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Abstract

Estimates of functional connectivity using resting state functional Magnetic Resonance Imaging (rs-fMRI)

are acutely sensitive to artifacts and large scale nuisance variation. As a result much effort is dedicated

to preprocessing rs-fMRI data and using diagnostic measures to identify bad scans. One such diagnostic

measure is DVARS, the spatial standard deviation of the data after temporal differencing. A limitation

of DVARS however is the lack of concrete interpretation of the absolute values of DVARS, and finding a

threshold to distinguish bad scans from good. In this work we describe a variance decomposition of the entire

4D dataset that shows DVARS to be just one of three sources of variation we refer to as D-var (closely linked

to DVARS), S-var and E-var. D-var and S-var partition the variance at adjacent time points, while E-var

accounts for edge effects; each can be used to make spatial and temporal summary diagnostic measures.

Extending the partitioning to global (and non-global) signal leads to a rs-fMRI DSE ANOVA table, which

decomposes the total and global variability into fast (D-var), slow (S-var) and edge (E-var) components. We

find expected values for each component under nominal models, showing how D-var (and thus DVARS) scales

with overall variability and is diminished by temporal autocorrelation. Finally we propose a null sampling

distribution for DVARS-squared and robust methods to estimate this null model, allowing computation of

DVARS p-values. We propose that these diagnostic time series, images, p-values and ANOVA table will

provide a succinct summary of the quality of a rs-fMRI dataset that will support comparisons of datasets

over preprocessing steps and between subjects.
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1. Introduction

Functional connectivity obtained with resting state functional magnetic resonance imaging (rs-fMRI)

is typically computed by correlation coefficients between different brain regions, or with a multivariate

decomposition like Independent Components Analysis (Cole et al., 2010). Both approaches can be corrupted

by artifacts due to head motion or physiological effects, and much effort is dedicated to preprocessing rs-fMRI5

data and using diagnostic measure to identify bad scans.

Smyser et al. (2011) proposed and Power et al. (2012) popularized a measure to characterize the quality

of fMRI data, an image-wide summary that produces a time series that can detect problem scans. They

called their measure DVARS, defined as the spatial standard deviation of successive difference images. In

fact, DVARS can be linked to old statistical methods developed to estimate noise variance in the presence10

of drift (see Appendix A for DVARS history).

While DVARS appears to perform well at the task of detecting bad scans — bad pairs of scans — it does

not have any absolute units nor a reference null distribution from which to obtain p-values. In particular, the

typical “good” values of DVARS varies over sites and protocols which makes it difficult to create comparable

summaries of data quality across data sets. The emergence of the large scale data sets such as the Human15

Connectome Project (HCP) (>1k subjects) and the UK Biobank (>10k subjects) further motivates the need

for automated, yet reliable, quantitative techniques to control and improve the data quality.

The purpose of this work is to provide a formal description of DVARS as part of a variance decomposition

of the data, propose more interpretable standardized versions of DVARS, and compute DVARS p-values for

a null hypothesis of homogeneity.20

The remainder of this work is organized as follows. We first describe the variance decomposition for the

4D data and how this relates to traditional DVARS, and other new diagnostic measures it suggests. Then

we describe a sampling distribution for DVARS under the null hypothesis, and mechanisms for estimating

the parameters of this null distribution. We establish the validity and sensitivity of the DVARS test with

simulations, and use two different fRMI cohorts to demonstrate how both the DVARS test and our‘DSE’25

decomposition are useful to identify problem subjects and diagnose the source of artifacts within individual

subjects.

2. Theory

Here we state our results concisely relegating full derivations to Appendices.

2.1. Notation30

For T time-points and I voxels, let the original raw rs-fMRI data at voxel i and t be Y Rit . Denote the

mean at voxel i as MR
i = 1

T

∑
t Y

R
it , and by mR some type of overall mean value (i.e. a summary of the
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mean image {MR
i }, like median or mean). We take as our starting point for all calculations the centered

and scaled data:

Yit =
Y Rit −MR

i

mR
100. (1)

The scaling ensures that typical brain values before centering are around 100 and are comparable across

datasets; centering allows mean squared computations to be interpreted as variance.

