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Figure 6: Posterior summaries of sex-specific differences in common Myeloid markers defined by differences
in CD14+Monocytes (Left) or CD16+ Neutrophils (Right) only. The difference at each marker is summarised
by the posterior mean and corresponding 95% CI. The shaded region corresponds to a methylation difference
of ± 0.10.

assigned to the saturated model and may be examined further as part of a larger marker panel. Alternatively,

the vector of model probabilities for each CpG may be diffuse over multiple possibilities and therefore not be

identified for any cell-specific pattern under the chosen criteria. The feasibility of unsupervised approaches to

model selection, where the full list of methylation patterns is determined by the observed data is appealing,

but their routine application in high dimensional settings is prohibitive. Furthermore, there is potential

for patterns identified to be an artefact of random noise present in cell sorted samples as opposed to true

biological signal. Integrated methods of model selection represent an avenue for future work, where new cell-

specific patterns are proposed based on the combination of cell lineage and their prevalence in the observed

methylome.

It is well documented that there are sex-specific differences in the proportions of circulating white blood

cells [25, 26]. The application of the proposed methodology to female and male samples has highlighted

the importance of accounting for sex effects in DNA methylation analyses. Greater numbers of CD19+B

and T-cell dependent markers in females are consistent with previous findings and are possibly indicative of

higher levels of cell activation [27]. The association between sex-specific differences in select CD4+T markers

and the CD40LG gene have also been identified previously. Previous studies have pointed to alelle specific

methylation for this gene [28, 29] where CD4+T hypomethylation is observed in healthy males compared

with healthy women who carry one methylated and one hypomethylated alelle. One of our major findings

was large differences of methylation between males and females in markers defined as CD56+NK specific.

This is interesting when considered alongside the observation that males show an increase in circulatory NK

cells compared to females [27], which adds further support for the accuracy of the approach. Additionally

there is some evidence of sex-specific methylation differences in CD+56 NK, as well as CD+8 T-cells [30].

Under the proposed approach, we have provided a potential solution to accurately account for potential bias
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introduced by sex effects at the marker level.

The presence of cell-specific methylation CpG markers highlights the need to account for cellular com-

position prior to conducting Epigenome Wide Association Studies (EWAS), in whole blood. Methods for

this purpose have been developed [31,32] based on the assembly of methylation ‘signatures’ from cell-sorted

data which are then projected onto heterogeneous samples to predict cell type proportions. A compari-

son of common markers with the top 500 CpG probes identified by the cell mixture methodology of [31]

revealed 75% concordance between panels (data not shown), of which the majority were associated with

Lymphocyte-I/II and Myeloid maker panels. The inclusion of other marker panels in these algorithms may

lead to further improvement in cell mixture estimation, in particular for immune cell subtypes that may be

present in low proportions. Furthermore, the performance of these algorithms rely on consistent cell-type

effects across cohorts [33]. Given the sex-specific methylation differences we have identified in this study,

failure to account for sex effects may also impact upon the quality of cell mixture estimation and should

therefore be given due consideration.

It is common practice in array-based methylation studies to exclude CpG sites which contain SNPs both

within the probe and on the CpG site. While this is a valid approach to filtering before analysis, it will often

lead to dramatic reduction of overall data. As a result, it is likely that sites of potential interest may be

lost before any association can be made. By mapping hg38 annotated SNPs to all 450K CpG loci, we were

able to ascertain the overall proportion of cell marker sites which have a SNP present; on average, across the

common set of markers, this was approximately 30.7% of markers. In light of these results, we suggest that

deconvolution studies and methods should account for SNP events at cell marker sites, noting the proportion

that are present. For the filtering stage, we recommend that the overall rarity of the SNP variant be taken

into account, for example, retaining CpGs which also have a ‘rare’ (MAF < 0.01) variant mapping. This

approach is likely to be beneficial to the overall study design and outcome.
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Supporting information

Supplementary files S1 and S2 are available from the GitHub respository https://github.com/nicolemwhite/BayesMS.

S1 File R code for Bayesian model selection algorithm. Core R functions required to prepare data and

compute posterior model probabilities via the EM algorithm, across all listed candidate models.

S2 File List of common CpG markers associated with a sex-specific difference of ≥0.10. Illumina Human

Methylation 450k annotation data are also included for each CpG marker.

Table S1: Percentage of markers associated with SNPs, for sex-specific and common markers by candidate
model. The category ‘Unassigned’ refers to all CpG probes that were not assigned to any marker panel,
based on a 5% Bayes’ FDR.

Model Female Male Common
CD19+ B 24.19 26.82 27.05
CD14+ Mono 37.02 34.62 36.51
CD4+ T 29.05 28.34 26.10
CD8+ T 23.14 19.47 21.97
CD16+ Neu 37.11 33.85 38.84
CD56+ NK 33.70 36.82 36.02
Pan T 24.43 24.79 25.65
Lymphocyte-I 28.03 27.55 28.46
Lymphocyte-II 30.68 27.88 30.91
Myeloid 34.22 30.58 34.92
All 34.84 34.62 35.46
Unassigned 26.81 26.75 26.61
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Table S2: Distribution of sex-specific common markers over chromosomes, for single cell-dependent makers
only. A sex-specific marker was declared if the posterior probability from Eq 3 was greater than 0.95 for at
least one differentially methylated cell type.

CHR CD14+ Mono CD19+ B CD4+ T CD16+ Neu CD56+ NK
chr1 0 0 0 3 18
chr10 0 1 0 3 10
chr11 1 0 0 7 11
chr12 0 0 0 4 10
chr13 0 0 0 1 6
chr14 0 1 0 4 4
chr15 0 1 0 2 6
chr16 0 0 0 3 10
chr17 0 0 0 4 8
chr18 0 1 0 0 3
chr19 0 0 0 1 10
chr2 0 0 0 6 11
chr20 0 0 0 0 2
chr21 0 1 1 0 2
chr22 0 0 0 1 2
chr3 1 1 0 1 7
chr4 1 0 0 1 10
chr5 0 1 0 3 13
chr6 0 2 0 4 10
chr7 0 1 0 4 20
chr8 1 0 0 4 16
chr9 0 0 0 3 3
chrX 1 5 4 2 0
Unique Genes 5 11 1 47 133
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cg25486399 cg23357533 cg26707718 cg19466822 cg09662852

cg09885622 cg05617307 cg00366435 cg10782923 cg21721825

cg13468685 cg05070273 cg24049629 cg25599673 cg05255351

cg22488891 cg02963266 cg13496119 cg07111834 cg18154117

cg04347414 cg14729344 cg11465943 cg06329392 cg21565496
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Figure S1: Distribution of observed methylation β−values by cell type and sex for selected common Pan T
markers. Markers were identified as having high levels of differential methylation (>0.5) in CD4+ T cells.
Markers were identified if the corresponding posterior probability of differential methylation >0.5 exceeded
0.95.
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Figure S2: Validation analysis: Empirical cumulative distribution function (CDF) of the absolute difference
between posterior and validation estimates by validation status. First row (L-R): CD19+B, CD4+T; Second
row (L-R): CD8+T, Pan T.
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