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Abstract4

Electric potential recorded at the scalp (EEG) is dominated by contributions from5

current dipoles set by active neurons in the cortex. Estimation of these currents, called6

’inverse modeling’, requires a ’forward’ model, which gives the potential when the7

positions, sizes, and directions of the current dipoles are known. Different models of8

varying complexity and realism are used in the field. An important analytical example9

is the four-sphere model which assumes a four-layered spherical head where the10

layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively.11

This model has been used extensively in the analysis of EEG recordings. Since it is12

analytical, it can also serve as a benchmark against which numerical schemes, such13

as the Finite Element Method (FEM), can be tested. While conceptually clear, the14

mathematical expression for the scalp potentials in the four-sphere model is quite15

cumbersome, and we observed the formulas presented in the literature to contain16
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errors. We here derive and present the correct analytical formulas for future reference.17

They are compared with the results of FEM simulations of four-sphere model. We18

also provide scripts for computing EEG potentials in this model with the correct19

analytical formula and using FEM.20

Keywords: four-sphere model, head model, EEG, dipole source, LFP, FEM21

1 Introduction22

Electroencephalography (EEG), that is, the recording of electrical potentials at the scalp,23

has been of key importance for probing human brain activity for more than half a cen-24

tury (Schomer and da Silva, 2012). It is common to interpret the EEG signal in terms of25

current dipoles set up by active neurons (Hämäläinen et al., 1993; Sanei and Chambers,26

2007). Estimation of the underlying sources based on EEG signals is called inverse modeling,27

and its key ingredient is a forward model for computation of the resulting signal from known28

current sources. While the link between the current sources and the resulting potentials in29

principle is well described by volume-conductor theory, the practical application of this30

theory is not easy because the cortical tissue, the cerebrospinal fluid (CSF), the skull, and31

the scalp, all have different electrical conductivities (Nunez and Srinivasan, 2006).32

An important analytical forward model is the four-sphere model (Srinivasan et al.,33

1998; Nunez and Srinivasan, 2006) assuming a four-layered spherical head model where34

the four layers represent brain tissue, CSF, skull, and scalp, respectively. The Poisson35

equation, which describes the electric fields of the brain within volume-conductor theory,36

is solved for each layer separately, and the mathematical solutions are matched at the37

layer interfaces to obtain an analytical expression for the EEG signal as set up by a38

current dipole in the brain tissue. This model has been extensively used in analysis of39

EEG signals, see, e.g., Peraza et al. (2012); Wong et al. (2008); Chu et al. (2012), but40

it is also useful for validation of general numerical schemes, such as the Finite Element41

Method (FEM) (Larson and Bengzon, 2013). The FEM approach is not limited by specific42

assumptions on head symmetry and can, in principle, take into account an arbitrarily43

complex spatial distribution of electrical conductivity representing the electrical properties44

of the head (Bangera et al., 2010; Huang et al., 2016). This is done by building a numerical45

mesh for the head model with the electrical conductivity specified at each mesh point.46

The mesh construction is a research problem by itself and several mesh-generation tools47

are available, which often provide slightly different results (Geuzaine, 2009; Kehlet, 2016).48

The analytical solution for the four-sphere model can thus serve as a ground-truth against49

which an FEM implementation can be validated.50

While conceptually clear, the mathematical expression of the four-sphere forward model51

is quite involved, and rederiving the expression we discovered errors in the formulas both in52
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the original paper, Srinivasan et al. (1998), and in the classic EEG reference book, Nunez53

and Srinivasan (2006). As a consequence, the listed formulas predict incorrect EEG scalp54

potentials. Due to the importance of the four-sphere model, here we derive and present55

the correct analytical formulas for future reference. We further show that this formula,56

unlike the previous ones, gives predictions in accordance with FEM simulations.57

To facilitate its use in further research we also provide numerical scripts for computing58

