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Measurements of gene expression levels for multiple genes in single cells 

provide a powerful approach to study heterogeneity of cell populations and 

cellular plasticity. While the expression levels of multiple genes in each cell are 

available in such data, the potential connections among the cells (e.g. the lineage 

relationship) are not directly evident from the measurement. Classifying cellular 

states and identifying transitions among those states are challenging due to 

many factors, including the small number of cells versus the large number of 

genes collected in the data. In this paper we adapt a classical self-organizing-

map approach to single-cell gene expression data, such as those based on 

qPCR and RNA-seq. In this method (SOMSC), a cellular state map (CSM) is 

derived and employed to identify cellular states inherited in a population of 

measured single cells.  Cells located in the same basin of the CSM are 

considered as in one cellular state while barriers between the basins provide 

information on transitions among the cellular states. Consequently, paths of 

cellular state transitions (e.g. differentiation) and a temporal ordering of the 

measured single cells are obtained. Applied to a set of synthetic data, two single-

cell qPCR data sets and two single-cell RNA-seq data sets for a simulated model 

of cell differentiation, and systems on the early embryo development, 

haematopoietic cell lineages, human preimplanation embryo development, and 

human skeletal muscle myoblasts differentiation, the SOMSC shows good 

capabilities in identifying cellular states and their transitions in the high-

dimensional single-cell data. This approach will have broad applications in 

studying cell lineages and cellular fate specification. 
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Introduction 

Heterogeneity of cell populations is considered functionally and clinically 

significant in normal and diseased tissues, and transitions among different 

subpopulations of cells, such as differentiation, play critical roles during 

development and disease recurrence [1-3]. In recent years, single-cell gene 

expression profiling technologies are emerging as increasingly important tools in 

dissecting heterogeneity and plasticity of cell populations in addition to analyzing 

cell-to-cell variability on a genomic scale [4]. For example, mammalian pre-

implantation development was analyzed from oocyte stage to morula stage in 

both human and mouse using single-cell RNA sequencing to identify stage-

specific transcriptomic dynamics [5,6]; in breast cancer, gene expression profiles 

of tumor subpopulations along a spectrum from low metastatic burden to high 

metastatic burden were obtained using qPCR  at the single-cell level [7]; and 

multiple new phenotypes in healthy and leukemic blood cells were defined using 

gene expression signatures through analysis of single-cell data [8]. 

	  

Distinguishing or clustering measured cells computationally through their 

transcriptomic data (e.g. gene expression) is challenging. The number of cells 

collected in experiments with successful outputs is usually small whereas the 

number of genes measured usually is significantly larger [9]. In addition, a group 

of cells collected at one temporal point from one sample may not be perfectly 

ordered in time compared to the cells collected at slightly different temporal 

stages, due to cell-to-cell variability in sampling and its nature of unsynchronized 
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cell divisions [10,11]. As a result, a pseudo-temporal ordering of single cells in a 

high-dimensional gene expression space was introduced [12]. The difficulty in 

analyzing single-cell data becomes particularly evident for systems of 

differentiation in which new cell types emerge as time advances, such as the 

cases of lineage progression during development of murine lung [13] and the 

differentiation trajectory of skeletal muscles [14].  

	  

Ordering single cells temporally, grouping cells of similar transcriptomic profiles, 

finding transition points, and determining branches are among the key steps in 

analyzing single-cell data. Clustering methods based on Principle Component 

Analysis (PCA) or Independent Components Analysis (ICA), such as MONOCLE 

algorithm [14], group cells according to their specific properties of interests. 

Several other clustering-based methods such as SPADE [15], t-SNE [16], and 

viSNE [17] were introduced to identify subpopulations within measured cells 

without an explicit temporal ordering of the cells. In the Wanderlust algorithm 

[18], a pseudo-temporal ordering technique incorporated the continuity concept in 

branching processes, however, with an assumption that cells consist of only one 

branch during differentiation. To address potential nonlinearity of branching 

processes in differentiation, a diffusion map technique was adapted to single-cell 

data by adjusting kernel width and inclusion of uncertainties, enabling a pseudo-

temporal ordering of single cells in a high-dimensional gene expression space 

[19]. With a focus on modeling dynamic changes associated with cell 
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differentiation, a bifurcation analysis method (SCUBA) was developed to extract 

lineage relationships [20]. 

 

Meanwhile, a Waddington landscape of gene expression has been widely used 

to provide a global and physical view in understanding stem cells and cell 

lineages [21]. In constructing such landscape, a forward stochastic modeling 

approach is usually applied to a small gene network with an "energy" function 

computed through probability density functions or stochastic samplings [22-26].  

