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Abstract—Genomic variations in a reference collection are
naturally represented as genome variation graphs. Such graphs
encode common subsequences as vertices and the variations
are captured using additional vertices and directed edges. The
resulting graphs are directed graphs possibly with cycles. Existing
algorithms for aligning sequences on such graphs make use of
partial order alignment (POA) techniques that work on directed
acyclic graphs (DAG). For this, acyclic extensions of the input
graphs are first constructed through expensive loop unrolling
steps (DAGification). Also, such graph extensions could have
considerable blow up in their size and in the worst case the
blow up factor is proportional to the input sequence length.
We provide a novel alignment algorithm V-ALIGN that aligns
the input sequence directly on the input graph while avoiding
such expensive DAGification steps. V-ALIGN is based on a novel
dynamic programming formulation that allows gapped alignment
directly on the input graph. It supports affine and linear gaps.
We also propose refinements to V-ALIGN for better performance
in practice. In this, the time to fill the DP table has linear
dependence on the sizes of the sequence, the graph and its
feedback vertex set. We perform experiments to compare against
the POA based alignment. For aligning short sequences, standard
approaches restrict the expensive gapped alignment to small
filtered subgraphs having high ‘similarity’ to the input sequence.
In such cases, the performance of V-ALIGN for gapped alignment
on the filtered subgraph depends on the subgraph sizes.

I. INTRODUCTION

Most state-of-the-art high throughput genome studies rely
heavily on high quality reference genome [1]. Single refer-
ence sequence however has limited capability in representing
significant genomic diversities and it suffers from reference
allele bias during interpretations [2], [3], [4]. The number
of sequenced genomes is ever increasing and this is driving
a paradigm shift in genome analysis from single reference
sequence based to pangenome reference based [2], [3], [4].

Representing the genomic variations using graph data struc-
tures have attracted considerable interest recently [2], [3],
[4], [5], [6]. Various graph data structures have been studied
in the literature for pangenome representation with subtle
distinctions [3]. These include De Bruijn graphs [7], [8], A-
Bruijn graphs [9], Enredo graphs [10], Cactus graphs [5],
[11], Population Reference graphs [6], String graphs [12], and
Variation graphs [2]. The broad idea behind these representa-
tions is to effectively encode complex genomic variations such
as insertions, deletions, duplications, transpositions, reversals,
rearrangements etc., as alternative paths in the graph using
additional edges and vertices. The resultant graphs are directed
and may contain cycles. In variation graphs [2], the common
subsequences are encoded as labeled vertices and variations

are represented using additional vertices and directed edges.
Such representations have shown promise in improved read
mapping and variant calling performance [4]. Graph based
reference has necessitated the development of graph based
computational pipelines for genome analyses [3], [2], [4].

Sequence alignment is a fundamental problem in genomics.
In this paper, we consider the alignment of a sequence to
a pangenome reference which is encoded as a graph. In
the graph, common subsequences are represented as vertices
which are labeled by the subsequences they encode. The
variations are captured using additional labeled vertices and
directed edges. Representing variations such as duplications
and highly varying copy numbers in these graphs could
introduce directed cycles. The sequences in the pangenome are
present as directed paths (not necessarily simple) in the graph.
Our goal is to compute an alignment of the input sequence to a
path in the graph having maximum alignment score among all
paths in the graph. We consider gapped alignments where the
gaps could be affine, linear or constant. The formal problem
definitions are given in Section II.

Algorithm for aligning a new sequence to a multiple se-
quence alignment (MSA) encoded as graph was given in [13].
MSA is encoded as a Partial Order Alignment graph (POA)
and the alignment algorithm aligns the new sequence to the
POA [13]. The POA based alignment algorithm of [13] is an
extension of the traditional dynamic programming algorithms
for sequences [14], [15] to handle partial orders. In POA
graphs, sequences are represented as paths and each of the
vertices can have multiple incoming and outgoing edges. POA
graphs are Directed Acyclic Graphs (DAG). Gapped alignment
of an n length sequence to a POA graph on E edges takes
O(mE) time [13].

