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We study the confidence response distributions for several two alternative forced choice tasks with different
structure, and assess whether their behavioral responses are accurately accounted for as a mapping from bayesian
inferred probability of having made a correct choice. We propose an extension to an existing bayesian decision
making model that allows us to quantitatively compare the relative quality of different function mappings from
bayesian belief onto responded confidence. We find that a simple linear rescaling from bayesian belief best fits the
observed response distributions. Furthermore, the parameter values allow us to study how task structure affects
differently the decision policy and confidence mapping, highlighting a dissociable effect between confidence and
perceptual performance.

1 Introduction

Perceptual decision-making based on noisy and variable perceptual stimuli is usually thought to be carried out
as the on-line integration of perceptual evidence until an admissibility threshold is reached (Bogacz et al., 2006,
Forstmann et al., 2016, Ratcliff and McKoon, 2008, Smith, 2000, Usher and McClelland, 2001). Surprisingly, these
models that are natural constructs for time varying stimuli can also account for most behavioral observations derived
from decision making based on discrete, static stimuli (Ratcliff and Smith, 2004, 2010, Smith et al., 2014), such as
a number comparison task (Sigman and Dehaene, 2005). Even though in static tasks the nature of the sequential
accumulation is not clear, these models are most often used to account dynamic and static tasks, although the
parameter values are slightly different across task modalities (Ratcliff and Smith, 2010, Smith et al., 2014).

The most typical observations used to constrain and fit models of decision making are response time (RT)
distributions and task performance. Another relevant observable that has recently received much attention is
confidence, i.e. the subject’s internal measure of how sure he/she is that the reported decision was correct (Kepecs
et al., 2008, Yeung and Summerfield, 2012, Zylberberg et al., 2012). There is still not an established consensus on
how confidence is encoded and read-out in sensory integration (Kiani and Shadlen, 2009, King and Dehaene, 2014,
Ma et al., 2006, Paz et al., 2016, Pleskac and Busemeyer, 2010, Pouget et al., 2016, Vickers et al., 1985, Zylberberg
et al., 2012) and, more importantly, how a common encoding could be implemented for both static and dynamic
stimuli tasks. For static tasks most confidence models rely on signal detection theory measures (Fleming and Lau,
2014, Grimaldi et al., 2015, Maniscalco and Lau, 2012) whilst for dynamic tasks confidence is modeled using several
statistics on the accumulators of sensory evidence (Moreno-Bote, 2010, Vickers et al., 1985, Zylberberg et al., 2012),
the most widely used being the logit function of the probability of having decided correctly (Kiani and Shadlen,
2009, Kiani et al., 2014, Zylberberg et al., 2014). A related current discussion is whether the same circuits that
encode information for choice also, and at the same time, encode information that is read-out to convey confidence
judgments. The evidence in favor of circuit sharing mostly comes from experiments in macaques that show that
the same neurons that are thought to encode choice formation also, and at the same time, affect confidence (Kiani
and Shadlen, 2009, Kiani et al., 2014). However, if confidence is merely encoded in the same circuitry as choice it is
unclear how there are several experiments that show a clear dissociation between decision accuracy and subjective
perception (Graziano and Sigman, 2009, Graziano et al., 2015, Zylberberg et al., 2014).

Our objective is two-fold, first, to asses theoretically whether a specific readout of an integration model can
explain choice and confidence in static and dynamic tasks. Second, specifically, to ask what mapping (or readout)
of the integration process accounts for the observed confidence reports.
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We use a bayesian decision model (Drugowitsch et al., 2012, 2014a,b, 2015) that is able to account for behavioral
data from both static and dynamic tasks. Furthermore, we propose an extension that aims to provide a normative
way to model subjects’ confidence reports using the bayesian inferred probability that the selected action was correct
(Drugowitsch et al., 2015). A particular strength of the model is that it can explain the covariance between several
observables of decision making such as response time (RT), performance and confidence distribution statistics, and
it can relate them to parameters which are hidden from direct observation such as the internal sensory noise or
the subject’s urgency. Furthermore, the model parameter values allow us to analyze tasks and sessions similarities
across subjects, and we find distinct parameter hierarchies for those directly associated to decision commitment
and the parameters linked with the scaling of confidence reports.

With our modeling approach we can ask:

1. Can the extended model account for confidence distributions and their covariance with RTs and performance?

2. How are the model beliefs better converted into confidence judgments?

Furthermore, estimating the model parameters for different individuals, different sessions and different tasks, we
can also ask:

3. Is there a correlation structure between the model parameters or are they completely independent from each
other?

4. How do the model parameters vary across tasks and sessions, and what do they tell us about the subject’s
decision-making policy in different environments?

1.1 Background

Decision making for time varying stimuli must in some way assess the probability that each of the available actions
is correct based on a stream of evidence samples {δx0, δx1, . . . δxT }, where we note δxt as the evidence the observed
in the interval [t, t+δt). Then, an admissibility level must be set, which indicates when it becomes better to commit
to a decision based on a behavioral goal.