In this approach, the prior knowledge of the gene regulatory network needs to be 

known and the landscape is calculated without dimension reduction in the gene 

space. However, due to computational cost associated with sampling solutions of 

stochastic differential equations or solving equations of probability density 

functions of the gene states, the size of network in the landscape calculation 

usually is small [27]. 

 

Here, we propose a new method to analyze single-cell gene expression data by 

combining a learning method in an artificial neural network (ANN) and a concept 

similar to a landscape of gene expression data. In this approach, high 

dimensions of single-cell data are first reduced to two dimensions through a 

classical unsupervised learning ANN method: the self-organization map (SOM) 

[28] in which the topological properties of the input data are preserved through a 

neighborhood function. A cellular state map (CSM) is then derived to mimic a 

landscape of gene expression data based on a U-matrix calculated by the SOM. 
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The CSM consists of basins of attractions, which correspond to cellular states, 

and barriers that separate the different states to indicate directions of transitions 

between cellular states. Transition paths among the cellular states naturally lead 

to a pseudo-temporal ordering of the cells. To study effectiveness and 

capabilities of the method, we apply the self-organization-map for single-cell data 

(SOMSC) to a set of simulated data and four experimental data sets based on 

qPCR or RNAseq collected for systems of cell lineages or differentiation. 

 

Methods 

Preprocess the data 

Single-cell gene expression levels measured by qPCR or RNAseq are prone to 

having missing values, causing bias in analysis without any preprocessing [29]. 

In this study, we first remove samples that have many zero values in gene 

expression data.  Specifically, the samples of more than 10% of the total number 

of genes with missing values will not be used; then the missing values of genes 

in the rest samples are set to the mean value of that gene at its corresponding 

stage. Another important step in preprocessing is to normalize the data. Because 

the SOM algorithm uses the Euclidian distance between gene expression vectors 

of two samples [30], two genes with drastically different ranges of expression 

values (e.g. expression values of one gene in 	[0,100]  whereas the ones of 

another gene in the range of 	[0,0.1]) may influence the SOM unfaithfully, as the 

larger component may dominate the calculation, introducing bias in analysis. 

Next we normalize the data linearly such that the variance of each gene is equal 
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to one [30]. The normalized data is stored in a matrix in which each row 

represents expression values of all genes in one single cell, and the number of 

rows corresponds to the number of single cells in the data after the 

preprocessing  (Figure 1A).   

 

Calculate the U-matrix using the Self-Organizing Map 

A Self-Organizing Map (SOM) is an effective way of analyzing topology of high-

dimensional data, and it projects the data to a low-dimensional surface through a 

rectangular, a cylinder, or a toroid map [28]. In the SOM, regression of an 

ordered set of model vectors 	mi ∈ℜ
n  is made into the space of observation 

vectors x∈ℜn  through the following processes: 

		mi(t +1)=mi(t)+hc(x ),i(x(t)−mi(t)) (1) 	  

where 	t  is an index for a regression step. A regression procedure is performed 

recursively for each sample 		x(t) . The scalar multiplier 		hc(x ),i  is a neighborhood 

function, acting like a smoothing or blurring kernel over computational grids in the 

SOM, and often takes a form of Gaussian: 

		hc(x ),i =α(t)e
−
||ri−rc||2

2σ2(t ) (2) 	  

where 		0<α(t)<1  is a learning-rate factor, which decreases monotonically 

through regression steps; 		ri ∈ℜ
2  and rc ∈ℜ

2  are locations in the computational 

grids, and 		σ (t)  corresponds to the width of the neighborhood function that also 
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decreases monotonically in each regression step. The subscript 		c = c(x)  is 

obtained when the following condition is achieved: 

		||x(t)−mc(t)||≤||x(t)−mi(t)|| (3) 	  

Consequently, 		mc(t)  is the "winner" which matches the best with 		x(t) . The 

comparison metric 	||•|| is selected as the Euclidean metric in Eq.2, and Eq.3. If 

there are multiple 		c(t)  satisfying Eq.3 with discrete-valued variables, 		mc(t)  is 

selected at random for the winner. In the method, a toroid map is used in order to 

reduce edge effects of the data on the overall mapping [31]. Applying the SOM to 

the normalized single-cell gene expression data leads to a unified distance matrix 

(U-matrix) 	U , representing distances between neighboring map units [28].  