The POA graphs share resemblance to reference graphs
in the sense that the variations are encoded as alternative
paths using additional vertices and edges. In [4], POA based
alignment was used for aligning sequences to reference graphs.
POA graphs however acyclic. Capturing complex structural
variations such as inversions, duplications or copy numbers
with high variability could result in back edges and conse-
quently directed cycles in the graphs. Genome graphs such as
variation graphs [2] that attempts to capture such variations are
hence not necessarily acyclic. The POA based alignment algo-
rithm cannot be used directly on such graphs. To handle such
graphs, acyclic extensions of the input graphs are constructed
through expensive loop unrolling (DAGification) steps [4] and
the alignment is then performed on the acyclic extensions. A
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k-length DAGification of graph G aims to compute a DAG
G′ such that all paths (not necessarily simple) of length k or
less in G are present in G′ and vice versa. For aligning an m
length sequence, the value of k has to be m or more. Such
graph extensions can however have considerable increase in
their size. The edge and vertex blow up factor in the worst case
is proportional to the input sequence length. Prohibitively large
size of the DAGified graph results in increased preprocessing
and alignment time and thereby affects the overall alignment
performance.

Performance of short sequence alignment and read mapping
to large reference graphs is improved by a filtering phase. In
this phase, candidate subgraphs of the reference graph with
potentially large alignment score with the input sequence are
identified [2], [4]. The final alignment is then computed by
performing alignment on each of these candidate subgraphs
and choosing the best. In this case, the DAGification is
restricted to the candidate subgraphs.

A. Our Contribution

In this paper, we provide a novel alignment algorithm V-
ALIGN that aligns the input sequence directly on the input
graph while avoiding expensive DAGification preprocessing.
It computes an alignment of the input sequence to a path
in the graph having maximum alignment score among all
paths in the graph. V-ALIGN is based on a novel dynamic
programming formulation that allows gapped alignment with
affine, linear or constant gaps directly on the input graph. We
also propose refinements to V-ALIGN for better performance
in practice. In this, the time to fill the DP table has linear
dependence on the sizes of the sequence, the graph and
its feedback vertex set. A feedback vertex set of a graph
is a subset of its vertices whose removal makes the graph
acyclic. The runtime of this algorithm matches that of the
POA based alignment when the reference graph is acyclic.
V-ALIGN performs one time preprocessing of the graph to
compute pairwise edge distances between the vertices and
to compute a feedback vertex set. When the alignment is
restricted to a filtered set of subgraphs, which is done for
improved efficiency, the V-ALIGN can be used for aligning
to these candidate subgraphs. In this case, its performance
depends on the subgraph sizes. We also provide a theoretical
result on the complexity of the DAGification preprocessing
which is required by the POA based alignment. We show that
2-length DAGification of a graph G where the resultant DAG
has minimum number of vertices is NP-complete. We also
conduct empirical studies on the DAGification overhead. For
this, we use a dfs based DAGification algorithm and measure
the blow up in the vertices and edges of the resultant graphs
for different types of input graphs.

II. PRELIMINARIES

A. Notations

Let G = (V,E, γ) be a connected directed graph with
vertices V , edges E and vertex labels given by γ(v). Edges
in E are represented as ordered pairs from V × V . Let Σ+

denote the set of all sequences of one or more elements from
an alphabet Σ. For nucleotide sequences, Σ is the set of
possible nucleotides. For a vertex v ∈ V , its label γ(v) ∈ Σ+.
A directed path p in G of length r vertices is denoted
by the ordered sequence (u1, . . . , ur), where ui ∈ V and
(ui, ui+1) ∈ E. We only consider paths with length greater
than 0. We say that the path p starts at u1 and ends at ur.
Let P (v) denote the set of all directed paths in G that end
at vertex v. Clearly the cardinality of P (v) could be infinity
if there are directed cycles in G. For an ordered sequence
x = (x1, x2, . . . , xm), let |x| denote the length of sequence
x, which is m here. For a directed path p = (u1, . . . , ut)
in G (not necessarily simple), we call the sequence obtained
by concatenating γ(u1), . . . , γ(ut) in the same order as the
label of the path p and is denoted by γ(p). Hence |γ(p)| =∑t
i=1 |γ(ui)|. For any contiguous subsequence y of γ(p), we

say that G contains the label sequence y. For a vertex v ∈ V ,
let I(v) called the in-neighbors of v denote the set of all
vertices that have directed edges to v. For a set E, we also
use E to denote its cardinality in place of |E| inside asymptotic
notations for better readability.