2.2. DSE Variance Decomposition

Denote the total (“all”) variance at scan t as

At =
1

I

I∑

i=1

Y 2
it , (2)

which can also be seen as the average of voxel-wise variances at scan t. Define two mean squared terms,

one for fast (“differenced”) variability

Dt =
1

I

I∑

i=1

(
Yi,t+1 − Yit

2

)2

, (3)

the half difference between time t and t+ 1 at each voxel, squared and averaged over space, and one for slow

variability

St =
1

I

I∑

i=1

(
Yit + Yi,t+1

2

)2

, (4)

the average between t and t+ 1 at each voxel, squared and averaged over space.

We then have the following decomposition of the average variance at time points t and t + 1, At,t+1 =

(At +At+1)/2

At,t+1 = Dt + St, (5)

for t = 1, . . . , T −1. This has a particularly intuitive graphical interpretation: If we plot Dt and St at t+1/2,

they sum to the midpoint between At and At+1 found at t+ 1/2 (see Fig. 1). Since

DVARSt = 2
√
Dt, (6)

we now have a concrete interpretation for DVARS, with DVARS2
t /4 being the “fast” SS component in the35

average variance at t and t+ 1.

This also leads to a decomposition of the total variance over all scans: With averages A, D, S and E

defined in Table 1 (row 1) we have the following “DSE” decomposition

A = D + S + E. (7)

That is, the total variance (“A-var”) in the 4D dataset is the sum of terms attributable to fast (“D-var”),

slow (“S-var”) and edge variability (“E-var”). D is also 1/4 the average mean squared difference (MSSD; see
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Figure 1: Illustration of the DSE decomposition, where At (green) is the total sum-of-squares at each scan, Dt (blue) is the

sum-of-squares of the half difference of adjacent scans, St (yellow) is the sum-of-squares of the average of adjacent scans, and

Et is the edge sum-of-squares at times 1 and T ;
√
Dt is proportional to DVARS. The D and S components for index t (Dt and

St) sum to A averaged between t and t+ 1 ((At + At+1)/2). Note how the S and D time series allow insight to the behavior

of the total sum-of-squares: The excursion of A around t = 2, 3 arise from fast variance while the rise for t ≥ 6 is due to slow

variance. For perfectly clean, i.e. independent data, D and S will converge and each explain approximately half of A.
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Table 1: Make up of the DSE ANOVA table giving a mean squared (MS) variance decompositions of resting-state fMRI data.

The first row shows how the total MS can be split into 3 terms, in the second through 4th columns, A = D + S +E. The first

column likewise shows how total MS can be decomposed in to that explained by a spatially global time series (second row)

and a non-global or residual-global component (third row), A = AG + AN . Likewise, each row and column sums accordingly:

AG = DG +SG +EG, D = DG +DN , etc. Terms are shown here as MS for brevity, but are best reported in root mean squared

(RMS) units. See Table 2 for definitions of the time series variables.

A-var D-var S-var E-var

Whole A =
1

T

T∑

t=1

At D =
1

T

T−1∑

t=1

Dt S =
1

T

T−1∑

t=1

St E =
1

T

∑

t=1,T

Et

Global AG =
1

T

T∑

t=1

AGt DG =
1

T

T−1∑

t=1

DGt SG =
1

T

T−1∑

t=1

SGt EG =
1

T

∑

t=1,T

EGt

Non-Global AN =
1

T

T∑

t=1

ANt DN =
1

T

T−1∑

t=1

DNt SN =
1

T

T−1∑

t=1

SNt EN =
1

T

∑

t=1,T

ENt

Appendix A). Each term in the “DSE” decomposition can be split into global and non-global components,

as shown in Table 1, rows 2-3 (as also noted by Burgess et al. (2016) for Dt).40

Elements of the DSE decomposition can be visualized as time series (see Table 2) or as images. For

example, just as a variance image with voxels Ai =
∑
t Y

2
it/T is useful, we find that a D-var image, Di =

∑
t(Yi,t+1 − Yit)2/(4T ) and a S-var image, Si =

∑
t(Yit + Yi,t+1)2/(4T ) offer more informative views of the

noise structure.