	  

Trace the lineage trajectory 

Construct Cellular State Map (CSM) 

To investigate structure of high-dimensional gene expression data, we first define 

a cellular state map (CSM) 	Mcs  based on the U-matrix 	U  through the equation: 

		
Mcs =

1
1+e−γ (U−U0 )

(4) 	  

This logistic function transforms 	U , whose elements are always positive, to a 

matrix 	Mcs , whose elements have values between zero and one. The value of 

scaling parameter γ  controls steepness of a sigmoidal curve and the midpoint 

		U0  determines where 0.5 takes place in the map in Eq.4. The map 	Mcs  may be 

considered as a Waddington landscape of the high-dimensional gene expression 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/124693doi: bioRxiv preprint 

https://doi.org/10.1101/124693
http://creativecommons.org/licenses/by-nc-nd/4.0/


data projected into a two-dimension plane. The basins of attractions of the CSM 

correspond to individual cellular states in the data. 

	  

Identify basins of cellular state map 

In this process of identifying the basins of the CSM, all local minima in 	Mcs  are 

searched first, leading to a pool of the minima in an increasing order.  To 

construct the basin of the smallest local minimum (	W ), we first find the smallest 

local maximum, whose value is denoted as 	Wm , around this local minimum (	W ). 

Next we construct contours in the CSM that contains this minimum.  The largest 

such contour value that is still smaller than 	Wm  is the contour that contain the 

basin of this smallest local minimum (	W ). This searching procedure is then 

repeated for the second smallest minimum, and the rest of other minima. (More 

details can be found in Section I in the Supplementary file).  

	  

Identify transition paths 

Cellular state transition paths from one cellular state to the other are traced 

based on the CSM (	Mcs ).  All cells in the first stage during transition processes 

need to be known in advance, which is the case for many temporal data.  After 

locating the basins in the 	Mcs , for the cellular states at the first stage, we then 

identify its adjacent basins. The neighboring basin that has the smallest height of 

the barrier is locations of the cells for the next transition state, and then here it 

means the cells in the basin are at the second stage. If more than one of barriers 
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have the similar heights, indicating a branch process takes place during 

transitions from the first stage to the second stage, we consider multiple cellular 

states emerge at the second stage.  The procedure consisting of searching for 

adjacent basins, estimating heights of barriers, and identifying branching 

processes for each basin continues until all basins are analyzed. At the end of 

this procedure, the transition paths are also identified (Figure 1BC).  

	  

Key parameters in SOMSC 

In the standard SOM, a two-dimensional U-matrix may have the same size or 

different sizes in those two dimensions. To avoid bias on a particular gene or a 

subgroup of genes when applying the SOM to the single-cell data, here we 

consider both dimensions of a U-matrix to be the same .The total number of grid 

points in the CSM corresponding to the U-matrix is defined as 	
Ng =Nr ×Nr  where 

	Nr  is the number of grids in each dimension of the CSM. The choice of 	
Ng  

depends on the number of samples (e.g. the number of single cells), 	N , in order 

to compute the U-matrix more accurately. Naturally, the size of a U-matrix is 

proportional to the number of samples, such as 	
Ng = βN , where β  is a constant. 

Secondly, in the simulation 	
Ng  needs to be adjusted to avoid producing too many 

basins in a CSM, such as the case in which every one or two cells grouped as 

one basin.  Two other key parameters are γ and 		U0  in a CSM. As shown in the 

later sections, a CSM seems to produce the most consistent results when the 

choices of these two parameters enable a larger range of values of elements in 
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	Mcs  from zero to one, allowing better separation between basins of cellular 

states. 

	  

Generate the simulation data 

In order to effectively evaluate performance and choices of parameters of the 

SOMSC, we next construct a toy system consisting of a small number of genes 

to mimic single-cell gene expression data. There are three stages in the system, 

and in each stage one type of cells makes a transition to two other types of cells 

(Figure 2A). Together, seven types of cells with three branches present in the 

system. The cellular types are defined by the specific patterns of expression 

levels of the six genes (Figure 2A). Specifically, in Type 1 cells Gene A and Gene 

B are activated and all other four genes are silenced; in Type 2 cells Gene A, 

Gene C, and Gene D are activated; in Type 3 cells Gene B, Gene E, and Gene F 

are activated; when one of Gene A and Gene B and one of Gene C, Gene D, 

Gene E and Gene F are activated, four other types of cells in the third stage are 

then defined as Type 4, Type 5, Type 6, and Type 7 cells, respectively.   

	  

The system of three-toggle modules consisting of six genes is modeled through a 

system of stochastic differential equations [19,32,33]. Starting with only Type 1 

cells in the system (i.e. the initial state), the expression values of each gene are 

then collected at three different temporal stages for each stochastic simulation: 

the early, the middle, and the final stage, in order to mimic a typical set of 

temporal single-cell data (See Section II in the Supplementary file).  Repeating 
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the stochastic simulations using the same set of parameters and the same initial 

values of genes for 400 times produces a set of gene expression values, 

corresponding to 1200 sets of single-cell data.  