B. Alignment Problems

We consider gapped alignment of a sequence x ∈ Σ+ to G,
where the goal is to compute an alignment of x to γ(p) for
some path p in G, that achieves the maximum alignment score
among all paths in G. Since G is a directed graph possibly
with cycles, the standard global alignment and local alignment
between sequences translate to the following two variants:
• End to end alignment of x to a contiguous sub sequence
y of γ(p), without penalizing the unmatched suffix and
prefix in γ(p). The maximum alignment score is denoted
as g(x, γ(p)).

• Local alignment of x and γ(p). The maximum alignment
score is denoted as `(x, γ(p)).

Consequently, we define

g(x,G) = max
{paths p∈G}

g(x, γ(p))

and

`(x,G) = max
{paths p∈G}

`(x, γ(p))

III. ALIGNMENT ALGORITHMS

For the ease of exposition, we assume that the vertex labels
are length one sequences from Σ+. That is, the label of any
vertex in G is an element from Σ. We will discuss later how the
algorithm can be easily modified to handle the general case. In
the following, we define a dynamic programming formulation
that would allow us to find optimal alignments.

For vertices u and v in G, let δ(u, v) denote the minimum
number of edges on any directed path from u to v in G. That
is, δ(u, v) is the shortest edge distance from u to v. Clearly
δ(u, u) = 0. If there is no directed path from u to v then
δ(u, v) = +∞. For a, b ∈ Σ, let s(a, b) denote the substitution
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score between a and b. Let ∆(k) denote the penalty for a k
length gap, such as affine, linear or constant gap. ∆(0) = 0
by definition.

Let the input sequence x = (x1, . . . , xm) of length m. We
assume an arbitrary linear ordering of the vertices in V . Let
M denote the scoring matrix of size |V | × (m + 1) where
M(w, j) is the entry for w ∈ V and j ∈ [0,m]. We use the
following recurrence relation on M(w, j) for all j ∈ [1,m]
and w ∈ V :

M(w, j) = max


M(w, j − k)−∆(k) for all k ∈ [1, j]
M(u, j − 1) + s(γ(v), xj)−∆(δ(v, w))

for all (u, v) ∈ E
0 [for local alignment]

The entry M(w, j) stores the maximum score for aligning
the subsequence (x1, . . . , xj) to any path ending at vertex w in
G. The first term of the above max expression corresponds to
an alignment having k gaps in the end due to the deletion of the
last k elements of (x1, . . . , xj). The second term corresponds
to aligning xj to an intermediate vertex v in the path followed
by gaps due to the deletion of the remaining path, which is
no more than δ(v, w) for an optimal alignment.

There could be vertices in G with no incoming edges (zero
in-degree). In order to handle such vertices, we always include
a dummy vertex θ in the vertex set V and add directed edges
from θ to each vertex in G with zero in-degree. Matrix M is
initialized as M(w, 0) = 0 for each w ∈ V and M(θ, j) = 0
for all j ∈ [0,m] for local alignment. For the score function
g(), the 0 term is absent from the max expression in the
above recurrence and M is initialized as M(w, 0) = 0 and
M(θ, j) = −∆(j) for j ∈ [1,m]. Computing alignment score
`(x,G) and an alignment path from M are done in the usual
manner. For g(), the alignment score is the largest M(v,m)
entry.