2.3. DSE ANOVA Table & Reference Values45

We see the arrangement of DSE values in Table 1 as a variant of an Analysis of Variance (ANOVA)

table that summarizes contributions from fast, slow, end, global and non-global components to the total

mean-squares in a 4D dataset. Traditionally ANOVA tables use sum-of-squares to partition variance, but

we instead focus on root mean squared (RMS) or mean squared (MS) values to leverage intuition on typical

noise standard deviation (or variance) of resting state fMRI data.50

We calculate expected values for each of the DSE values for artifact-free data using different null models.

In Appendix D we detail the most arbitrary version of this model, based only on time-constant spatial

covariance, ΣS . Another model is based on time-space-separable correlation; this noise model assumes data

with arbitrary spatial covariance ΣS but a common temporal autocorrelation for all voxels with a constant

lag-1 autocorrelation ρ. While this is a less restrictive time series model than AR(1), in practice temporal55

autocorrelation varies widely over space, and we stress we only consider this as a working model to gain

intuition on the DSE ANOVA table. (Our null model for DVARS p-values, below, does not assume time-

space separability). We also consider the idealized model of “perfect” data with completely independent and
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Table 2: Expressions that make up the time series visualization of the DSE variance decomposition. A-var is to the total

variance at time point t, D-var, S-var and E-var correspond to the fast, slow and edge variance terms. Global and non-global

variance components sum to the total components. All of these terms, given as mean squared quantities, are best reported and

plotted in root mean squared (RMS) units (see Appendix B for more on plotting global variance).

Name Notation Value Range X-axis Loc.

A-var At
1
I

∑I
i=1 Y

2
it t = 1, . . . , T t

D-var Dt
1
I

∑I
i=1(Yit − Yi,t+1)2/4 t = 1, . . . , T − 1 t+ 1

2

S-var St
1
I

∑I
i=1(Yit + Yi,t+1)2/4 t = 1, . . . , T − 1 t+ 1

2

E-var Et
1
I

∑I
i=1 Y

2
it/2 t = 1, T t

Global A-var AGt Ȳ 2
t t = 1, . . . , T t

Global D-var DGt (Ȳt − Ȳt+1)2/4 t = 1, . . . , T − 1 t+ 1
2

Global S-var SGt (Ȳt + Ȳt+1)2/4 t = 1, . . . , T − 1 t+ 1
2

Global E-var EGt Ȳ 2
t /2 t = 1, T t

Non-Global A-var ANt
1
I

∑
i(Yit − Ȳt)2 t = 1, . . . , T t

Non-Global D-var DNt
1
I

∑
i(Yit − Yi,t+1 − (Ȳt − Ȳt+1))2/4 t = 1, . . . , T − 1 t+ 1

2

Non-Global S-var SNt
1
I

∑
i(Yit + Yi,t+1 − (Ȳt + Ȳt+1))2/4 t = 1, . . . , T − 1 t+ 1

2

Non-Global E-var ENt
1
I

∑
i(Yit − Ȳt)2/2 t = 1, T t

identically distributed (IID) 4D data.

Table 3 shows three sets of reference values for the DSE ANOVA table 1. The first pair of rows shows the60

expected value of the MS for each component for the separable model. This shows that all DSE components

scale with the average voxel-wise variance σ̄2, and as temporal autocorrelation ρ increases D-var shrinks and

S-var grows. The global components are seen to depend on ¯̄σ2, the average of the I2 elements of ΣS . This

indicates, intuitively, that the greater the spatial structure in the data the more variance that is explained

1Going forward we drop the third row of the DSE ANOVA table showing non-global variance, since in practice the global

explains so little variance that the first and third rows are essentially the same; see e.g. Table 7 entries’ for AG, and Fig. 10

right.
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by the global.65

The next pair of rows in Table 3 show the expected MS values normalized to the expected A-var term. The

A-var-normalized D-var and S-var diverge from 1/2 exactly depending on ρ, specifically S−D = ρ(T −1)/T .

The global terms here depend on the ratio of average spatial covariance and average variance, ¯̄σ2/σ̄2.

The final pair of rows shows expected values under the most restrictive case of IID noise. Here D-var and

S-var are exactly equal, about 1/2, and we see that the global variance explained should be tiny, 1/I. This70

suggests that normalized global variance relative to the nominal IID value, i.e. (AG/A) /(1/I), an estimate

of ¯̄σ2/σ̄2, can be used as a unitless index of the strength of spatial structure in the data. (This particular

result doesn’t depend on the separable model; see Appendix D).