	  

RESULTS 

SOMSC on the simulation data 

To mimic a typical size of experimental data, we randomly select expression 

levels of 353 cells out of the ones of 1200 cells collected in the simulation data. 

In the CSM calculated using the SOMSC, each cell is marked by its temporal 

state collected (Figure 2B). By tracking basins and analyzing heights of barriers, 

we obtain different cell types and their transition relationship (Figure 2B). 

Interestingly, in this case the adjacent basins of the basin of Type 1 cells contain 

all other types of cells from Type 2 to Type 7.  However, the barriers between the 

basin of Type 1 cells and the basins of Type 4, 5, 6, and 7 cells are higher than 

those for the basins of Type 2 and Type 3 cells, suggesting two possible 

transition paths:  one transition from Type 1 cells to Type 2 cells and the other 

from Type 1 cells to Type 3 cells (Figure 2B). Next, the barriers between the 

basin of Type 2 and those of Type 4 and Type 5 are found to be lower than the 

ones for basins of Type 6 and Type 7 cells. So Type 2 cells make a transition to 

Type 4 cells or Type 5 cells. The barriers between basins of Type 3 cells and 

those of Type 6 and Type 7 cells have similar heights, indicating the next 

transition state of Type 3 cells is either Type 6 cells or Type 7 cells.   
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To study effects of the number of grids 	
Ng  on performance of the SOMSC, we 

systematically vary 	
Ng  and the number of observations 	N  in the toy model (See 

Figure S1). First we fix 		N =100  observations  (or cells) from the toy model but 

explore five different 	
Ng  (See Figure S1A to S1E). When 	

Ng  is too small (See 

Figure S1AB) the CSM is unable to capture all the basins in the system whereas 

when 	
Ng  is too large (See Figure S1E) the CSM tends to overpopulate the 

basins by grouping every one or two cells into one basin. It is found that the CSM 

profile becomes more consistent and reliable when 	
Ng  is in its middle range of 

values (See Figure S1C and S1D).  Such trend remains when the number of 

observations (or cells) increases to 		N =200  (See Figure S1F to S1I), and to 

		N =353  (See Figure S1K to S1O). Together, when β , the ratio between 	
Ng  over 

	N , is in a range of 	[1,10] , the patterns of basins and transition paths in the CSM 

start to become more consistent. In other words, given the number of 

observations, the size of the map in the SOMSC 	
Ng  needs to be explored until a 

"convergent" pattern is observed.   

	  

It is observed that around 5% of the 353 cells are placed in the incorrect basins 

in the CSM (marked in white in Figure 2B). Such inconsistency might be due to 

noise in the data or choices of parameters in the SOMSC.  Interestingly, if the 

data set is analyzed without involving the gene expression levels of those 

incorrect cells, the new CSM has no cells locating incorrect basins (See Figure 
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S2 and S3 in the Supplementary file), suggesting that either those cells are less 

consistent compared to the rest of cells in the original data set or the SOMSC is 

too sensitive to the gene expression levels of those cells. 

Two other important parameters in determining the CSM are the midpoint of the 

logistic function (i.e. 		U0 ) and the scaling factor (i.e. γ ) in Eq.4. We systematically 

explore different values of those two parameters and their effects on the CSMs 

and the transition paths. The sigmoid's midpoint 		U0  determines the range of the 

values of elements in 	Mcs . A larger value of 		U0  usually leads to smaller values of 

elements of 	Mcs   (e.g. most of elements in 	Mcs  become smaller than 0.5 and 

some of them are close to zero) while a smaller value of 		U0  leads to larger values 

of elements in 	Mcs   (e.g. larger than 0.5 and close to one). For the scaling factor, 

a larger value of γ  usually makes 	Mcs  better cover the entire range of 	[0,1] , 

however, sometimes it also makes many elements of 	Mcs  close to 0 or 1.  It is 

found that when the elements of 	Mcs  are more evenly distributed in 	[0,1]  by 

adjusting the parameters 		U0 , and γ , the computed CSM becomes more 

consistent and reliable (See Figure S4 and S5 in the Supplementary file). 

	  

SOMSC on experimental data 

qPCR data of mouse embryo development from zygote to blastocyst 

Previously, the expression levels of 48 genes at seven time points were 

measured using qPCR for mouse early embryonic development from zygote to 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/124693doi: bioRxiv preprint 

https://doi.org/10.1101/124693
http://creativecommons.org/licenses/by-nc-nd/4.0/


blastocyst [34]. The raw data of the 429 single cells were normalized cell-wisely 

by the mean expression levels of two genes: Actb and Gapdh [34]. 