The computational efficiency can be improved further using
standard techniques [15] (for affine, linear or constant gaps)
by defining an auxiliary matrix Q where

Q(w, j) = max{M(w, j − k)−∆(k)} for k ∈ [1, j]

and replacing the first term in the max expression above
with Q(w, j). Value of Q(w, j) can be updated in O(1) time
because of the recurrence Q(w, j) = max{M(w, j − 1) −
∆(1), Q(w, j − 1) − t}, where t is the gap extension cost.
Q(w, 0) = −∞ for all w. The time complexity for filling M
is O(mV E). Computing δ(u, v) is a one time preprocessing
which can be done in O(V E) time.

A. Improved V-ALIGN Algorithm

We now provide a modified dynamic programming for-
mulation to compute M which can achieve better run time
performance in practice. Consider some linear ordering of the
vertices in V . We can assume that the dummy vertex θ is
the first vertex in the ordering. A vertex v is called in-order

with respect to this given ordering if all vertices in I(v) (in-
neighbors of v) lie to the left of v in this ordering. Let V ′ ⊆ V
denote the set of all vertices that are not in-order. We note
that if G is acyclic (DAG) then the topological sorting gives
an ordering where V ′ = ∅. In directed graphs with cycles,
|V ′| > 0. If G can be made acyclic (DAG) by removing
at most α edges then clearly |V ′| ≤ α. This is because,
introducing all the deleted α edges to a topological sorted
order of the DAG can make at most α vertices not in-order.

We assume that the matrix rows are permuted with respect to
the linear ordering of V . The technique in [15] for sequences
can be extended to handle our case as follows. The earlier
recurrence for M(w, j) can be rewritten as follows. For j ∈
[1,m] and for all w except θ,

M(w, j) = max


M(u, j − 1) + s(γ(w), xj)

for all u ∈ I(w)
Q(w, j)
R(w, j)
0 [for local]

where

R(w, j) = max

{
M(u, j − 1) + s(γ(v), xj)−∆(δ(v, w))

for all (u, v) ∈ E where v 6= w

As earlier, Q can be computed efficiently using the recur-
rence

Q(w, j) = max{M(w, j − 1)−∆(1), Q(w, j − 1)− t}.

We recall that the matrix rows are permuted with respect to
the linear ordering of V . This ensures that while computing
the matrix entry (w, j) for some vertex w ∈ V −V ′, the values
of the entries (u, j) for all u ∈ I(v) (the in-neighbors of v)
are already available. Hence, if w ∈ V −V ′ then R(w, j) can
be computed efficiently using the recurrence

R(w, j) = max
u∈I(w)

{M(u, j)−∆(1), R(u, j)− t} (1)

Value of t in the Q(w, j) and R(w, j) expressions above is
the gap extension cost. Matrices M and Q are initialized as
described earlier and R(θ, j) = −∞ for j ∈ [1,m].

While filling any column j of matrix R, the R(w, j) entries
for w ∈ V ′ are filled first using its original definition and the
remaining entries for vertices in V − V ′ are filled using (1).

B. Time Complexity

We note that the time for updating one column of M is
the sum total of all in degrees of vertices in V , which is
O(E). Time to update one column of Q is O(V ). Time for
updating one column of R is the sum of the time taken for
all v ∈ V ′ and the time taken for all v ∈ V − V ′. The first
component is O(V ′E) and the second component is the sum
of in degrees, which is again O(E). Hence the total time for
filling R is O(mE(V ′ + 1)). If V ′ = ∅, which is the case
when G is a DAG, then the run time matches [13]. We note
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that in general, there are graphs where the number of vertices
in V ′ can be Ω(V ) for any ordering. The run time for such
graphs is O(mV E) which matches the run time of our basic
algorithm.