The handy result on the S − D approximating ρ generalizes beyond the time-space-separable model:

For an arbitrary model, both S −D and St −Dt normalized to A estimate a weighted average of the lag-175

temporal autocorrelations (see Appendix D.8). Hence, the convergence of D-var and S-var we observe as

data is cleaned up has the specific interpretation of reduction in the average lag-1 autocorrelation.

These reference models provide a means to provide DSE values in three useful forms. For each A-var,

D-var, S-var and E-var term we present:

1. RMS, the square root of the mean squared variance quantity,80

2. %A-var, a variance as a percentage of total mean-square A, and

3. Relative IID, A-var-normalized values in ratio to nominal IID values.

For example, for A-var we have (1) RMS is
√
A, (2) %A-var is 100% and (3) relative IID is 1.0. For D-var,

(1) RMS is
√
D, (2) %A-var is D/A× 100 and (3) relative IID is

D

A

/
1

2

T − 1

T
. (8)

For DG-var, (2) RMS is
√
DG, (2) %A-var is DG/A× 100 and (3) relative IID is

DG

A

/
1

2

1

I

T − 1

T
, (9)

noting that we normalize to A and not AG.

We note that the fast and slow components can be defined as responses of linear time-invariant filters. The

slow component corresponds to an integrator filter with power transfer function |HS(ω)|2 = 2(1+cos(ω∆T ))85

and the fast component corresponds to a differentiator filter with power transfer function |HD(ω)|2 = 2(1−

cos(ω∆T )), where ω is angular frequency and ∆T is the repetition time (TR). In other words, in time

domain, St can be interpreted as average of convolved BOLD signals with a rectangular window of [1 1] and

Dt with a [1 -1] window.
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Table 3: Expected values of the DSE ANOVA table under different nominal models. First two rows show expected mean

squared (MS) values under the separable noise model, for whole and global variance. Third and fourth rows show expected

MS normalized to the total variance A-var for the separable model. Final two rows show the expected normalized MS under

a naive, default model of independent and identically distributed (IID) data in time and space. σ̄2 is the average of the I

voxel-wise variances, ρ is the common lag-1 autocorrelation, and ¯̄σ2 is the average of the I2 elements of the voxels-by-voxels

spatial covariance matrix. This shows that D-var and S-var are equal under independence but, when normalized, differ by

about ρ; this is a general result that doesn’t depend on the separable noise model used here (see Appendix D.8).

A-var D-var S-var E-var

Separable Model: Whole σ̄2 1
2
T−1
T (1− ρ)σ̄2 1

2
T−1
T (1 + ρ)σ̄2 1

T σ̄
2

Separable Model: Global ¯̄σ2 1
2
T−1
T (1− ρ)¯̄σ2 1

2
T−1
T (1 + ρ)¯̄σ2 1

T
¯̄σ2

Separable Model: Whole, % of A 1 1
2
T−1
T (1− ρ) 1

2
T−1
T (1 + ρ) 1

T

Separable Model: Global, % of A ¯̄σ2/σ̄2 1
2
T−1
T (1− ρ)¯̄σ2/σ̄2 1

2
T−1
T (1 + ρ)¯̄σ2/σ̄2 1

T
¯̄σ2/σ̄2

IID Model: Whole, % of A 1 1
2
T−1
T

1
2
T−1
T

1
T

IID Model: Global, % of A 1
I

1
2
1
I
T−1
T

1
2
1
I
T−1
T

1
I

1
T
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2.4. Inference for DVARS90

We seek a significance test for the null hypothesis

H0 : E(DVARS2
t ) = µ0, (10)

where µ0 is the mean under artifact-free conditions. Note this is equivalent to a null of homogeneity for

DVARSt or Dt. If we further assume that the null data are normally distributed, we can create a χ2 test

statistic

X(DVARSt) =
2µ̂0

σ̂2
0

DVARS2
t , (11)

approximately following a χ2
ν distribution with ν = 2µ̂2

0/σ̂
2
0 degrees of freedom, where σ2

0 is the null variance

(see Appendix E).