 

Two different approaches might be applied to such data set by either using the 

data at each temporal point individually or lumping the data of all seven stages 

into one set. For example, applying the SOMSC to the data at the second stage 

results in a CSM with one cell type (Figure 4A), and using the data point at the 

sixth stage or the seventh stage results in two cell types (Figure 4B) or three cell 

types (Figure 4C), respectively. However, such approach is unable to determine 

potential transition paths among cell types inherited in the data because different 

basins or cellular states are obtained using different CSMs.   

	  

Using all 442 cells collected at the seven stages simultaneously produces one 

CSM containing 10 basins (Figure 4D), and the relationship of those basins can 

then be analyzed to study state transitions.  The basin labeled as a Type 1 cell is 

chosen based on those cells marked at the initial stage in the collected data [34]. 

The other nine basins are labeled by Type 2,  ! , Type 10. In the CSM, the Type 

1 cell has three neighboring basins, and the barrier between the basin of the 

Type 1 cell and the basin of the Type 2 cell is found to be lower than those 

barriers separating with other basins, indicating the Type 1 cell makes a 

transition to the Type 2 cell. Similar analysis suggests that the Type 3 cell is the 

next transition state of the Type 2 since the corresponding barrier height is lower 

than others.  
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As seen in the CSM, clearly there is a transition from the Type 3 cell to the Type 

4 cell. The height of the barrier between the basin of the Type 5 cell and the 

basin of the Type 4 cell is lower than others, showing that the Type 4 cell makes 

a transition to the Type 5 cell.  The next transition states of the Type 5 cell are 

the Type 6 cell or the Type 7 cell because the heights of the barriers between 

them are lower than others, suggesting a branch process takes place. The 

barrier between the Type 8 cell and the Type 6 cell is rather low, indicating that 

the Type 6 cell becomes the Type 8 cell. Finally, two basins adjacent to the Type 

7 cell have barriers of similar heights, indicating that there are two transitions 

from the Type 7 cell to the Type 9 cell or the Type 10 cell.  As a result, seven 

stages containing two branches are identified, corresponding to the seven 

developmental stages [34]: 1-cell stage, 2-cell stage,  !  , 64-cell stage.  Two 

major cell types (TE and ICM) arise at the 32-cell stage, and later the ICM cells 

differentiate to EPI or PE cells at the 64-cell stage (Figure 4E). To investigate 

each individual cell, one can index each cell by a proper order to scrutinize its 

location in the CSM for its transition capabilities or other properties relative to 

some other cells (see Figure S6 in the Supplementary file). 

	  

It is not surprising that a very small number of cells (around 5% out of 442 cells 

marked in white color) that were collected at one developmental stage in the 

experiment are not exactly located in the corresponding basins of the CSM 

(Figure 4D).  Interestingly, the "mismatch" cells are found to be mostly collected 
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in the 8-cell stage. Noise in the measurements, the small number of 

observations, and the choices of parameters used in the SOMSC may all 

contribute to this mismatch. To further study this, we next vary the sizes of 

mappings from 		Ng = 484  to Ng = 900 , and find that the overall patterns of the 

lineage trees hardly change (See Figure S7	   in the Supplementary file). However, 

when we use Ng =100  or Ng =3600 , the number of basins and the obtained 

transition paths start to become inconsistent (See Figure S8 in the 

Supplementary file). Overall, it is important to vary the parameters used in the 

SOMSC in order to capture a reliable CSM with consistent cell types and 

transition paths using the noisy single-cell data.  

	  

qPCR data of mouse haematopoietic stem cells 

In a previous study the expression levels of 24 genes including 18 core 

transcription factors were measured using qPCR for 597 mouse haematopoietic 

and progenitor stem cells [35]. The data were then normalized to the mean 

expression levels of two genes: Ubc and Polr2a [35]. After applying the SOMSC 

to this data set, we observe five different basins, indicating five possible cellular 

states inherited in the data marked by Type 1, Type 2,  ! , Type 5 (Figure 5A). 

The Type 1 cell is identified using the prior knowledge given in the data [35]. 

Comparing all barriers surrounding the Type 1 cell, the height of barriers for Type 

2 and Type 3 are much lower than the others. However, the height of the barrier 

for the Type 2 cell and the Type3 cell is similar, suggesting that the Type 1 cell 
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may become either the Type 2 cell or the Type 3 cell. Similarly, it is found that 

the Type 2 cell may make a transition to either the Type 4 cell or the Type 5 cell.  

 

Once the transition paths of the five types of cells are obtained (Figure 5B), we 

can easily establish a map between the transition paths and the well-known 

lineage trajectory of five mouse haematopoietic cell types [35]: haematopoietic 

stem cell (HSC), lymphoid-primed multipotent progenitor (LMPP), 

megakaryocyte-erythroid progenitor (PreMegE), common lymphoid progenitor 

(CLP) and graulocyte-monocyte progenitor (GMP) (Figure 5C).  