The model we use aims to study two alternative forced choice (2AFC) tasks in which each of the available
actions can be mapped to an hypothesis that underlies the generation of the observed evidence, and thus it becomes
necessary to infer the probability of each hypothesis given the observed stream (we note the belief that a hypothesis
Hi is correct as gi). The model achieves this using Bayes rule

P (Hi|{δx0, δx1, . . . δxT }) ∝ P ({δx0, δx1, . . . δxT }|Hi)P (Hi) (1)

where P (Hi) is hypothesis Hi’s prior probability, and P ({δx0, δx1, . . . δxT }|Hi) is the likelihood of the observed
evidence given Hi.

The model computes the admissibility level to commit to a decision by attempting to maximize its perceived
reward rate. This implicitly assumes that subjects perceive some form of reward after successfully completing a
trial, that the passage of time affects the total perceived reward, and thus they attempt to balance their performance
with the time they take to respond. Drugowitsch et al. (2012) showed for 2AFC how to compute the time varying
bounds for the belief, g, of each alternative that yielded maximal reward rate even in presence of a cost for the
passage of time c(t). It was also shown that the belief bounds could be mapped to the accumulated evidence
x(t) =

∫
δxtdt, which for certain generative models behaved as a diffusing particle with drift. Using the computed

bounds, the generative model and adding a random non-decision time after reaching the bounds, it is possible to
compute the model’s predicted RT distribution and performance.

We extend Drugowitsch et al. (2012) optimal decision making model to use the belief that the selected hypothesis
is correct at decision time to produce confidence reports. We assume that confidence is reported on a continuous
interval [0, 1] where 0 and 1 are the lowest and highest confidence reports possible, and we propose that the belief g
at decision time is mapped onto this interval in a deterministic way. Thus, we are able to compute the probability
density for responses times, performance and confidence in 2AFC tasks with time varying evidence. For static
stimulation, we assume that subjects internally sample the presented stimulus, and thus perceive a time varying
stream of evidence with an unknown internal variance rate. Thus, we treat static and dynamic stimulation tasks
in the same way.
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2 Results

2.1 Model agreement with data

Our goals are to accurately model behavioral data in tasks with very different structure, mainly in tasks with static
or dynamic stimulation with the same underlying optimal model for decision making, and moreover also be able to
account for confidence judgements.

We use the three 2AFC tasks from (Ais et al., 2016) to study this problem. These are an auditory, contrast and
luminance discrimination tasks. Shortly, the auditory and luminance tasks have dynamic stimuli, while the contrast
task has static stimuli. The duration of the stimulation is different between tasks, namely the luminance stimuli are
presented for 1 second and subjects are forced to decide in that interval, whilst the contrast and auditory stimuli
last for 300ms but subjects can respond at any time. Furthermore, in the auditory task the pitch of two tones must
be compared, thus there is a memory retention period of 500ms between the presentation of both tones (each lasts
300ms). However, we test whether the same model is able to explain the behavioral data in all of them.

Our modeling approach is to specify all the tasks in terms of the minimum amount of elements needed by an
optimal decision agent to be able to decide. For instance, if the evidence samples in favor of each alternative have
a gaussian distribution, then the net evidence (the difference between the evidence of the competing alternatives)
is also normally distributed. Thus, it is optimal to only encode the net evidence’s distribution and not encode
two distributions separately for each alternative. This approach also implies that the only effect that the memory
retention period has on the decision model is to add a fixed delay in between trials. Furthermore, in tasks with
limited stimuli duration (auditory and contrast) nothing must be integrated after the stimuli vanishes, and the
choice is forced based on the observed samples.

Our key assumption is that the model considers that the samples of net evidence which are observed come from
a gaussian distribution with known variance rate. In the dynamic stimulation tasks, said variance rate encompasses
the external variance from which the actual sensory samples are generate, and an internal variance rate that is
hidden to the experimenter. In the static stimulation tasks, the stimuli have no external variance rate because
they are fixed, but we assume that the sensory information in the static stimuli is sampled and generates a stream,
corrupted by internal noise. We assume that this stream of samples are also taken from a gaussian with known
variance rate. Thus, are model treats static and dynamic tasks on the same footing. However, we set the variance
of the net evidence, σ2, as a free parameter that is fitted based on the behavioral data, thus we can separate the
external and internal variability, at least for dynamic stimulation tasks.

Furthermore, Drugowitsch et al. (2012) assume, as is typically done in most decision making models, that
additional delays in the response time arise because of processing that is unrelated to optimal decision making,
for instance memory retrievals and comparisons after the stimuli vanish or decision transmission delays. We do
the same here and assume that the combination of these delays results in a fixed non-decision time probability
distribution, which for simplicity we assume to be a half gaussian bell with average τc and dispersion σc.