What remains is finding estimates of µ0 and σ2
0 . The null mean of DVARSt is the average differenced

data variance,

µ0 =
1

I

∑

i

σ2
Di, (12)

where σ2
Di is the variance of the differenced time series at voxel i. To avoid sensitivity to outliers, we robustly

estimate each σ2
Di via the interquartile range (IQR) of the differenced data,

σ̂2
Di =

IQR ({Yi,t+1 − Yit}t=1,...,T−1)

IQR0

, (13)

where IQR0 = (Φ−1(0.75)− Φ−1(0.25)) ≈ 1.349 is the IQR of a standard normal, and Φ−1(·) is the inverse

cumulative distribution function of the standard normal. Below we evaluate alternate estimates of µ0,

including the median of {σ̂2
Di} and directly as the median of {DVARS2

t}.95

The variance of DVARS2
t unfortunately depends on the full spatial covariance, and thus we’re left to

robustly estimating sample variance of {DVARS2
t} directly. We consider several estimates based on IQR

and evaluate each with simulations below. Since the IQR-to-standard deviation ratio depends on a normal-

ity assumption, and we consider various power transformations before IQR-based variance estimation (see

Appendix F). We also consider a “half IQR” estimate of variance

hIQR
(
{DVARS2

t}t
)
/hIQR0, (14)

where hIQR is the difference between the median and first quartile, and hIQR0 = IQR0 /2. This provides

additional robustness against contamination of the variance estimate from upward spikes.

Finally, the X(DVARSt) values can be converted to p-values P (DVARSt) with reference to a χ2
ν distri-

bution, and subsequently converted into equivalent Z scores,

Z(DVARSt) = Φ−1(1− P(DVARSt)). (15)

9
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Note that for extremely large values of DVARSt numerical underflow will result in p-values of zero; in such

cases an approximate Z score can be obtained directly as Z(DVARSt) = (DVARS2
t −µ0)/σ0.

Under complete spatial independence the degrees of freedom will equal the number of voxels I, and so ν100

can be thought of an effective number of spatial elements; large scale structure will decrease ν while larger

ν should be found with cleaner data. Though we caution that estimates of ν will be very sensitive to the

particular estimators used for µ0 and σ2
0 .

2.5. Standardized DVARS

For intra-cohort investigation of corruptions, we propose that our D-var time series, Dt = DVARS2
t /4,105

is a more interpretable variant of DVARS, as it represents a particular “fast” portion of noise variance,

and when added to “slow” mean-square, St, gives the total mean-square of the 4D data At,t+1. However,

these components are not suitable for inter-cohort comparisons, as the variance characteristics may vary

with acquisition or scanner differences. In this section we propose a set of transformations which makes the

inter-cohort comparison of the DSE components (including DVARS) possible.110

Table 4: Form and interpretation of various DVARS variants, expressed as functions of original DVARSt. Here {Yit} are the

4D data, A is the overall mean square variance, µ0 is the expected DVARS2
t under a null model, P (DVARSt) is the p-value for

DVARS2, and Φ−1 is the inverse cumulative distribution function of a normal.

.

Name Expression Interpretation

DVARS DVARSt =

√∑

i

(Yit − Yi,t+1)2/I Standard deviation of difference image

√
D-var DVARSt /2 Fast component of noise, as standard

deviation

%D-var DVARS2
t /(4A) × 100 Fast noise, as % of average noise variance

∆%D-var (DVARS2
t −µ0)/(4A) × 100 Excess fast noise, as % of average noise

variance

Rel. DVARS DVARSt /
√
µ0 DVARS as a multiple of null mean

Z(D-var) Φ−1(1− P (DVARSt)) DVARS p-value as Z-score

First consider the percent D-var variance explained at a single time point. Eqn. (5) could be used to

find, in sums-of-squares units, the percent variance attributable to D-var at t, t+ 1:

I ×Dt

I ×At,t+1
100. (16)

10
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However, problem scans can inflate At and could mask spikes. Hence we instead propose to replace At,t+1

with its average A and compute percent D-var at time t as

%D-var :
Dt

A
100. (17)

This has the merit of being interpretable across datasets, regardless of total variance. This is just percent

normalization to A as discussed above.

While %D-var can be more interpretable than unnormalized D-var, its overall mean is still influenced

by the temporal autocorrelation. For example, if %D-var is overall around 30% and at one point there is a

spike up to 50%, what is interesting is the 20 percentage point change, not 30% or 50% individually. Hence

another useful alternative is change in percent D-var from baseline

∆%D-var :
Dt − µ0/4

A
100, (18)

interpretable as the excess fast variability as a percentage of average variance. Later in Section 4.2.1, we

show how ∆%D-var is used as measure of “practical significance” to complement DVARS p-values.

