3-OX) in HEK293T17 cells (WT) and constitutively-

active SIK3 cells (T163E), but not kinase-deficient SIK3 mutant cells (K37M), 

significantly reduced PER2 protein levels (n = 3, P<0.001 by Tukey’s test). b. Load 

volume of cell lysates in western blotting analysis was adjusted for comparison of 

phosphorylation rate. Adjustment of PER2 levels in SIK3-OX and non-OX controls 

revealed increased rates of upshifted PER2 protein (upshift/total) in NIH3T3 cells (n = 

3, ***P<0.001 vs. controls by Student’s t-test). c. Myc-tagged PER2 co-expressed with 

SIK3 was purified from HEK293T17 cell lysate and incubated with PPase for 30 min 

at 30 °C. PER2 up-shift was decreased after PPase treatment in SIK3-OX cells, which 

was attenuated by phosphatase inhibitor, Na3VO4. d. PER2 degradation assay was 

performed in Sik3-OX cells. Cells were collected at 0, 3, and 6 h after the addition of 

CHX. PER2 protein levels at the starting point (t=0) were normalized to 1. All data used 

for quantification are shown in Figure 4-figure supplement 2b (n = 3, *P<0.05 by 

Student’s t-test). Sik3-OX cells accelerated PER2 degradation. e. NIH3T3 cells were 

transfected with each shRNAs of Sik3 (SIK3-KD, #1–4) or negative control shRNA. All 

of SIK3-KD significantly increased PER2 levels (n = 3, P<0.05 by Tukey’s test). 

Another set of samples is also shown in Figure 3-figure supplement 3a. f. Sik3-KD in 

NIH3T3 cells reduced PER2 up-shift. Load volume of cell lysates in western blotting 

analysis was adjusted for comparison of phosphorylation rate (n = 3 for control and 

shRNA#2, ***P<0.001 vs. controls by Student’s t-test). g. PPase treatment with Myc-

PER2 purified from cell lysates of control cells or Sik3-KD cells. PER2 up-shift was 
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decreased after PPase treatment in SIK3-OX cells, which was attenuated by 

phosphatase inhibitor, Na3VO4. h. PER2 degradation assay in Sik3-KD cells was 

performed. PER2 protein levels at the starting point (t = 0) were normalized to 1 (n = 3, 

*P<0.05 by Student’s t-test).     

 

Figure 4. Elevated expression of PER2 in Sik3
-/-

 fibroblasts and liver.  

a. MEFs were established from Sik3
+/+

 (WT) Per2
Luc/+ 

mice and Sik3
-/-

 (KO); Per2
Luc/+ 

mice. The cellular rhythms were synchronized by dexamethasone (DEX, 100 nM) 

treatment to examine rhythmic expression by western blotting analysis. PER2 (bottom 

band) and PER2::LUC (upper bands) expression levels at all time points in knockout 

(KO) mouse embryonic fibroblast (MEFs) are higher than those in wild-type (WT) 

MEFs. b. Western blotting performed on liver nuclear extracts, Sik3
+/-

 (He); Per2
Luc/+ 

mice, and littermate Sik3
-/-

 (KO); Per2
Luc/+ 

mice. PER2 expression in liver nucleus was 

higher in Sik3
-/- 

mouse as compared to in Sik3
+/-

 mouse ZT22, left). To confirm the 

protein mobility of endogenous PER2, rhythmic expression of PER2 in Sik3
+/+

 (WT) 

mice was also detected. Note that Sik3
+/+

 (WT) mice do not have Per2
Luc

 allele. 

Therefore, PER2 bands of Sik3 He and KO are from a single Per2 allele while those 

from WT are from both alleles. 