EEG potentials with the corrected formulas, as well as FEM simulation code.59

2 Methods60

2.1 Four-sphere model61

The well-established volume-conductor theory is based on the quasi-static approximation62

to the Maxwell’s equations. The electric potential Φ is found here by solving Poisson’s63

equation (Nunez and Srinivasan, 2006),64

∇ · σ(r)∇Φ(r, t) = −C(r, t), (1)

where C(r, t) is the density of current sources. σ(r) is the position-dependent conductivity
of the medium, here assumed to be isotropic so that σ(r) is a scalar. The four-sphere model
is a specific solution of this equation which assumes that the conductive medium consists
of four spherical layers representing specific constituents of the head: brain tissue, CSF,
skull, and scalp (Figure 1A). In the computations below, these layers are labeled by s = 1

to 4, respectively. The conductivity σs(r) is assumed to be homogeneous, i.e., constant
within each layer and independent of frequency (Pettersen et al., 2012). In the examples
below we assume the same values of conductivities and concentric shell radii as in Nunez
and Srinivasan (2006), see Table 1. The solution of Equation (1) is subject to the following
boundary conditions (where s = 1, 2, 3), assuring continuity of both electrical potential
and current across the layer boundaries, and no current escaping the outer layer (Nunez
and Srinivasan, 2006):

Φs+1(rs) = Φs(rs) (2)

σs+1
∂Φs+1

∂r
(rs) = σs

∂Φs

∂r
(rs) (3)

∂Φ4

∂r
(r4) = 0. (4)
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Figure 1: Illustration of the four-sphere head model. (A) Cross-section of the
four-sphere head model, with the different colors corresponding to the different head layers:
brain, CSF, skull, and scalp. The current dipole p is located in the brain layer, at a
distance rz from the center of the sphere. In all the subsequent figures, the dipole is placed
in the x = 0 plane, at the z-axis (rz = 7.8 cm). (B) Mesh of the four-sphere model used in
the FEM simulations illustrating the different electrical conductivity values for each of the
spheres.

2.2 Analytical solution of the four-sphere head model65

The solution of Equation (1) takes different forms for tangential and radial dipoles, and any66

dipole can be decomposed into a linear combination of these two. The following derivations67

are based on Appendix G and H in Nunez and Srinivasan (2006), and are described in68

more detail in Appendix A.69

2.2.1 Radial dipole70

Nunez and Srinivasan (2006) give the following equations for calculating extracellular71

potentials from a radial dipole in the four-sphere model: The potential in the inner sphere,72

the brain, is given by Φ1(r, θ), while Φs(r, θ) gives the potential in CSF, skull, and scalp,73

for s = 2, 3, 4, respectively,74

Φ1(r, θ) =
p

4πσ1r2z

∞∑
n=1

[
A1

n

(
r

r1

)n

+
(rz
r

)n+1
]
nPn(cos θ) rz < r ≤ r1, (5)

75

Φs(r, θ) =
p

4πσ1r2z

∞∑
n=1

[
As

n

(
r

rs

)n

+Bs
n

(rs
r

)n+1
]
nPn(cos θ) rs−1 ≤ r ≤ rs. (6)

Here, Φs(r), is the extracellular potential measured at location r in shell number s, of76

external radius rs, from current dipole moment p located at rz. The conductivity of sphere77
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Labels Name Radius (cm) σ (S/m)
1 Brain 7.9 0.33
2 CSF 8.0 5σbrain

3 Skull 8.5 σbrain/K
4 Scalp 9.0 σbrain

Table 1: Radii and electrical conductivities of the present four-sphere model.
σ is the conductivity in each of the specified regions. Three variants of the model were
considered with skull conductivity reduced by a factor K (20, 40, or 80) compared to the
conductivity of the brain.

s is denoted by σs, As
n and Bs

n are constants depending on the shell radii and conductivities,78

and Pn(cos θ) is the n-th Legendre Polynomial where θ is the angle between r and rz. From79

the boundary conditions listed in Equations (2)–(4), we can compute As
n, for s = 1, 2, 3, 480

and Bs
n, for s = 2, 3, 4, using the notation σij ≡ σi/σj and rij ≡ ri/rj:81
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A1
n =

n+ 1

n
σ12 + Zn

σ12 − Zn

rn+1
z1 (7)

A2
n =

A1
n + rn+1

z1

rn12 + rn+1
21 Yn

(8) B2
n = YnA

2
n (9)

A3
n =

A2
n +B2

n

rn23 + rn+1
32 Vn

(10) B3
n = VnA

3
n (11)

A4
n =

n+ 1

n

A3
n +B3

n

n+ 1

n
rn34 + rn+1

43

(12) B4
n =

n

n+ 1
A4

n (13)

Vn =

n

n+ 1
σ34 −

rn34 − rn+1
43

n+ 1

n
rn34 + rn+1

43

σ34 +
rn34 − rn+1

43

n+ 1

n
rn34 + rn+1

43

(14) Yn =

n

n+ 1
σ23 −

n

n+ 1
rn23 − Vnrn+1

32

rn23 + Vnr
n+1
32

σ23 +

n

n+ 1
rn23 − Vnrn+1

32

rn23 + Vnr
n+1
32

(15)