Furthermore, Drugowitsch et al. (2012) also assume that there is a probability, ppo, that subjects become
distracted and respond randomly in a trial. The remaining decision model parameter is the subject’s urgency,
encoded as a cost function for the passage of time c(t) (for simplicity we assume it is constant).

Finally, our proposed extension is that confidence reports are simply a mapping, or read-out, from the bayesian
belief that the decision was correct, g, to the response range. The functional form of this mapping is currently
unknown and represents a major open problem in models of confidence, which is referred to as confidence calibration
(Meyniel et al., 2015). The benefit of our modeling approach is that we can deterministically compute the model’s
RT and confidence probability densities for any mapping. Thus we are able to compare the relative quality of
different mappings and also assess whether they are in good agreement with the observed behavioral data, which is
one of our main goals. In order to simplify, we compare two mapping functions:

1. CLo , a combination of the widely used log probability ratio (logit of g) statistic (Kiani and Shadlen, 2009), with
a sigmoid that rescales the reports to the interval [0, 1]. We refer to this mapping as the log-odds mapping.

2. Cs, a linear rescaling of g, clipped to the [0, 1] interval. We refer to this mapping as the linear mapping.

We fit the extended model’s parameters (table 3) by maximizing the likelihood of the observed RT, performance
and confidence for each subject, task and session independently (a total of 176 independent sets of parameters).
We find that the model is able to fit the RT and accuracy distributions with great precision for all tasks (Fig. 1).
This shows that the simplifying assumptions made to model the static and dynamic tasks on the same footing do
not reduce Drugowitsch et al. (2012) model’s fitting power. This is important because in order to get good fits of
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the behavioral distributions in their original work, Drugowitsch et al. (2012) had to use a generic symmetric prior
along with a time dependent cost function to get accurate fits, which added much more parameters to be fitted.

Our proposed extension to model confidence, with the linear mapping, shows a good agreement between the
response distributions for the auditory and contrast tasks (Fig. 1). However, the log-odds mapping does not yield
a similar quality of the fits for both of these tasks (Fig. S.6). The proposed extension fails to fit the confidence
distribution for the luminance comparison task, even though the data’s likelihood given the linear mapping is
greater than given the log-odds mapping. We further asses this with a t-test to compare the difference between
average confidence for each subject, session and experiment tuple, and its corresponding model fit. Grouping all
the experiments together, the linear mapping shows no significant difference between the data and the theoretical
prediction, while with the log-odds mapping, the model predicts significantly lower mean confidence than is observed
(Table 1. For each experiment separately, the T statistics for the linear mapping show less significant differences
than for the log-odds mapping.

Figure 1: Model fit quality. We show the subject’s behavioral data: joint RT-accuracy distribution, confidence-accuracy distribution
and binarized confidence-RT distributions, along with their corresponding fits for the 3 tasks. The subject’s confidence was binarized
using a session mean split criteria.

Table 1: Average confidence difference t-test statistics for all experiments, Holm-Bonferroni corrected
Experiment (mapping) n T p
All (linear) 176 −0.07 0.94
All (log-odds) 176 −5.4 1.9. 10−6

Contrast (linear) 66 0.99 0.66
Contrast (log-odds) 66 −2.3 0.08
Auditory (linear) 66 2.4 0.07
Auditory (log-odds) 66 −2.8 0.03
Luminance (linear) 44 −4 0.0015
Luminance (log-odds) 44 −4.9 9. 10−5

We compare the relative quality of both mappings with the behavioral data’s maximum likelihood (L). We find
that for all experiments and session groups, the linear mapping has a better agreement than the log probability
ratio mapping (Fig. 2). However, both mappings fail to explain the confidence resolution observed in the data as
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evidenced in the area under the receiver operating characteristic curves (AUC). Both mappings predict significantly
lower AUC values (p < 10−19 for both mappings).

Figure 2: Comparison between mappings goodness of fit. Each dot corresponds to Wilks’ likelihood ratio statistic (Wilks, 1938)
between both mappings for a single subject, session and experiment. Blue dots indicate that Cs has a higher likelihood than CLo . Red
dots show the opposite case.

2.2 Parameter consistency

The model parameters determine the decision policy that will be followed. This means that by studying the fitted
parameter values, we are able to asses whether the confidence mapping is the same for different tasks, and, more
generally, if the confidence mapping is task idiosyncratic or if the readout policy is shared. Ais et al. (2016) did
not observe significant learning across sessions, thus we hypothesize that policies across sessions of the same task
should not vary greatly, but can significantly differ across tasks. This implies that parameter values of the same
tasks should cluster together, and that clusters for different experiments may be separable.