 

Figure 5. CSNK1-independent phosphorylation and destabilization of PER2 by 

SIK3.  

a. In vitro kinase assays of Myc-PER2 purified from HEK293T17 cell lysate and 
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recombinant SIK3 catalytic domain. Incubation of PER2 protein with SIK3 increased 

the up-shifted PER2 band. b. Purified Myc-PER2 was treated with PPase prior to a 

kinase assay with SIK3. No-phosphorylated PER2 was also phosphorylated by 

recombinant SIK3. c. Up-shifted band shown in b was confirmed as phosphorylation-

form of PER2 by 2nd PPase assay. Purified Myc-PER2 from cell lysates was 

incubated with PPase and then with SIK3 (200 ng). After washing SIK3 away, PER2 

was subjected to secondary PPase treatment. d. NIH3T3 and HEK293T/17 cells 

expressing SIK3 were incubated with CSNK1 inhibitor (IC261) for indicated time 

periods. CSNK1 inhibitor did not affect SIK3-mediated PER2 degradation in both cell 

lines. e. NIH3T3 cells were transfected with Sik3-KD constructs as well as Csnk1e-WT 

or kinase dead form of Csnk1e (Csnk1e-KD). Knockdown of Sik3 did not affect 

CSNK1-mediated phosphorylation and degradation of PER2. f. A schematic 

representation of a potential role for SIK3 compared with that of CSNK1. Although 

both SIK3 and CSNK1 mediate PER2 phosphorylation and degradation, their roles and 

degradation pathways appears to be different. Therefore, it may not be the case that 

SIK3 acts as a priming kinase for CSNK1, but the two kinases regulate PER2 

independently. P represents phosphate. 

 

Figure 1-figure supplement 1. Expression patterns of the Sik3 messenger RNA 

(mRNA) in the mouse brain. 

a. Distribution of Sik3 mRNA in the mouse brain was detected by in situ hybridization 

using a 
35

S-labeled riboprobe. Note that the mRNA was expressed in almost entire areas 
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of the brain and intense signal is observed in the suprachiasmatic nucleus (SCN) 

(arrowhead). b. Quantitative analyses of the Sik3 mRNA demonstrated that Sik3 

transcript in the SCN is consistently expressed and not regulated in a circadian manner 

(n=3 each). 

Figure 2-video 1. Time-lapse bioluminescence imaging of a coronal SCN slice of a 

Sik3
+/+

; Per2
 Luc/Luc

 mouse.  

Exposure time for a single image was 20 min, and time-lapse images were captured for 

4 consecutive days. Per2
 Luc

 rhythms are well synchronized in majority of the cells in 

the SCN. 

Figure 2-video 2. Time-lapse bioluminescence imaging of a SCN slice of a Sik3
-/-

; 

Per2
 Luc/Luc

 mouse.  

Exposure time for a single image was 55 min, and time-lapse images were captured for 

3 consecutive days. Note that Per2
 Luc

 rhythms were desynchronized among individual 

cells in the SCN. 

Figure 2-figure supplement 1. Sik3 knockdown cells exhibit shortened and 

unstable period of circadian Per2
 Lucc

 rhythms  

a. A representative Bmal1-luc bioluminescence rhythms of NIH3T3 cells transfected 

with Sik3-KD (sh #1 or sh #4, red) and control shRNA (blue) (n = 4) as shown in Fig. 

2k and l. b. Average circadian periods from first trough to 3rd trough of individual 

experiments as shown in b and Fig. 2k-l. (n = 4, ***P<0.001 vs. controls by Dunnett’s 

test) c. Averaged sequential half-periods (peak-to-trough or trough-to-peak) of Bmal1-

luc rhythms in KD and control NIH3T3 cells as shown in k and l (n = 4 per group). 
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Numbers (1–5) on the x-axis present the first half-period (hours from first trough to 

second peak) to the fifth
 
half-period (hours from 3rd trough to 4th peak). 

 

Figure 3-figure supplement 1. Constitutive active mutant, but not kinase-deficient 

SIK3, alters PER2 abundance in NIH3T3 cells 

Wild-type (WT) or mutant SIK3 (kinase dead from K37M or constitutive active from 

T163E) were expressed in NIH3T3 cells (n = 3). Expression levels of co-expressed 

PER2 were examined using western blotting analysis. Green fluorescent protein (GFP) 

was used for transfection and loading control.  

 

Figure 3-figure supplement 2. Overexpression of SIK3 promotes PER2 

degradation 

a. Upshifted band of PER2 was examined in HEK293T/17 cells expressing myc-PER2 

and Flag-SIK3. SIK3-OX induces PER2 upshift. Load volume of cell lysate was 

adjusted for comparison of phosphorylation rate. b. Other two sets (sample #2 and #3) 

of degradation assay indicate enhanced PER2 degradation in SIK3-OX cells. Sample set 

#1 is also shown in Fig. 3d. NIH3T3 cells expressing SIK3 were treated with CHX for 

degradation assay of PER2 in cells.  