If f is the minimum number of vertices whose removal
makes G acyclic, which is called the minimum feedback
vertex set (MFVS), then the time taken in O(m(f + 1)E).
This is because, we can use the vertex ordering obtained
by topological sorting of V minus MFVS vertices and then
place the MFVS vertices in the beginning of this ordering.
Depending on f , the runtime could be smaller than O(mV E)
time for our basic algorithm. Though MFVS problem is NP-
complete, approximation algorithms, parameterized algorithms
and efficient exact algorithms for special graph classes are
known [16], [17], [18], [19], [20]. Any ordering with small
V ′ set can lead to improved performance in our case. We also
remark that if G is a simple directed path then the alignment
problem reduces to the alignment of two sequences, of lengths
|V | and m respectively, and the time taken in this case is
O(mE) = O(mV ) = O(mn) where |V | = n.

C. Vertex Labels

In the previous section we assumed that the vertex labels are
elements from Σ. We extend our algorithm in a straightforward
manner to handle vertex labels from Σ+. Consider the directed
graph Ga = (Va, Ea, γ) derived from G as follows. For
each vertex v ∈ V , with label γ(v) = (x1, . . . , xr), include
a chain of r vertices v1, . . . , vr in Ga with directed edges
from vi to vi+1. Label of vi is given by γ(vi) = xi. Clearly
|Va| =

∑
v∈V |γ(v)|. For each directed edge (u, v) ∈ E, we

include a directed edge (u|γ(v)|, v1) to Ea. Hence |Ea| =
|E| +

∑
v∈V (|γ(v)| − 1). The linear ordering of V can be

extended easily to obtain a linear ordering of Va by replacing
each vertex v in the linear ordering by the corresponding chain
of vertices v1, . . . , v|γ(v)| in the new ordering. For any vertex
v ∈ V , clearly the corresponding vertices v2, . . . , v|γ(v)| ∈ Va
are in-order vertices and v1 is in-order vertex if and only if
v is in-order vertex. That is, for Ga, the set of vertices not
in-order is given by V ′a = {v1 | v ∈ V ′}. Hence |V ′a| = |V ′|.
The dynamic programming matrix Ma is of size |Va|×m and
it is filled in the same manner.

The time for filling M is now O(mEa(V ′+1)) = O(m(n+
E)(V ′ + 1)) where n =

∑
v∈V |γ(v)| is the sum total of the

sizes of all vertex labels in G. For constant length vertex labels,
the time is thus O(mE(V ′+1)). If G is acyclic then the time
is O(mE) for constant length vertex labels. We remark that
if G is just a single vertex with a sequence label of length
n and containing no edges, the alignment problem reduces
to the standard sequence to sequence alignment. In this case,
V-ALIGN takes O(mn) time.

We do not require the pre-computation of all-pair shortest
edge distances in Ga. Instead, we can compute vertex weighted
all-pair shortest paths in G and use them to obtain δ(ui, vj)
for any pair of vertices ui, vj in Ga. Each vertex v in G
assigned a weight w(v) equal to the length of its label. That
is, w(v) = |γ(v)|. Weight of a path in G is the sum of the

vertex weights in the corresponding vertex sequence. Now we
compute δw(u, v) for u, v in G which is the minimum weight
of any path from u to v. We define δw(u, v) =∞ if there is no
path from u to v. For u 6= v, the shortest edge distance from ui
to vj in Ga is now given by δ(ui, vj) = j+δw(u, v)−i−|γ(v)|.
Clearly δ(ui, uj) = j − i where j ≥ i. Computing δw for all-
pairs can be done using the standard Dijkstra’s algorithm in
O(V E + V 2 log V ) time.

D. Comparison with POA based alignment

The DAGification preprocessing in POA based alignment
blows up the number of vertices and edges in the DAGified
graph. The size of the DAGified graph depends on the topology
of the input graph G and the input sequence length m. If r is
the length of the shortest directed cycle in G, called the girth
of G, then the DAGification will unroll this cycle Θ(m/r)
times. There are graphs where this can result in a blow up of
vertices and edges by a multiplicative factor Θ(m/r). Such
graphs are discussed in the experiments section (Section V).
The time complexity for POA based alignment is such cases
is O(mE(m/r+ 1)). In the worst case, this can be O(m2E),
which grows quadratically with the input sequence length.
This time complexity is excluding the time required for the
DAGification.