To test this hypothesis, we take the fitted parameters for each subject, session and experiment. In order to make
equally scaled parameters, we then normalize the values by the standard deviation of each parameter array, except
for parameter σ2, where we use the standard deviation within each experiment for the normalization. We observe
that parameter values for the same experiment, cluster together and that the different experiment clusters can be
separated (Fig. 3.A and B). We also find that the clusters’ hierarchy, computed with Ward’s agglomerative clustering
algorithm (Ward, 1963), shows distinct hierarchies for different parameter sets. The set of model parameters that
determine the decision policy are the variance rate σ2, the cost c(t) and the phase-out probability ppo. These
parameters form a hierarchy where the auditory and luminance tasks policies are “closer” to each other than to the
contrast task (Fig. 3.A). Whereas, for the confidence mapping parameters CH and α, the auditory and contrast
tasks are closer than the luminance task (Fig. 3.B). In fact, Ais et al. (2016) observe a similar hierarchy for
the confidence response distributions across tasks and sessions. They found that the auditory and contrast tasks
confidence response distributions were more similar to each other than to the luminance task’s distribution.

This hierarchy appears to be robust because most of the decision policy parameters are not significantly correlated
to the confidence mapping parameters (p > 0.05 after holm-bonferroni correction). The significant correlations are
between σ2 and α (corr= 0.25 p = 0.017), and ppo and CH (corr= 0.31 p = 5.10−4). The former occurs because for
large σ2 values, the belief bounds have a smaller slope (Sup. Fig. S.5), thus the mapping slope must be higher to
be able to account for responses that span the entire response range [0, 1]. The latter correlation occurs because
increased ppo (more random response trials) is accompanied by lower confidence responses, thus the belief threshold
to respond high confidence, CH , must be higher, which in turn explains the correlation. Thus, the only relevant
correlations arise because of the model’s construction, leaving the rest of the parameters almost independent from
each other.
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Figure 3: A shows a scatter plot of the relevant decision parameters averaged across all subjects for separate tasks and sessions. B shows
is the same as A but for the relevant confidence parameters. The color of the markers label their corresponding task (blue=Luminance,
red=Contrast, green=Auditory). Below each scatter plot, the hierarchy of clusters for the parameters (decision relevant A and confidence
for B) is shown.
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3 Discussion

Our main goal is to test if confidence can be accurately be explained as a mapping of the bayesian posterior
probability of having made the correct choice, as is proposed in many recent works (Meyniel et al., 2015, Pouget
et al., 2016). We also aim to do this for tasks with different modalities, static and dynamic stimulation, to show
that a general mapping principle can underlie several tasks response policies, but potentially with different mapping
coefficients.

In order to do this, we study Ais et al. (2016) data for the three 2AFC tasks. The contrast task was completely
static, while the other two were dynamic. The luminance task had a hard RT barrier, while the other tasks allowed
subjects respond at any time, even after the stimuli vanished. Our modeling approach builds on Drugowitsch et al.
(2012) decision making model and is able to accurately reproduce subjects RT distributions and performance for
all three tasks. This is a crucial result because of the many simplifying assumptions that were made for fitting the
model parameters. In their original paper, Drugowitsch et al. (2012) were able to fit behavioral distributions by
allowing c(t) to vary with time and by using discrete symmetric priors on µ, instead of constant cost and conjugate
gaussian priors. Furthermore, they only tested the model for a task with a single evidence source. On the other
hand, we used three tasks with different modalities, two sources of evidence and different sensory exposure times.
We found that the simplest form of inference (using gaussian conjugate priors), the simplest c(t) functional form,
and making several assumptions on optimality (subjects compute net evidence, all delays of the decision beyond
the stimulation duration comes from a fixed non-decision time) are sufficient to accurately explain the RT and
performance for all tasks, static and dynamic stimulation alike.

Our main contribution is that we propose a way in which to compute the model’s predicted confidence responses
based solely on the bayesian posterior belief. We compare two mappings from bayesian belief to confidence: the
logit of the belief, mostly referred to as the log-odds, and a linear mapping from belief to confidence. We find that
the linear mapping has better agreement for 87.5% of the subject, session and task tuples studied. Furthermore, we
find that our proposal has a very good agreement for the auditory and contrast tasks, while the luminance task’s
confidence response distribution is not well explained. We consider that this must be caused by one of simplifying
assumptions not being true. One clear source of errors is that subjects rely on heuristic policies to report confidence
(Maniscalco et al., 2016, Zylberberg et al., 2012), in combination to optimally inferred estimates (Paz et al., 2015).
These imperfect decision policies produce performance drops that the model is able to explain at the expense of
changing some parameters as the variance rate σ2. This can lead to an altered belief and bound form that makes it
impossible to account for the confidence response distribution, even though the RT and performance distributions
match. Furthermore, it has been recently found that subjects sometimes use measures of the information carried
by the stimuli in order to compute their confidence, instead of just relying on the inferred probability of having
made a correct choice (Ahumada et al., 2017). This strategy would also lead to confidence responses that could not
be efficiently modeled using just the mapping of posterior belief.