 

Figure 3-figure supplement 3. Sik3 knockdown reduces degradation of PER2 and 

increases its levels 

a. Another set of experiment (sample set #1) showed the effect of Sik3 knockdown on 
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PER2 levels in NIH3T3 cells. Sample set #2 was also shown in Fig. 3e. All four 

different Sik3 shRNAs increased PER2 levels as shown in Fig. 3e in NIH3T3 cells. b. 

Quantification of the relative total PER2 levels shown in a. Data are shown as means ± 

SD (n=2). c. Quantification of phosphorylated/total PER2 levels shown in a. Data are 

shown as means ± SD (n=2). 

 

Methods 

Mice 

All animals were cared for in accordance with Law No. 105 and Notification 

No. 6 of the Japanese Government, and experimental protocols involving the mice 

were approved by the relevant Ethics Committees at Kindai University and Nagoya 

University. Mice were maintained at 23 ± 1 °C under LD 12:12 h or constant 

darkness (DD conditions). The derivation of the Sik3
-/-

 mice (RRID: MGI:5317926) 

has been reported previously (Uebi et al., 2012). Briefly, the PGK-neo cassette was 

inserted in place of exon 1 of Sik3. The successful targeting of embryonic stem cells 

was confirmed by Southern blot analysis, and the cells were injected into 

C57BL/6N blastocysts. To obtain Sik3-deficient embryos, Sik3 heterozygous male 

and female mice were mated and WT littermates were used as controls. Per2::LUC 

knockin mice (RRID: IMSR_JAX:006852) were originally generated by Joseph 

Takahashi (Yoo et al., 2004). All mice used in the experiments were mated with 

C57BL/6J mice (SLC Japan). Genotyping was performed using genomic DNA from 

a tail tip of each mouse via a standard protocol as previously described (Sasagawa et 
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al., 2012; Yoo et al., 2004). Analyses of metabolic rhythms were analyzed as 

previously described (Uebi et al., 2012). Briefly, voluntarily O2 consumption (VO2) 

of each group was monitored for two days using the Oxymax system (Columbus 

Instruments), and the average was calculated every hour (n = 6). Food consumption 

and rectal temperature rhythms were measured manually and averaged every 6 h (n 

= 12 each).  

 

Behavioral analyses 

Mice were individually housed in translucent polypropylene cages under 12:12 h 

LD (200 lux) and DD conditions, and locomotor activity was assessed by an area sensor 

(infrared sensor, Omron). Activity was continuously monitored and analyzed using 

ClockLab software (Actimetrics, RRID: SCR_014309). 

 

In situ hybridization 

Riboprobe was labeled with 
35

S-UTP (Amersham/GE Healthcare) by in vitro 

transcription using either T7 or SP6 polymerase (Promega). Frozen mouse brain 

sections (40 μm thick) were hybridized with riboprobe overnight, and exposed to Kodak 

film (BioMax MR). The Sik3 cDNA (550 bp) was amplified via PCR and subcloned 

into a pGEM-T Easy Vector (Promega). The plasmids were linearized with NcoI to 

synthesize riboprobe. 

   

Bioluminescence measurement, imaging, and quantitative analysis 
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For bioluminescence recording, NIH3T3 cells (3T3-3-4, Riken Cell Bank, RRID: 

CVCL_1926) transfected with Bmal1-luc in a 35 mm cell culture dish were used. 

NIH3T3 cell line was authorized as follows: identification of animal species was done 

by PCR and isozyme analysis and mouse strain was identified by SSLP analysis. 

 For SCN imaging, adult Sik3
-/-

; Per2
Luc/Luc

 and Sik3
+/+

; Per2
 Luc/Luc

 mice were 

used. Cellular rhythms were synchronized with 100 nM dexamethasone (DEX). Two 

hours after the DEX treatments, the culture medium was replaced with a recording 

medium, DMEM culture medium including 10 mM HEPES (pH 7.0), 10% fetal calf 

serum (FCS) and 0.1 mM luciferin, and circadian bioluminescence rhythm was 

monitored in Kronos (ATTO). For single-cell time-lapse imaging, LV 200 (Olympus) 

was used for SCN slices. SCN slices from adult Sik3
-/-

; Per2
 Luc/Luc

 and Sik3
+/+

; 

Per2
Luc/Luc

 mice were prepared using a Microslicer (Dosaka Japan, 300 μm thick) and 

incubated on MilliCell membrane (Merck Millipore) in a 35-mm petri dish with culture 

medium (DMEM-F12 supplemented with B27, Life Technologies). Exposure time for a 

single image was 55 min, and time-lapse images were captured for 5 consecutive days. 