 

Similar to the previous cases, a very small portion of cells fall into the incorrect 

basins (Figure 5A and Figure S9 in the Supplementary file). For example, a small 

number of HSC cells (marked by white numbers in Figure 5A) are found located 

in the basin of the LMPP cells whereas a small number of CLP cells (also labeled 

in white) are found in the basin of LMPP cells. Missing entries in the raw data, 

the pre-processing method [35],  the fact that LMPP is the intermediate cell types 

during transitions, and our choices of parameters in the SOMSC may all 

contribute to the mismatch. Also, similar to the study on the toy model, the choice 

of proper 	
Ng is important in tracking the transition paths, and too small or too 

large values of 	
Ng  lead to inconsistent patterns of the CSMs (See Figure S10 in 

the Supplementary file). 
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RNA-seq of human preimplantation embryos 

In a previous single-cell RNA-seq analysis on human preimplantation embryos, 

90 individual cells were sorted at seven stages: metaphse II oocyte, zygote, 2-

cell, 4-cell, 8-cell, morula and late blastocyst, with two or three embryos used at 

each stage [6]. In this study, over 20,000 genes were measured using RNA-seq. 

Because the number of cells is small and the number of genes is very large in 

the data set, we only select those genes that are significantly expressed at least 

at one stage, leading to a system of 2,389 genes and 90 cells.   

 

A CSM calculated by the SOMSC contains seven basins of cells (Figure 6A).  A 

Type 1 cell is identified based on those cells in the metaphase II oocyte [6]. The 

rest of basins are then labeled by Type 2, Type 3,  ! , Type 7. The barrier 

between the Type 1 cell and the Type 2 cell is found lower than those for the 

Type 3 cell, and the Type 7 cell. It indicates that the Type 1 cell make a transition 

to the Type 2 cell. Comparing the heights of barriers among the adjacent basins, 

the Type 2 cell likely make a transition to the Type 3 cell, and the next transition 

state of the Type 3 cell is the Type 4 cell that can make a transition to the Type 5 

cell. Similar analysis shows that the Type 5 cell becomes the Type 6 cell that 

makes a transition to the Type 7 cell (Figure 6B). The observed cellular states 

and transition paths are consistent with the previous study (Figure 6C) [6]. The 

location of each cell and the distribution of cells in the CSM potentially provide 

additional information (e.g. signature genes for specific cellular types) for the 

lineage tree (See Figure S11 in the Supplementary file). 
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It is found that too small or too large 	
Ng  in the SOMSC may result in inconsistent 

patterns of basins and transition paths in the CSMs (See Figure S12 in the 

Supplementary file). However, by tuning the parameters in a systematic way, the 

SOMSC is able to obtain a "convergent" CSM and transition patterns.  

 

RNA-seq of human skeletal muscle myoblasts  

In a previous study single-cell RNA-seq of 271 cells collected from differentiating 

human skeletal muscle myoblasts (HSMM) were measured at 0, 24, 48 and 72h 

after switching human myoblasts to low serum [12].  518 genes that were 

significantly and differently expressed across different time points and considered 

to be associated with myoblast differentiation were measured [12].   

 

In the CSM consisting of seven basins marked by Type 1, Type 2,  ! , Type 8 

(Figure 7A), The Type 1 cell and the Type 2 cell were collected at 0h [12].  

Analysis on the heights of barriers shows that a transition takes place from the 

Type 2 cell to the Type 3 cell, which can becomes the Type 4 cell. There are two 

adjacent basins next to the Type 4 cell, which may make a transition to the Type 

8 cell or to the Type 5 cell. Finally, the Type 5 cell can become either the Type 6 

cell or the Type 7 cell. The transition paths in a form of a lineage tree are then 

constructed accordingly (Figure 7B).    
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By comparing the temporal stage marked on each cell and the cell types 

identified using the SOMSC, we find that the transitions predicted from Type1, 

along Type 2, and Type 3, to Type 4 is consistent with the temporal sequence 

shown in the data. The CSM also predicts two different types of cells at 0h: Type 

1 and Type 2, indicating a mixture of two subpopulations of cells at 0h. In 

addition, Type 3 consists of cells collected at both 24h and 48h.  The CSM shows 

two branching processes taking place from the Type 4 cell to the Type 5 cell or to 

the Type 8 cell, and from the Type 5 cell to the Type 6 cell or to the Type 7 cell. 

The two branches are similar to those obtained by other algorithms [12,36].  It is 

interesting to note that there are four types of cells collected at 24h, three types 

of cells collected at 48h, and three types of cells collected at 72h. These mixtures 

of different types of cells in multiple temporal stages suggest the gene 

expression plasticity might take place between the time points of measurements. 