On the other hand, the model parameters encode the decision policy robustly. That is, in the absence of
observable learning during the experiments, the parameters do not vary broadly across sessions of the same task
and cluster together. Furthermore, for the data studied here, the parameters formed distinct hierarchies of clusters
where sessions of the same tasks group together first and then inter-task connections were made. A surprising
observation is that the parameter cluster hierarchy is different for different parameter classes. In other words, the
parameters that determine the decision policy (c(t), σ2 and ppo) have a different hierarchy than the confidence
mapping parameters (CH and α). Furthermore, the confidence mapping parameters cluster in a hierarchy that is
equal to the one observed by Ais et al. (2016) when they studied the confidence response distributions similarities.
This seems to indicate that the model parameters can represent hidden decision policy features that are differently
shaped by task structure.

If we consider the decision parameters’ hierarchy, the dynamic tasks are more closely related than the static
task, while in the confidence mapping parameters’ hierarchy, the short presentation tasks are more closely related
than the Luminance task. This appears to indicate that the decision policy is strongly altered by task modality
(dynamic or static), while the confidence mapping is strongly altered by the stimulation duration. However, it
is not possible to make a conclusive statement about these observations only based on the hierarchies of fitted
parameters, since these could be affected by many artificial aspects such as the scaling method, the clustering
algorithm used, and even by inter-parameter correlations (although we did not observe significant correlations for
most of the decision-confidence parameter pairs). The fact that the hierarchies are different can however be taken
as evidence for the dissociated nature of perceptual accuracy and confidence reports, as was already reported in
several studies (Cortese et al., 2016, Graziano and Sigman, 2009, Grimaldi et al., 2015).

Our study contributes to the discussion of whether the same brain circuitry involved in decision making is used
for the encoding of confidence. The optimal bayesian decision model derived by Drugowitsch et al. (2012) has a
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one-to-one mapping between the integrated sensory evidence and the belief of having made the correct choice, as a
function of elapsed time. We propose that confidence is then read-out from the bayesian belief, thus the circuitry
for decision and confidence must be shared up until the read-out circuit. The read-out is implemented as a simple
mapping from bayesian belief. We found that this mapping can be affected by task structure, which would lead to
possible dissociations with actual decision performance.

4 Methods

4.1 Experimental data

We study the behavioral data measured by Ais et al. (2016) in three 2AFC tasks: an auditory discrimination task,
a contrast discrimination task and a luminance discrimination task. In the auditory task, subjects had to listen to
two successive pure tones corrupted by gaussian noise and had to indicate if the first or second one had a higher
pitch. Both tones lasted 300ms and they were separated by a 500ms interval. In the contrast task, subjects had to
maintain their fixation on a central cue, while two circular stimuli appeared to the sides for 300ms. One of them held
a Gabor grating of random orientation superimposed with noise while the other only had noise, and the subjects
had to identify which target contained the grating. In the luminance task, subjects had to fixate on a central cue
while two patches of bars with different brightnesses flickered to the sides for 1 second. The bars brightness changed
each 50ms around an average luminance, and the subjects had to identify which patch had higher mean brightness.

In all the tasks, subjects also reported their confidence in a continuous scale. The difficulty of the tasks was
adapted with a Quest staircase (Watson and Pelli, 1983) to stay in the range of 75%. The auditory task allowed
the subjects to decide after the stimuli had disappeared, and they could take all the time they needed to decide.
The contrast task allowed the subjects to respond at any time, even before the stimuli had vanished. However, the
luminance task forced the subjects to decide in the first second of stimulation.

The contrast task had completely static stimuli while the luminance task had large imposed dynamic noise. The
auditory discrimination task imposed gaussian spectral noise with an amplitude that was 80% smaller than the
pure tone’s amplitude.

The data we model are the subject’s decision times, performance and confidence, across different tasks and
sessions. We use the data from 22 subjects who performed all 3 sessions of the auditory and contrast tasks, and
the 2 sessions of the luminance task. We also use information of the observed task difficulties of each subject and
session, for the model’s construction.

4.2 Decision model

Drugowitsch et al. (2012) propose a model for 2AFC tasks, where the subjects must select between two competing
hypotheses (H1 and H2) based on a continuous stream of net evidence samples {δx0, δx1, . . . δxT }, where δxt is the
net evidence observed in the interval [t, t+δt). The samples of evidence are assumed to be generated from a normal
distribution with unknown mean but known variance, N(µ, σ2). The goal of the model is to decide which of the
underlying hypotheses generated the net evidence stream. The two competing alternatives are if µ >= 0 (H1) or
µ < 0 (H2). Thus, the model must compute the belief it has that, for instance, H1 generated the observed evidence
stream. Using bayes rule and assuming a conjugate prior, this can be written as:

g(t) = P (H1|δx0...t) = P (µ ≥ 0|δx0...t) ∝
∞∫
0

N({δx0, δx1, . . . δxt}|µ)N(µ|µ0, σ0)dµ (2)

where N is the normal probability density, and µ0 and σ0 are the prior distribution’s hyperparameters. The belief
that the alternative hypothesis is correct is simply 1− g(t), because both hypotheses are mutually exclusive.