Movies were produced using MetaMorph software (Molecular Devices). 

 

Analysis of period and acrophase in SCN slices 

For each pixel of the bioluminescence movie, the time series was extracted. Each 

data-set was detrended and analyzed via the chi-squared periodogram (Sokolove and 

Bushell, 1978). Only periods with a significance level of less than 10% were plotted 

(Fig. 2). The acrophase was subsequently computed via Cosinor’s method (Halberg, 
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1967), which extracts a peak phase of the bioluminescence signal of each pixel. Each 

pixel’s phase relative to that of the averaged signal over the whole SCN slice was 

plotted (Fig. 2). 

 

Cell culture and plasmids for transfection 

NIH3T3 (3T3-3-4, Riken Cell Bank, RRID: CVCL_1926) and HEK293 

(HEK293T/17, ATCC, RRID: CVCL_L993) were authorized by Riken Cell Bank and 

ATCC respectively as follows. NIH3T3 was authorized at Riken Cell Bank by PCN and 

isozyme analysis for identification of animal species, and by SSLP analysis for mouse 

strain. HEK293T/17 was authorized at ATCC by STR (Short Tandem Repeat 

polymorphism analysis). These cell lines were cultured and passaged under 5% CO2 in 

DMEM (Sigma) containing 1.8 mg/ml NaHCO3, 4.5 mg/ml glucose, 100 U/ml 

penicillin, 100 g/ml streptomycin, and 10% FCS (Equitech Bio, Inc.). Mycoplasma 

contamination was examined for both cell lines. 

NIH3T3 and HEK293 cells were transiently transfected using Lipofectamine Plus 

reagent (Invitrogen) and Lipofectamine 2000 reagent (Invitrogen), respectively, in 

accordance with the manufacturer’s instructions. The pEGFP-C1 plasmid (Clontech) 

was used as a transfection control. A vector encoding 6xMyc epitope-tagged PER2 

(termed myc-PER2 in the figures) was kindly provided by Dr. Louis J. Ptacek 

(University of California, San Francisco). For Flag-SIK3, an oligonucleotide encoding 

the FLAG epitope sequence was fused to the 5′-end of full-length mouse Sik3 (mSik3) 

cDNA cloned into pcDNA 3.1. Mutations (Lys to Met at K37 or Thr to Glu at T163) 
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were introduced into mSik3 using site-directed mutagenesis. Flag-Csnk1e (CKI and 

Flag-Csnk1d (Kinase Negative) have been described previously (Doi et al., 2004). 

Several shRNA expression vectors targeting mSik3 gene and a control vector were 

purchased from QIAGEN. The following sequences were used: mSik3 sh#1 (5′- 

CTGCA GGCAC AAGTG GATGA A-3′), mSik3 sh#2 (5′- AGCAG CAACC CGAGA 

ACTGT T-3′), mSik3 sh#3 (5′- CCCAA CTTTG ACAGG TTAAT A-3′), mSik3 sh#4 

(5’- TGCCA CCACG TTCAG TAGAA A-3′), and control sh (5′- GGAAT CTCAT 

TCGAT GCATA C-3′). The target sequences were inserted into a pGeneClip neomycin 

vector (Promega). 

 

Immunoblotting 

Proteins separated by SDS-PAGE were transferred to polyvinylidene difluoride 

membrane (Millipore). The blots were blocked in a blocking solution (1% [w/v] skim 

milk in PBS-T [50 mM Tris-HCl, 140 mM NaCl, 1 mM MgCl2; pH 7.4]) for 1 h at 

37 °C then incubated 1 hat 37 °C or overnight at 4 °C with a primary antibody in the 

blocking solution. Signals were visualized via an enhanced chemiluminescence 

detection system (PerkinElmer Life Science). The blot membrane was subjected to 

densitometric scanning, and the band intensities were quantified using Image Quant 

software (GE Healthcare). The primary antibodies used were anti-β-actin (Sigma), anti-

Flag (Sigma), anti-myc (Santa Cruz Biotechnology), anti-GFP (Santa Cruz 

Biotechnology), and anti-PER2 (Millipore for Figure 4a and Alpha Diagnostic Inc. for 

Figure 4b). Primary antibodies were detected by horseradish peroxidase-conjugated 
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anti-rabbit or anti-mouse IgG (Kirkegaard and Perry Laboratories). 