We previously have proposed scaling DVARS relative to its null mean (Nichols, 2013),

RDVARS = DVARSt /
√
µ0. (19)

(While we had called this “Standardized DVARS”, a better label is “Relative DVARS.”) This gives a positive115

quantity that is near 1 for good scans and substantially larger than one for bad ones. However, there is no

special interpretation “how large” as the units (multiples of µ
−1/2
0 ) are arbitrary; as noted above, DVARS

falls with increased temporal correlation, making the comparison of these values between datasets difficult.

Finally the Z-score Z(DVARSt) or − log10 P (DVARSt) may be useful summaries of evidence for anoma-

lies.120

3. Methods

3.1. Simulations

To validate our null distribution and p-values for DVARS we simulate 4D data as completely independent

4D normally distributed noise

Yit ∼ N (0, σ2
i ), i = 1, . . . , I, t = 1, . . . , T, (20)

for σi drawn uniformly between σmin and σmax for each i, I = 90, 000.

We manipulate two aspects in our simulations, time series length and heterogeneity of variance over

voxels. We consider T of 100, 200, 600 and 1200 data-points, reflecting typical lengths as well as those in125
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the Human Connectome Project. We use three variance scenarios, homogeneous with σmin = σmax = 200,

low heterogeneity σmin = 200 and σmax = 250, and high heterogeneity σmin = 200 and σmax = 500.

We consider four estimates of µ0. First is the very non-robust sample mean of {DVARS2
t}, denoted

µ̂DVARS
0 , considered only for comparative purposes. Next we compute the mean µ̂D0 and median µ̃D0 of

σ̂2
Di (Eqn. (13)), the robust IQR-based estimates of differenced data variance at each voxel. Finally we130

also consider the empirical median of {DVARS2
t}, µ̃DVARS

0 . For σ2
0 , all estimates were based directly on

{DVARS2
t}; for comparative purposes we considered the (non-robust) sample variance of {DVARS2

t}, σ̂2
0 ,

and IQR-based and hIQR-based estimates of variance with power transformations d of 1, 1/2, 1/3 and 1/4,

denoted generically σ̃2
0 ; note d = 3 is theoretically optimal for χ2 (see Appendix F).

For p-value evaluations, we only evaluate the most promising null moment estimators, µ̃D0 and µ̃DVARS
0 for135

µ0, and σ̃2
0 with hIQR, d = 1 and hIQR, d = 3. We measure the bias our estimators in percentage terms, as

(µ̂0−µ0)/µ0×100 and (σ̂2
0−σ2

0)/σ2
0×100, where the true value are µ0 = 2

∑
i σ

2
i /I and σ2

0 = 8
∑
i σ

4
i /I

2 (as

per Appendix E when ΣS = I). For each method we obtain P-values and create log P-P plots (probability-

probability plots) and histograms of equivalent Z-scores.

Similar simulation settings are used to evaluate the power of the DVARS hypothesis test, except we con-140

sider 4 different autocorrelation levels ρ = {0, 0.2, 0.4, 0.6}. This range is chosen to reflect observed estimates

of lag-1 autocorrelation coefficients in the HCP cohort. Inferences are assessed in terms of sensitivity and

specificity.

All simulations use 1,000 realisations.

3.2. Analysis of Functional Connectivity145

We evaluate the impact of the DVARS test as a tool for “scrubbing” (scan deletion) on functional

connectivity (FC) measued with Pearson’s correlation coefficient. We consider FC between all possible pairs

of Region of Interests (ROI) in each subject for a given ROI atlas. The mean time series of each ROI

is obtained by averaging all the time series within a ROI. To parcellate the brain, we use two data-driven

atlases; Power Atlas (Power et al., 2011) which is constructed of 264 non-neighboring cortical and sub-cortical150

ROIs and each ROIs has 81 voxels (is case of 2mm isotropic volumes) and Gordon Atlas (Gordon et al.,

2014) which is constructed of 333 cortical regions of interests with different sizes.

We use two popular methods to evaluate the effect of the DVARS inference on functional connectivity.