Zn =
rn12 −

n+ 1

n
Ynr

n+1
21

rn12 + Ynr
n+1
21

. (16)

82

Equations (5) and (6) are in accordance with Equations (G.1.9–10) in Appendix G83

of Nunez and Srinivasan (2006) and Equation (A–1) in Srinivasan et al. (1998), Appendix A.84

However, some of the above constants (Equations (7)–(16)) are different from the ones85

given in Nunez and Srinivasan (2006) and Srinivasan et al. (1998), see Appendix A for86

specifics.87

2.2.2 Tangential dipole88

The extracellular potential from a tangential dipole in a concentric-shells model is given by89

Equation (H.2.1) in Appendix H of Nunez and Srinivasan (2006), and takes the following90
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form:91

Φ1(r, θ, φ) =
−p

4πσ1r2z
sinφ

∞∑
n=1

[
A1

n

(
r

r1

)n

+
(rz
r

)n+1
]
P 1
n(cos θ) rz < r ≤ r1 (17)

92

Φs(r, θ, φ) =
−p

4πσ1r2z
sinφ

∞∑
n=1

[
As

n

(
r

rs

)n

+Bs
n

(rs
r

)n+1
]
P 1
n(cos θ) rs−1 ≤ r ≤ rs,

(18)
where φ is the azimuth angle and P 1

n is the associated Legendre polynomial. When93

solving for the boundary conditions, Equation (2)-(4), we find that the constants As
n and94

Bs
n are the same as for the radial dipole solution, see Section 2.2.1.95

In the results section we compare our analytical solution and the FEM simulations with96

the two published formulas for the potential in the four-sphere model given in Appendices G97

and H in Nunez and Srinivasan (2006), and in Appendix A in Srinivasan et al. (1998).98

For comparison we also present the approximate solution provided in Appendix G.4 in99

Nunez and Srinivasan (2006). Note that two corrections were done to the model presented100

in Srinivasan et al. (1998) before comparison. First of all, the multiplication factor p/σ1101

was inserted in Equation (A-1), necessary to give potentials in units of volts. Secondly,102

a superscript in Equation (A-8) was changed, such that the right-hand-side included A2
n103

instead of A3
n, since this was obviously a typographical error. For more details on the104

different descriptions of the analytical four-sphere model, see Appendix A.105

2.3 Finite Element Method106

To find the numerical solution of the four-sphere model we solved the Poisson equation107

(Equation (1)) using the Finite Element Method (FEM). The first step was to construct a108

3D numerical mesh representing the four-sphere head model geometry. We used the open-109

source program gmsh (Geuzaine, 2009), optimized using the netgen algorithm (Schöberl,110

1997). Figure 1B shows the resulting mesh corresponding to the set of radii listed in Table 1.111

Note that our 3D FEM model-geometry implementation consists of five spheres: scalp,112

skull, cerebrospinal fluid (CSF), and two spheres together representing the brain tissue.113

However, the two innermost spheres (the innermost having a radius of 6 cm) are set to114

have the same conductivity, i.e., the value for brain tissue listed in Table 1. Thus, the115

model is effectively still a four-sphere model. We observed, however, that partitioning the116

four spheres into five and partitioning the inner sphere to a coarser mesh size reduced the117

overall mesh size and computational time while retaining the accuracy. The resulting mesh118

comprised of nearly 12.2 million tetrahedrons (2.1 million odd nodes) and we observed that119

at this resolution, the numerical results had converged.120

The current sources were treated as point sources and the conductivity was set in121

each mesh point according to Table 1. Finally, the Poisson’s Equation and the bound-122
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ary conditions listed in Equations (2)–(4) were solved numerically with FEM. All FEM123

simulations were done with the open-source program FEniCS (Logg et al., 2012; Alnæs124

et al., 2015), with Lagrange P2 finite elements. The linear systems were solved by the the125

Krylov Solver employed with the Conjugate Gradient method, and the Incomplete LU126

factorization preconditioner.127

2.4 Software128

All the Python code for obtaining the potentials from a current dipole placed in a four-129

sphere head model using (i) the analytical formulation and (ii) the numerical method (FEM)130

are available under the GNU General Public License version 3 here: https://github.com/131