 

Immunoprecipitation 

Transfected cells were lysed for 30 min in ice-chilled immunoprecipitation (IP) 

buffer (20 mM HEPES-NaOH, 137 mM NaCl, 2 mM EDTA, 10% [v/v] glycerol, 1% 

[v/v] Triton X-100, 1 mM DTT, 4 g/ml aprotinin, 4 g/ml leupeptin, 50 mM NaF, 1 

mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride; pH 7.8). The lysate was incubated 

with the precipitating antibody for 2 h at room temperature or overnight at 4 °C, 

followed by incubation with 20 l of Protein G-Sepharose beads (GE Healthcare) for 2 

h at 4 °C. Beads were washed three times with IP buffer and subjected to 

immunoblotting. 

 

Degradation assay 

NIH3T3 cells were transfected with myc-PER2 and Flag-SIK3 expression vectors 

or Sik3-KD vectors, and cultured for 48 h. The transfected cells were then treated with 

cycloheximide (Nakalai tesque; final concentration, 100 g/ml) for the time periods 

specified in the figures Fig. 3, Fig. 3- figure supplement 2), and then harvested, 

followed by immunoblotting. 

  

Phosphatase assay 

NIH3T3 cells were transfected with myc-PER2 and Flag-SIK3 expression vectors 

or Sik3-KD vectors, and cultured for 48 h. Immunoprecipitated myc-PER2 were 
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incubated with 400 IU PPase (Sigma) in Lambda Protein Phosphatase Buffer (Sigma) 

containing 2 mM MnCl2 for 30 min at 30°C in the presence of Protein G Sepharose. 

When samples were sequentially subjected to kinase assay, PPase had been removed 

by washing PER2 bind to Protein G Sepharose in kinase assay buffer three times. 

Na3VO4 was used for a phosphatase inhibitor. 

 

In vitro kinase assay 

NIH3T3 cells were transfected with myc-PER2 vector and cultured for 48 h. 

Immunoprecipitated myc-PER2 were incubated with GST-tagged recombinant human 

SIK3 (aa.1–307) (SignalChem) in kinase assay buffer (50 mM Tris-HCl, 10 mM MgCl2, 

100 mM NaCl, 1 mM DTT, 10% glycerol, 1 mM ATP; pH 7.4) at 30 °C for 30 min or 

75 min. When samples were sequentially subjected to phosphatase assay, SIK3 had 

been removed by washing PER2 bind to Protein G Sepharose in phosphatase assay 

buffer three times. 

 

Statistics 

All data are expressed as mean ± SEM or SD. Statistical significance was 

evaluated via Student’s t-test, and was set at the p < 0.05 level. One-way ANOVA 

followed by Dunnett’s test or Turkey’s test was used for multiple comparisons. For 

Figures 1f, 2i, and 2j, tests for equality of variance (F-test) were performed, and 

statistical significance was set at the p < 0.05 level. We did not use statistical analysis to 

estimate sample size and follow the protocols because our experimental methods have 
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been commonly used.  

Number of animals used for experiments are all independent repeats. In KD 

experiments in Fig. 2 and Suppl. Fig. 2, we performed two independent experiments for 

PER2 abundance and phosphorylation, each of which include triplicates. Degradation 

assay using shRNAs were performed one time each (triplicates), using three different 

shRNAs (ShRNAs #1, 3, and 4). As for overexpression (Sik3-OX) experiments, 

quantification of PER2 protein was independently done twice using triplicates, and two 

different cell lines (NIH3T3 and HEK 293) were used in the same series of experiments 

for confirmation. Phosphorylation of PER2 in SIK3-OX 3T3 cells were examined by 

two independent experiments, whereas PER2 degradation was done once (n = 3). 

Circadian rhythms in KD cells were analyzed twice, each of which shRNAs, #1, 3, and 

4 were used.   
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