Being able to compute its belief in favor of each alternative, the model must establish a decision criterion that
tells it when its belief is strong enough to commit to a decision. In order to do this, Drugowitsch et al. (2012)
propose that the model’s goal is to maximize its reward rate:

ρ =
〈R〉 −

〈∫ Td
0

c(t)dt
〉

〈Td〉+ 〈Ti〉+ 〈Tp〉
(3)

where R is the reward received after a decision, c(t) is the cost incurred at time t during the decision process, Td is
the decision time, Ti is the inter-trial interval, Tp is extra penalty time added after an error trial, and the averages
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〈·〉 are taken over all trials. Drugowitsch et al. (2012) show that in order to maximize the reward rate, the model
must compute the average adjusted value for holding belief g at time t, Ṽ (g, t) (Mahadevan, 1996). This is done
by solving the following Bellman equation:

Ṽ (g, t) = max


gR11 + (1− g)R12 − (〈Ti〉+ (1− g) 〈Tp〉)ρ,

(1− g)R22 + gR21 − (〈Ti〉+ g 〈Tp〉)ρ,〈
Ṽ (g(t+ δt), t+ δt|g, t)

〉
g(t+δt)

− c(t)δt− ρδt

 . (4)

where Rij is the reward obtained for selecting alternative j when i was correct. The first two terms compared in
the max operation represent the average adjusted value associated to deciding immediately in favor of H1 and H2

respectively, while the last term is the value of waiting some more before deciding. Because the alternatives are
equally likely in the tasks we analyze, and no penalty time is added, we simplify the above expression by assuming
R11 = R22 = 1 and R12 = R21 = 0 and 〈Tp〉 = 0. The Bellman equation is then solved by discretizing the belief

interval in n bins, setting a maximum time T where it is not possible to delay the decision and propagating Ṽ (g, t)
from Ṽ (g, T ) backwards. For the detailed computation of Ṽ (g, t) refer to supplementary information sec. 1.

From Ṽ (g, t) it is possible to compute the bounds in belief space θ1(t) and θ2(t) where it becomes more valuable
to decide immediately than to decide later (Fig. S.1.B and C). These bounds depend on the cost, c(t), variance σ2,
prior hyperparameters and, most importantly, on time t. As time passes, the value of delaying the response falls

because the expected future value
〈
Ṽ (g(t+ δt), t+ δt|g, t)

〉
g(t+δt)

drops asymptotically to Ṽ (g, t) with time (Fig.

S.4). The cost function is able to modify the shape of the drop, but by no means is it imperative that c(t) 6= 0 for
the bounds to drop to zero.

Thanks to the bijective relation between belief g and accumulated net evidence x(t) =
∫
δxt (eq. 2), bounds

θi(t) can be transformed to x(t) space, θxi(t). This enables us to compute the probability density of the evidence
accumulating to the bounds as a function of time, pi(t) (FPT for first passage time, refer to supplementary informa-
tion sec. 1 for details on the computation). By convoluting the FPT probability density with a non-decision time
density, which incorporates all other delays not associated to the evidence integration process that occur between
starting to perceive the stimuli and reporting the decision, we can obtain the model’s predicted RT probability
density. We assume a simple half gaussian shape for the non-decision time density, w(t):

w(t) = Θ(t− τc)

√
2

πσ2
c

e
(t−τc)2

2σ2c (5)

where τc is the average non-decision time, σc is the dispersion and Θ is the Heaviside step function.
We also assume that subjects have a probability ppo of being distracted and making a random report in a given

trial. We assume that the RT probability density for these “phased-out” trials is a uniform distribution between
RTmin and RTmax, the minimum and maximum RTs in the session. Thus the model’s predicted RT is

prt,i(t) ∝
ppo

2 (RTmax − RTmin)
+ (1− ppo)

∞∫
−∞

pi(θxi(τ), τ |x0, t0)w(t− τ) dτ (6)

where pi(θxi(τ), τ |x0, t0) is the FPT density of having first reached threshold θxi(τ) at time τ and having started
the integration at time t0 and evidence x0.