Neuroinflab/fourspheremodel. Additionally, the Python scripts to generate the figures132

presented in this manuscript are also included. We tested this code in Anaconda Scientific133

package on a Linux 64 machine. For easy uptake of this resource and verification, we134

provide the associated conda environment with all the specific libraries used to run this135

software, and a help file.136

3 Results137

3.1 Comparison between analytical and FEM results138

EEG potentials were computed on the scalp surface with the analytical four-sphere model139

Φ(r4, θ, φ) and compared with the results from the FEM simulations for a current dipole p.140

To mimic a current dipole set up by cortical neurons, the dipole was placed in the brain141

layer (s = 1) of the four-sphere head model, close to the CSF boundary, cf. Figure 2A,142

E, I. We found that the analytical and FEM models gave similar results for both radial143

and tangential dipoles: the absolute value of the difference was more than two orders of144

magnitude smaller than the EEG signal itself for all dipole orientations (Figure 2).145

A more detailed comparison of EEG potentials predicted by the analytical model and146

the FEM model is shown in Figure 3. Here the computed EEG signal from a radial147

current dipole is shown for increasing polar angle θ between the current dipole position148

vector rz and the measurement position vector r. The sphere radii and conductivity values149

are consistent with Nunez and Srinivasan (2006) (Table 1). The curve for the analytical150

results (blue line) overlaps the FEM results (red dots). This figure also demonstrates that151

previously published formulas give incorrect predictions.152

3.2 Limiting case153

As an additional control we tested the limiting case where the conductivity was set to be154

the same for all four shells, i.e., σbrain = σCSF = σskull = σscalp, and equal to that of the155
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Figure 2: EEG potentials computed with four-sphere model and FEM simulation
for radial, tangential, and 45-degree dipole. (A) A radial current dipole placed in
the brain in the model as described in Table 1. The dipole (black arrow) is located at
rz = [0, 0, 7.8 cm] (red dot) and has a magnitude 10−7 Am to give scalp potentials some
tens of microvolts in magnitude, typical for recorded EEG signals. (B) Resulting scalp
potential calculated with the analytical four-sphere model. (C) Scalp potential computed
with FEM. (D) Absolute difference between results from analytical calculation and FEM.
The second row, panels E-H are equivalent to the top row, however for a tangential dipole
parallel to y axis, in the x = 0 plane. The bottom row, panels I-L are equivalent to the
top row, however for a dipole that subtends 45-degrees to the z axis in the x = 0 plane.

brain (Table 1). In this case, the resulting scalp potentials should be the same as those156

calculated from a homogeneous single-sphere head model with radius equal to the scalp157

radius r4. For a dipole oriented along the radial direction inside a single homogeneous158
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Figure 3: Analytical solution of four-sphere model matches FEM simulation.
Scalp potentials from radial current dipole at position rz = 7.8 cm and magnitude 10−7 Am
to give results in observable range, while still facilitiating direct comparison with the original
plots in Srinivasan et al. (1998); Nunez and Srinivasan (2006). The resulting scalp potentials
are shown for increasing polar angle θ between the current dipole and the measurement
position vector. The different lines show calculations with the various formulations of the
four-sphere model discussed in this paper, as well as the FEM simulation. The green line
shows potentials obtained from Srinivasan et al. (1998), Appendix A, Equations (A-1 – 11).
The black line shows results from applying the formulation given in Nunez and Srinivasan
(2006), Appendix G, Equations (G.1.9–10) and (G.2.1–10). The approximate solution
from Nunez and Srinivasan (2006), Appendix G.4, Equation (G.4.1–3) is given by the pink
crosses. The analytical formulation of the four-sphere model presented here is shown in
blue, and the FEM simulation is given by the red dots. Panels A, B and C show results
for different values of the skull conductivity, i.e., σskull=σbrain/20, σbrain/40 and σbrain/80,
respectively.

sphere, the surface potentials are given by Equation (6.7) in Nunez and Srinivasan (2006):159

Φ(r4, θ, φ) =
p

4πσ1r24

{
2(cos θ − f)

(1 + f 2 − 2f cos θ)
3
2

+
1

f

[
1

(1 + f 2 − 2f cos θ)
1
2

− 1

]}
, (19)

where f = rz/r4. Comparison between the simplified four-sphere models and the homoge-160

neous single-sphere model showed perfect agreement for the present formulation, while the161

formulas listed in Srinivasan et al. (1998) and Nunez and Srinivasan (2006) give inaccurate162

predictions (Figure 4).163

4 Discussion164

In this note we have revisited the analytical four-sphere model for computing EEG potentials165

generated by current dipoles in the brain. The main contributions of this paper are the166

presentation of corrected and validated formulas, as well as numerical scripts for using them,167

allowing users to readily apply this important forward-model in the field of EEG analysis.168
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Figure 4: Analytical solution of the four-sphere model satisfies control test for
limiting case. Four-sphere models in the limiting case where the conductivity of the skull,
CSF, and scalp are equal to the conductivity of the brain, compared to the equivalent model
for a single homogeneous sphere, Equation (19). We used a radial dipole of magnitude
10−7 Am positioned a distance rz = 7.8 cm away from the center of the sphere, consistent
with Figure 2 and 3.