E. Aligning Short Sequences

Usual approaches for fast alignment of a short sequence
x to a large target sequence y follows efficient filtering of
regions (subsequences) in y having high ‘similarity’ with
x and restricting expensive gapped alignment only to these
regions. In the same manner, for aligning to a large graph G,
alignment can be restricted to regions (subgraphs) of G hav-
ing high ‘similarity’. Such subgraphs can have considerably
lesser number of vertices and edges as compared to G and
this can lead to faster alignment. Even though the shortest
edge distances between vertex pairs (u, v) can be different
(higher) in the subgraph, V-ALIGN can still use the δ(u, v)
values computed on G for the subgraph alignment. From the
algorithm description, it is clear that this can only result in
a possibly better alignment of x to G. This is because, the
shortest paths correspond to regions of deletions along the
candidate paths in G while aligning with x. On the other
hand, the vertex linear ordering restricted to a subgraph be
better compared to the linear ordering of all vertices in G.
Recomputing the ordering for subgraphs is a matter of choice
based on performance considerations.

IV. COMPLEXITY OF DAGIFICATION

We present results on the complexity of DAGification
preprocessing used by POA based alignment techniques. We
assume that the directed graph G = (V,E, γ) is connected
and that the vertex labels are elements of the alphabet Σ. We
first define a k-DAG of a directed graph G for k ≥ 1. We say
that a directed acyclic graph G′ = (V ′, E′, γ′) is a k-DAG of
G when the following holds: G contains a label sequence y
of length k or less if and only if G′ contains y. For a graph
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G = (V,E, γ), clearly G′ = (V, ∅, γ) is a 1-DAG of G. A
k-DAG of G with k ≥ 2 may contain more vertices and edges
than G. This is because, additional vertex copies with the same
vertex label are included in G′ every time the same vertex is
encountered during loop unrolling.

POA based sequence alignment first computes a k-DAG
for the input graph G and then computes an optimal gapped
alignment of the input sequence to some label sequence
contained in the k-DAG. If the vertex labels in G are just
the elements of the alphabet Σ then the gapped alignment of
an m length sequence requires a k-DAG of G with k ≥ m.
Aligning the m length sequence on a k-DAG G′ = (V ′, E′, γ′)
requires O(m|E′|) time using [13]. Hence the size of the k-
DAG affects the alignment performance.

In the following we present a simple complexity result
on computing k-DAG of a directed graph G = (V,E, γ)
assuming that vertex labels in G are elements of Σ and the
labels are distinct. For simplicity, we assume that Σ = V and
γ(v) = v.

Theorem 1. For directed graph G = (V,E, γ), computing
a 2-DAG of G having minimum number of vertices is NP-
complete.

Proof. Clearly G is assumed to be not a DAG. Let Vf =
{u1, . . . , uf} be a feedback vertex set of G. Consider the graph
G′ obtained by adding f new vertices {v1, . . . , vf} to G where
the label of vi is γ(ui). Each directed edge (w, ui) for any ui ∈
Vf is replaced in G′ by a new edge (w, vi). It is straightforward
to verify that G′ is a 2-DAG of G with |V | + f vertices.
Conversely, if G′′ = (V ′′, E′′, γ′′) is a 2-DAG of G, then the
set of vertex labels each of which is assigned to more than one
vertex in G′′ forms a feedback vertex set of G. Its cardinality
at most |V ′′| − |V |. The result now follows from the NP-
completeness of MFVS computation on directed graphs.

Generating a k-DAG for an input graph G can nevertheless
be done with a simple k-depth dfs traversal that explores k
length paths in G [2]. The output DAG however need not
have the minimum number of vertices or edges. Each strongly
connected component of G can be DAGified separately. For
now we assume G is strongly connected. A separate k-depth
dfs starting from each vertex of G is performed. Each vertex of
the DAG has an associated level. During the traversal from a
vertex, its neighboring vertices in G and the connecting edges
are added to the same level in the DAG unless the neighbor
is already present at that level. Otherwise, an additional copy
of the neighboring vertex is added to the next level and the
connecting edge goes across the two levels. The traversal now
proceeds from the newly added copy of the neighbor. Vertices
are added to level 0 when encountered for the first time.
Repeated invocations of an r-depth dfs from a vertex copy for
the same r value is avoided by book keeping. Output of such
a DAGification procedure is used in the experiments discussed
in the next section.