4.3 Confidence extension

The model determines the decision once the belief, g or 1 − g, that one of the competing alternatives is correct
reaches a bound. This belief is nothing more than the probability that the decision taken is correct. We assume that
subject’s reported confidence is computed as a mapping from belief g or 1− g, to the response interval A, which we
assume to be the closed interval [0, 1], where 0 and 1 represent the lowest and highest available confidence responses
respectively. We explore two possible mappings. The first is the widely used logit of the selected alternative’s belief,
most commonly referred to as the log probability ratio:

Lo(t) =


log

(
g(t)

1− g(t)

)
if selected H1

log

(
1− g(t)

g(t)

)
if selected H2

. (7)
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This mapping simply computes the logarithm of the ratio of the probability of having decided correctly over the
probability that the alternative was correct. The variable Lo(t) lies in the interval [0,+∞) for the tasks that we
study, where both alternatives are equally rewarded and, a-priori, equally likely. Thus it must then be remapped
to the response interval [0, 1]. We assume this is done with a logistic function

CLo(t) =
1

1 + exp [−α (Lo(t)− CH)]
(8)

where α is the transition slope and CH is the high confidence threshold.
The second mapping we test is a simple linear mapping

Cs(t) = min

1,max

0,

α (2g(t)− 1− CH) +
1

2
if selected H1

α (1− 2g(t)− CH) +
1

2
if selected H2


 . (9)

The operations 2g(t)− 1 and 1− 2g(t) are performed in order to rescale the belief for each selection to the interval
[0, 1] where 0 is low belief and 1 is high belief. Before doing this, for H1 decisions g(t) lies in the interval [0.5, 1],
where 0.5 and 1 correspond to low and high belief respectively, while, for H2 decisions, g(t) is in the interval [0, 0.5]
where 0 and 0.5 correspond to high and low belief respectively. The min and max operations are done to clip the
value of Cs(t) to the interval [0, 1]. The parameters α and CH have the same interpretation as in eq. 8 (Fig. 4.A).
It is worth to note that when α → +∞, both mappings produce binary confidence reports. This implies that in
order to study datasets where subjects responded only binary confidence values, it is necessary to set α → +∞
(Fig. 4.A).

Figure 4: We show a sketch of the belief to confidence mapping. A. The resulting confidence response for both mappings calculated
for the same belief data. The binary response curve (red) is computed setting α→∞. B. shows the predicted high and low confidence
response time distributions for the binary confidence response. C. shows the joint distribution of RT and confidence responses for both
of the belief to confidence mappings.

Both mappings assume that only the belief g is used to compute confidence. This implies that the decision
bounds in belief space θi(t) determine confidence in a deterministic way. Thus, analogously to eq. 6, using the
first passage time probability density pi(t) and the non-decision time distribution, we can compute the probability
density of responding at time t, for alternative i with confidence co as:

prt,i(t, co) ∝
ppo

2 (RTmax − RTmin)
+ (1− ppo)

∞∫
−∞

pi(θi(τ), τ |x0, t0)Θ(t)w(t− τ)

 ∑
t0∈{tco,i}

δ(τ − t0)

 dτ. (10)

{tco,i} is the set of times where the confidence mapping returns the co value (C(tco,i) = co) for the decision i (Fig.
4.B and C).
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4.4 Parameter fits

The decision model is controlled by several parameters most of which are completely determined by the task
structure and some of which are fitted to account for the behavioral data. The former group is made up by all
the parameters that are related to the reward rate eq. 3, the prior distribution hyperparameters and the model’s
discretization parameters (T , dt and n). A list of these parameter values is shown in table 2. The only problem
arises with the prior probability density. We assume that the net evidence has a gaussian likelihood. This is true for
the luminance and auditory tasks, but for the contrast task, noise is uniform binary and evidence cannot be defined
properly. Nevertheless, in order to fairly compare all tasks, we assume that net evidence is sampled from a gaussian
distribution with an unknown mean but with known variance. This variance is left as a free parameter that is fitted
for each subject, session and task independently. Having assumed that all tasks have gaussian likelihood, it is very
convinient to choose a conjugate prior because the posterior of bayes rule is also gaussian. However, the prior of
the net evidence is not gaussian because the task difficulty is controlled by a Quest staircase (Watson and Pelli,
1983) in order to maintain a running performance. This leads to a bimodal distribution of trial mean net evidence
µ (Fig. 5). However, we assume that subjects have a prior that is the best fitting gaussian of the observed mean
net evidences of the session. As the alternatives are equally likely, the prior’s mean is always 0. The prior variance
is set to the session’s observed sample variance:

σ2
0 =

Ns∑
i=1

(
µi −

Ns∑
i=1

µi
Ns

)2

(11)

where the sums are performed over the observed µs for all trials in the session.

Figure 5: The prior distributions. We show the distribution of net evidence observed by the subjects (light green bars) and the
corresponding gaussian fit. It is clear that all the distributions that the subjects viewed were bimodal, yet we assume that their internal
prior distribution is a gaussian.