We also provide a set of FEM scripts which model the four-sphere model consistent with169

the analytical solution.170

In addition to facilitating the use of the four-sphere model in EEG signal analysis (see,171

e.g., Peraza et al. (2012); Wong et al. (2008); Chu et al. (2012)), the present formulas172

and scripts will also be a resource for benchmarking comprehensive numerical schemes for173

computing EEG signals based on detailed head reconstructions such as the Finite Element174

Method (FEM) (Larson and Bengzon, 2013). The FEM approach is not restricted to175

specific head symmetry assumptions and can take into account an arbitrarily complex176

spatial distribution of electrical conductivity representing the electrical properties of the177

head. This is done by constructing a complicated numerical mesh for the head, a task that178

is often technically challenging. The present validated analytical solution for the four-sphere179

model can thus serve as a ground-truth benchmark against which the correctness and180

computational precision of such comprehensive numerical implementations can be tested.181
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A Mathematical derivation of four-sphere model235

The four-sphere model equations for radial and tangential dipoles are given in Equations (5),236

(6), (17) and (18). Here we describe how the seven unknown constants (Equation (7)–(16)237

can be determined by the seven boundary conditions (Equations (2)–(4)). We show the238

calculations for radial dipoles only, however, the derivation presented applies to both radial239

and tangential dipoles, due to similarity of the models.240

We start by finding the derivative of Φs(r, θ) from Equation (6):

∂

∂r
Φs(r, θ) =

p

4πσ1r2z

∞∑
n=1

[
As

n

(n
r

)( r

rs

)n

−Bs
n

(
n+ 1

r

)(rs
r

)n+1
]
nPn(cos θ).

For the Neumann boundary condition on the scalp boundary, Equation (4), we make use
of the relation above, and get:

∂

∂r
Φ4(r4, θ) =

p

4πσ1r2z

∞∑
n=1

[
A4

n

(
n

r4

)(
r4
r4

)n

−B4
n

(
n+ 1

r4

)(
r4
r4

)n+1
]
nPn(cos θ) = 0.
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⇒ A4
n

(
n

r4

)
−B4

n

(
n+ 1

r4

)
= 0 ∀ n

⇒ B4
n =

n

n+ 1
A4

n. (20)

Next, we apply the Dirichlet boundary condition on the skull boundary, i.e., Equation (2)
for s = 3:

Φ4(r3) = Φ3(r3)

p

4πσ1r2z

∞∑
n=1

[
A4

n

(
r3
r4

)n

+ B4
n

(
r4
r3

)n+1
]
nPn(cos θ)

=
p

4πσ1r2z

∞∑
n=1

[
A3

n

(
r3
r3

)n

+B3
n

(
r3
r3

)n+1
]
nPn(cos θ)

A4
n

(
r3
r4

)n

+B4
n

(
r4
r3

)n+1

= A3
n +B3

n .

Inserting the expression for B4
n, Equation (20), using the notation rij ≡ ri/rj:

A4
n

(
rn34 +

n

n+ 1
rn+1
43

)
= A3

n +B3
n

⇒ A4
n =

n+ 1

n

A3
n +B3

n

n+ 1

n
rn34 + rn+1

43

. (21)

Note that the multiplication factor n+1
n

is missing in Nunez and Srinivasan (2006), Ap-241

pendix G, Equation (G.2.9).242

Further, we look at the Neumann boundary condition on the skull boundary, i.e.
Equation (3) for s = 3, using the notation σij ≡ σi/σj:

σ4
∂Φ4

∂r
(r3) = σ3

∂Φ3

∂r
(r3)

σ4

(
A4

n

n

r3

(
r3
r4

)n

−B4
n

n+ 1

r3

(
r4
r3

)n+1
)

= σ3

(
A3

n

n

r3

(
r3
r3

)n

−B3
n

n+ 1

r3

(
r3
r3

)n+1
)

nA4
nr

n
34 − (n+ 1)B4

nr
n+1
43 = σ34

(
nA3

n − (n+ 1)B3
n

)
.