V. EXPERIMENTS

We conduct experiments to study the increase in the size
of the input graph due to the k-DAGification preprocessing.
This preprocessing is required by the POA based techniques
whereas our algorithm avoids this expensive computation. The
candidate set of graphs C used in our experiments consists
of two classes of synthetic graphs. The first class consists of
complete graphs Kn with n ranging from 1 to 5. A K3 is
shown in Figure 2. Girth of Kn is 1. The second class of
graphs have larger girth values. Figure 1 shows the graphs in
this class with girth value r ranging from 2 to 4. For each of
these graphs, its multiple copies are connected to form a chain
graph with the same girth value. These chain graphs are also
included in the second class. Figure 2 shows a chain graph
obtained from the girth 3 graph. In this graph, vertices 5, 9
and 13 are copies of vertex 1.

Figure 3 shows the increase in the vertices and edges in
the k-DAGification output for all the candidate graphs in C.
The value of k depends on the length of the sequence to be
aligned and k should be greater than the sequence length to
allow for gaps in the alignment. We consider k values in the
range [10, 50] and in the range [100, 1000].

The increase in edges and vertices are separately plotted
in Figure 3. As seen from these plots, both edge and vertex
cardinalities increase linearly with k. The increase is lesser for
graphs with larger girth. For example, Figures 3e and 3f shows
that though the girth 4 graph has 27 edges and girth 2 graph
has 19 edges, the DAG output for the latter has significantly
higher size than the former for every k value.

From these plots we see that the DAGification produces
graphs with much larger size than the original input graph.
This affects both the preprocessing cost and the subsequent
alignment cost for POA based alignment. Recall that the worst
case performance of V-ALIGN, even with the naive feedback
vertex set computation, is O(kV E) where k is the sequence
length and V and E are the vertex and edge counts of the
input graph. On the other hand, the POA alignment cost is
O(kE′) where E′ is the edge count of the DAG. From the
plots, we see that in E′ is significantly more than V ·E in most
cases. For example, the chain of girth 2 graphs has V E = 228
where as E′ = 13, 814 (DAG size in Figure 3f for k = 1000).
Similarly, V E = 12 for girth 2 graph and E′ = 1877 (DAG
size in Figure 3d for k = 1000). For the complete graph K5,
V E = 125 and E′ = 24, 975 (DAG size for k = 1000). That
is, already for sequence length k = 1000, the computational
steps for POA based alignments increases by roughly 100 fold
or more as compared to V-ALIGN in several graphs.

VI. CONCLUSION

We give a novel alignment algorithm V-ALIGN that di-
rectly aligns an input sequence onto a directed graph without
requiring DAGification. V-ALIGN is based on a novel dy-
namic programming formulation that allows gapped alignment
(constant, linear or affine) directly on the input graph. The
time to fill the DP table has linear dependence on the sizes
of the sequence, the graph and its feedback vertex set. Our
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(a) Girth = 2 (b) Girth = 3
(c) Girth = 4

Fig. 1: Graphs with varying girth

Fig. 2: The left side graph is K3. The right side graph is a chain of 4 copies of the girth 3 graph (Fig. 1b).

experiments show that V-ALIGN achieves considerable saving
in the computational steps compared to POA based alignment.
The saving is even more significant for larger input sequence
lengths. When the alignment is restricted to a filtered set of
small subgraphs for improved efficiency, the V-ALIGN can be
used for aligning to these candidate subgraphs. In this case,
its performance depends on the subgraph sizes.
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(f) Chain of girth-r graphs

Fig. 3: Increase in vertices and edges due to DAGification for the graphs in C.
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