Together, our simulations show capabilities of the SOMSC in predicting multiple 

cellular states and potential plasticity of subpopulations of cells. 

 

Conclusion and Discussion 

In this paper we have presented a self-organization-map based method for 

analyzing single-cell gene expression data that may contain multiple cellular 

states with transitions among them.  Applications of the SOMSC to a set of 

simulated data and four sets of differentiation data have demonstrated strong 

capabilities and effectiveness of the SOMSC in identifying cellular states and 

their transitions. 
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A cellular state map (CSM) based on a U-matrix calculated from the SOM 

provides a global landscape view of cell differentiation or cellular state 

transitions. By estimating the heights of barriers between basins in a CSM, 

transition paths among the states are then identified.  The location of each cell in 

the CSM may provide useful information on the cell's viability and potential of 

transitions to different cellular states.  Such knowledge on individual cell in 

single-cell data is lacking in many other methods for single-cell analysis. 

 

The major computational cost of the SOMSC comes from the iteration procedure 

in calculating the U-matrix in the SOM, with a complexity of 		Ο(NNgDT)  where 	D  

is the number of genes measured in the data, 	T  is the number of iterations used 

in the SOM, and 	N  is the number of samples in a single-cell data set [37]. In 

practice, 	D  is usually around 1,000 (the number of genes significantly 

expressed), and both 	T  and 	N  are less than 1,000, implying a complexity of 

Ο(109) that the SOMSC is able to handle effectively.  

 

Single-cell data are often used to identify cellular states in heterogeneous 

populations of cells [38]. However, the complexity in data visualization and 

analysis presents a major difficulty in distinguishing such subpopulations. The 

SOMSC may capture complex topological shapes in the data to identify those 

subpopulations due to the advantageous feature of the SOM unlike many other 

methods requiring convex or normal structure of the data [39]. Another major 
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feature of the SOM is its capability of finding multiple minima as the entire space 

of feasible solutions in the SOM is searched until finding optimal solutions 

[39,40]. This is consistent with the observations that the SOMSC is rather stable 

in searching for basins of attractions and transition paths in the CSM of single-

cell data. 

 

Several parameters in the SOMSC need to be tuned in order to obtain a reliable 

CSM. It is not surprising that given a number of samples (the number of cells and 

the number of genes measured), the number of grids for a U-matrix calculated by 

the SOM requires adjustment in order to obtain "convergence" of a 

corresponding CSM.  The scaling parameter γ  in Eq.4 of a CSM was found to 

reduce noise effects in a U-matrix, allowing well-separated basins and well-

defined barriers. Another important element to improve in the SOMSC is the 

approach in identifying basins and barriers. Matlab built-in contour construction 

method is currently used in this paper, and other algorithms may be further 

explored.  

 

Noise and variability in single-cell data introduce another major complexity.  In 

this work we have tried to reduce noise and variability effects by first removing 

those identified 'noisy' data from the training data sets. For example, in the case 

of the simulation data, cells located in incorrect basins are considered as the 

'noisy' data.  While a similar approach might be used for experimental data, 

identification of incorrect basins is clearly challenging, depending on availability 
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of appropriate experimental measurements and prior knowledge on the systems.  

Potentially, machine-learning methods might be explored to enable reduction of 

noise effects for constructing a more consistent CSM. Other possibilities of 

improvement in this area include usage of different distance metrics (e.g. the 

diffusion metric [19]) instead of the standard Euclidean distance metric used in 

this work.   

 

Previous works demonstrated that the confounding errors (e.g. batch errors) 

have great effects on single-cell data [29,41]. PCA [42], surrogate variable 

analyses [43], probabilistic estimation of expression residuals [44,45] or removal 

of unwanted variation [46] were explored to reduce such effects of confounders 

in gene expression measurements of the bulk cell populations [47]. Potentially, 

those methods could be extended to single-cell data.  Other factors that are more 

unique to single-cell measurements, such as cell division, which may induce cell-

cell variability, will provide an additional difficulty, for which a linear mixed model 

could be utilized [29]. In general, reducing the effects of confounding errors is 

essential to producing reliable classification of cellular states and identifying the 

transition paths among them.  