Inserting Equation (20),

nA4
n

(
rn34 − rn+1

43

)
= σ34

(
nA3

n − (n+ 1)B3
n

)
,
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and applying Equation (21),

n
n+ 1

n

A3
n +B3

n

n+ 1

n
rn34 + rn+1

43

(
rn34 − rn+1

43

)
= σ34

(
nA3

n − (n+ 1)B3
n

)
.

From this we find that,

B3
n =

n

n+ 1
σ34 −

rn34 − rn+1
43

n+ 1

n
rn34 + rn+1

43

σ34 +
rn34 − rn+1

43

n+ 1

n
rn34 + rn+1

43

A3
n,

which we can write as:

B3
n = VnA

3
n where Vn =

n

n+ 1
σ34 −

rn34 − rn+1
43

n+ 1

n
rn34 + rn+1

43

σ34 +
rn34 − rn+1

43

n+ 1

n
rn34 + rn+1

43

. (22)

Here, the σ34-term in the numerator of Vn differs from Nunez and Srinivasan (2006)243

(Equation (G.2.1)) and Srinivasan et al. (1998) (Equation (A-2)) in the sense that the244

multiplication factor is inverted.245

For the CSF Dirichlet boundary condition we can follow the same procedure as for the
skull Dirichlet boundary condition, and we get,

A3
n

(
r2
r3

)n

+B3
n

(
r3
r2

)n+1

= A2
n

(
r2
r2

)n

+B2
n

(
r2
r2

)n+1

⇒ A3
nr

n
23 +B3

nr
n+1
32 = A2

n +B2
n.

Inserting the expression for B3
n from Equation (22):

A3
n

(
rn23 + Vnr

n+1
32

)
= A2

n +B2
n

⇒ A3
n =

A2
n +B2

n

rn23 + rn+1
32 Vn

. (23)

Here, we notice a typographical error in the expression for A3
n in Srinivasan et al. (1998),246

Equation (A-8): there should be an A2
n-term in the numerator, not A3

n.247

Next, we apply the Neumann CSF boundary condition. Starting out with,

σ3
∂Φ3

∂r
(r2) = σ2

∂Φ2

∂r
(r2),
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and making use of the expressions for B3
n and A3

n, we find that,

B2
n = YnA

2
n where Yn =

n

n+ 1
σ23 −

n

n+ 1
rn23 − Vnrn+1

32

rn23 + Vnr
n+1
32

σ23 +

n

n+ 1
rn23 − Vnrn+1

32

rn23 + Vnr
n+1
32

. (24)

Note that there’s a subtle difference between the Yn presented here, and Nunez and248

Srinivasan (2006) (Equation (G.2.2)) and Srinivasan et al. (1998) (Equation (A-3)): The249

second term of the numerator is a fraction. Here, the rn23 factor should not be multiplied250

by the whole fraction, but rather only the n
n+1

-term in the numerator.251

The Dirichlet boundary condition on the brain boundary is:

Φ2(r = r1) = Φ1(r = r1)

A2
n

(
r1
r2

)n

+B2
n

(
r2
r1

)n+1

= A1
n

(
r1
r1

)n

+

(
rz
r1

)n+1

A2
nr

n
12 +B2

nr
n+1
21 = A1

n + rn+1
z1 .

Inserting the expression for B2
n from Equation (24):

A2
n

(
rn12 + Ynr

n+1
21

)
= A1

n + rn+1
z1

⇒ A2
n =

A1
n + rn+1

z1

rn12 + rn+1
21 Yn

. (25)

Finally, we solve the Neumann boundary condition on the brain boundary,

σ2
∂Φ2

∂r
(r1) = σ1

∂Φ1

∂r
(r1).

Inserting the expressions for A2
n and B2

n from Equations (25) and (24), we find,

A1
n =

n+ 1

n
σ12 + Zn

σ12 − Zn

rn+1
z1 where Zn =

rn12 −
n+ 1

n
Ynr

n+1
21

rn12 + Ynr
n+1
21

. (26)

The A1
n-term in Srinivasan et al. (1998) (Equation (A-5)) is not consistent with Nunez and252

Srinivasan (2006) (Equation (G.2.4)) equal to Equation (26): a multiplication factor p/σ1253

is lacking, rn−1zl should be rn−1z1 . Moreover, B1
n needs to be defined in order for the model254

description in Srinivasan et al. (1998), Appendix A to give potentials in brain tissue.255
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