It is worth to note that T is set differently for each task because the optimal strategy differed depending on
task structure. In the luminance task, subjects were forced to respond during the first second after stimulus onset.
Thus, at time t = 1s, they were unable to delay their decision any longer. This is achieved by setting T = 1s.
On the other hand, in the contrast and auditory tasks, subjects were able to decide at any time. However, the
optimal decision strategy only takes into account the period of time the evidence is shown. Thus, we set T = 0.3s
because it is the time the net stimulation lasts for both tasks. In the contrast task, the stimuli are presented in the
screen for 0.3s and then disappear. In the auditory task, each tone is presented for 0.3s but the optimal decision
strategy only depends on the difference between both evidence samples, thus it can be assumed that for the optimal
decision maker, both stimuli arrive in parallel and they are presented for only 0.3s. The additional time taken
for the decision report is assumed to be consumed by non-optimal decision related computations such as memory
retrievals.
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Table 2: Model parameters values fixed for each task, subject and session
Parameter name Luminance Auditory Contrast
T 1s 0.3s 0.3s
〈Ti〉 1.5s 2s 1.5s
dt 8ms 5ms 5ms
R11 = R22 1
R12 = R21 0
〈Tp〉 0s
n 101
µ0 0
σ2
0 From eq. 11

The free model parameters that remain are the cost of time (c(t)) which we assume to be constant, the generative
model’s variance (σ2), the probability of “phase-out” trial (ppo), the non-decision time mean and dispersion (τc and
σc), and the confidence mapping threshold and slope (CH and α). All of these parameters were fitted to each
subject, session and task independently. Using eq. (10) we are able to compute the likelihood of the observed RT,
performance and confidence for the distribution of net evidence µ of each session. Thus, we determine the free
parameters values as the maximum likelihood fit of the RT, performance and confidence. The fitted parameters are
listed in table 3 along with their optimization procedure starting values and bounding regions.

Table 3: Model parameters that are fitted for each subject, task and session, along with their optimization procedure
starting values and bounding regions

Parameter name and description Starting value Searched interval
c(t), cost of passage of time 0.02Hz [0, 0.4]Hz
σ2, generative variance σ2

st [0.2σ2
st, 1.8σ

2
st]

ppo, “phase-out” probability 0.05 [0, 0.2]
τc, non-decision time offset 2.5% lowest RT [0, 1.5]s
σc, non-decision time dispersion σcst [0.001, 6]s

CH , high confidence threshold C
(

max
rt
{prt,1(t)}

)
[0,MC ]

α, confidence mapping slope 17.2 [0, 100]

The likelihood as a function of the parameters is very rugged and has several plateaus and local maxima that
make it difficult to perform the fits. Furthermore, the likelihood depends on the computed decision bounds through
parameters c(t) and σ2, thus we are unable to compute the gradient of the likelihood. Based on these limitations
we use a covariance matrix adaptation (CMA-ES) genetic algorithm to fit the parameters (Hansen et al., 2009).
However, this algorithm can also get caught up in local optimums if it is not supplied with a sufficiently good search
region or starting point. We estimate σ2 as the value σ2

st that better matches the subject’s performance for the
observed drift rates µ based on a simplified logistic fit between performance and variance (see SI eq. S.33). We then
bound σ2 to the interval [0.2σ2

st, 1.8σ
2
st] (table 3). We set τc equal to the 2.5% lowest observed RT. The initial value

of σc is labeled as σcst and computed based on the predicted probability distribution for the initial σ2 and c(t),
prt,1(t). We compute the RT variance of that distribution and subtract it to the subject’s RT variance. We set σcst
equal to 0.01s or to the squared root of the difference between the subject and model’s RT variance, if it is greater
than 0.01s. Finally, the initial value of CH is also computed from prt,1(t). Given prt,1(t) we compute the mode of
the distribution, tmode = maxrt prt,1(t), and set CH = C(tmode). The search interval for CH was set between 0 and

the maximum value the used mapping could produce, MC . For Cs, MC = 1 while for CLo , MC = log
(

1−0.5/n
0.5/n

)
. The

rest of the starting points are set to values that are independent from the subject’s behavioral responses as can be
seen in table 3.

4.5 Parameter clustering

The fitted parameter values determine the policy followed by the subjects. To test how much this policy varied
across subjects, sessions and tasks we study their proximity as points in a multidimensional space, where each
dimension corresponds to a different parameter. We assume that the distance in between points is euclidean, which
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allows us to use Ward’s agglomerative clustering algorithm (Ward, 1963). The only subtlety is that the scale, and
moreover the units, of the parameters are very different. For instance, c(t) is measured in Hz, while τc is measured
in s. To make all scales comparable, we normalize the values of every parameter, with the exception of σ2, by
their standard deviation across subjects, sessions and tasks. Parameter σ2 has to be treated differently because its
scale and units are different for each task. In the auditory task, σ2’s units are Hz3, in the contrast task Hz and in
the luminance task, cd2/m4Hz. Thus, we normalize the values of σ2 separately for each task dividing them by the
standard deviation across subjects and sessions. This allows us to treat all the parameters on the same footing and
consider that the normal euclidean distance can be used for the clustering. We use the python package scikit-learn
(Pedregosa et al., 2011) to perform the clustering and compute the parameter hierarchy shown in Fig. 3. The
hierarchy plots were performed using the ete3 package (Huerta-Cepas et al., 2016).
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