 

A CSM produced by the SOMSC is similar to the gene expression landscape 

although a typical landscape is a function of each gene without dimension 

reduction.  It would be interesting to make a comparison between a landscape 

computed by forward modeling based on a small size of network and a CSM 
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generated by the SOMSC on single-cell data. Overall, the SOMSC provides a 

robust and convenient approach to classify the cellular states and to identify their 

transitions, and it is powerful in suggesting signature transcription factors, 

branching processes, and pseudo temporal orders of single cells. 
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Figure 1. A schematic diagram on constructing cellular state maps (CSMs) 

and transition paths using the SOMSC method. (A) The gene expression data 

of single cells. (B) A CSM is constructed by the SOMSC using the data. In the 

CSM each cell is indexed by a number based on a particular given order or a 

temporal stage at which the data are collected in measurements. A basin of an 

attraction in the CSM corresponds to one cellular type. The transitions among 

different cellular states are labeled by arrows such as P1, P2, ! , and P5. (C) The 

cellular state lineage trees or differentiation processes are then summarized 

based on the transition path arrows in the CSM. 

 

Figure 2. The CSM and cellular state transition paths based on the 

simulated model. (A) A three-stage lineage system.   Stage 1 contains one type 

of cells in which the activated genes, A and B are highlighted in green; Stage 2 

contains Type 2 cells and Type 3 cells. The activated genes, A, C, and D are 

highlighted in orange in Type 2 cells while the activated genes, B, E, and F are 

highlighted in orange in Type 3 cells. Stage 4 contains four types of cells: Type 4 

cells, Type 5 cells, Type 6 cells, and Type 7 cells. The activated genes, A and C, 

A and D, B and E, or B and F are highlighted in light green in Type 4, Type 5, 

Type 6, and Type 7 cells, respectively. (B) The CSM with 		Ng =576 (24×24)  grids 

is computed for the data of 		N =353  single cells using 		U0 =1.5  and 	γ =1 . A red or 

white number shown in the CSM is a temporal stage of its corresponding cell in 

the data. A white number means its corresponding cell locates in an incorrect 

basin.  A pink arrow shows a direction of a transition path. 
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Figure 3. CSMs and a lineage trajectory are constructed using the qPCR 

data of mouse stem cells from zygote to blastocyst [48].  (A-C) CSMs 

obtained using data only at the second, sixth and seventh stages, respectively. A 

red or white number in (A, B, C) represents an index of stages when the 

expression levels of cells were measured. (A) Type 2 labels the only basin of 

cells in the CSM computed using the data only from the second stage. Here 

Ng =36 , U0 =0.5  and γ =0.01 . (B) Type 6 and Type 7 label two separate basins 

of the CSM computed using the data only from the sixth stage. Here Ng =196 , 

U0 =2  and γ =0.3 . (C) Type 8, Type 9, and Type 10 label three separate basins 

of the CSM using the data only from the seventh stage. Here Ng =196 , U0 =2  

and γ =0.3 . (D) The CSM is computed using the data collected all seven stages 

with a total of N = 442  cells. Here Ng = 484 , U0 =2  and γ =2 . Ten basins are 

labeled by Type 1, Type 2,  ! , and Type 10. A white number means its 

corresponding cell is located in an incorrect basin. A pink arrow indicates a 

direction of a transition path.  (E) The state transition paths are derived from the 

CSM in (D). (F) The differentiation lineage tree of early mouse development was 

obtained in a previous study [48]. 

 

Figure 4. The CSM and a cell lineage trajectory are constructed using the 

qPCR data of mouse haematopoietic stem cells [35]. (A) The CSM is 

computed using Ng =1024  based on N =597  cells. Here U0 =1.5  and γ =0.88 . A 
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red or white number represents a cell with a specified type given in the single-cell 

measurement [35]. The cells marked in white numbers are those in incorrect 

basins. A pink arrow is a direction of a transition path. (B) The state transition 

paths are obtained from the CSM in (A). (C) The lineage tree of mouse 

haematopoietic stem cells was obtained in the previous study [35]. 

 

Figure 5. The CSM and lineage relationship are constructed using the RNA-

seq data of human preimplantation embryonic cells from oocyte to late 

blastocyst [6]. (A) The CSM is calculated using Ng =169  based on all N = 90  

cells collected at differentiation stages. Here U0 =20  and γ =0.1 . A red or white 

number represents a stage of a cell measured. A white number means its 

corresponding cell is located in an incorrect basin. A pink arrow is a direction of a 

transition path. (B) The paths of transition are calculated from the CSM in (A).  

(C) The differentiation lineage tree of human preimplantation embryonic cells was 

obtained in the previous study [49].  

 

Figure 6. The CSM and lineage transition relationship are constructed 

using the single-cell RNA-seq data from human skeletal muscle myoblasts 

[12]. (A) The CSM is calculated using Ng = 400  based on N =271  human skeletal 

muscle myoblasts cells collected at 0h, 24h, 48h, and 72h. Here U0 =5  and 

γ =0.8 . A red number is an ordered time point when the expression levels of 
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cells were measured. The pink arrow is the direction of the transition path. (B) 

The lineage tree is predicted based on the CSM in (A). 
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