First, we use the QC-FC analysis which begins by creating per-edge, intersubject scores, the correlation of

the number of removed volumes and FC; these scores are plotted against the inter-ROI distance (in mm).155

We then use LOESS smoothing method (with span window of %1) to summarize the association for each

method. For further details about QC-FC method, see Power et al. (2014a); Ciric et al. (2016); Burgess et al.

(2016). We use QC-FC to compare our DVARS hypothesis test to four other scan scrubbing methods. From

Power et al. (2012) we use two FD thresholds, lenient (0.2mm) and conservative (0.5mm), and a DVARS
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threshold of 5. From FSL’s fsl motion outliers tool (Jenkinson et al., 2012), we use a DVARS threshold160

corresponding to box-plot right-outliers, 1.5 IQRs above the 75%ile. Note that the first three approaches

used a fixed threshold, while the FSL approach gives a run-specific threshold.

The objective of this FC analysis is to investigate whether DVARS inference test performs as well as

the available thresholding methods (such as arbitrary thresholding of FD (Power et al., 2012) and DVARS

(Burgess et al., 2016)) and if so, whether it delivers the optimal results while sacrificing the fewest temporal165

degree of freedom as possible. Therefore, we only present the results for the Minimally pre-processed data

sets.

3.3. Real Data

We use two publicly available data-sets to demonstrate the results of methods proposed in this paper

on real-data. First, we use 100 subjects from ”100 Unrelated” package in the Human Connectome Project170

(HCP,S1200 release). We chose this dataset due to the high quality and long sessions of the data (Smith et al.,

2013; Glasser et al., 2013). Second, we used first 25 healthy subjects from the New York University (NYU)

cohort of the Autism Brain Imaging Data Exchange (ABIDE) consortium via Preprocessed Connectome

Project (PCP) (Craddock et al., 2013). We selected this cohort for its high signal-to-noise ratio and the

more typical (shorter) time series length (Di Martino et al., 2014).175

3.3.1. Human Connectome Project (HCP)

For full details see (Van Essen et al., 2013; Glasser et al., 2013); in brief, 15 minute eyes-open resting

acquisitions were taken on a Siemens customized Connectome 3T scanner with a gradient-echo EPI sequence,

TR=720ms, TE=33.1 ms, flip angle=52◦ and 2 mm3 isotropic voxels. For each subject, we used the first

session, left to right phase encoding direction (See Table S1 for full details of subjects). We considered180

each subject’s data in three states of pre-processing: unprocessed, minimally pre-processed and ICA-FIXed

processed. Unprocessed refers to the raw data as acquired from the machine without any pre-processing step

performed, useful as a reference to see how the DSE components change with preprocessing steps. Minimally

pre-processed (MPP) data have undergone a range of conventional pre-processing steps such as correction

of gradient-nonlinearity-induced distortion, realignment aiming to correct the head movements, registration185

of the scans to the structural (T1w) images, modest (2000s) high pass filtering and finally transformation of

the images to the MNI standard space.

Finally, after regressing out the 24-motion parameters, an ICA-based clean up algorithm called ICA-FIX

(Salimi-Khorshidi et al., 2014) is applied, where artifactual ICA components, such as movement, physiological

noises of the heart beat and respiration, are regressed out non-aggressively. Due to extent of the FIX190

denoising and an ongoing debate regarding the nature of the global signal, we did not consider global signal
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regression with the HCP data. From now on, we call this stage ’fully pre-processed (FPP)’ to be consistent

with the ABIDE-NYU cohort we describe in the following.

3.3.2. Autism Brain Imaging Data Exchange (ABIDE)

We use use 20 healthy subjects of New York University (NYU) data-set. For full details visit Pre-195

processed Connectome Project website http://preprocessed-connectomes-project.org/; in brief, 6

minute eyes-closed resting acquisitions were taken on an Allegra 3T scanner with a gradient echo EPI

sequence, TR=2000ms, TE=15ms, flip angle=90◦, and 3 mm isotropic voxels (See Table S2 for full details

of subjects). In this study, each subject was analyzed using Configurable Pipeline for the Analysis of Con-

nectomes (C-PAC) pipeline, in three stages; unprocessed, minimally pre-processed and fully pre-processed.200

The unprocessed data are raw except for brain extraction with FSL’s BET. Minimally pre-processed data

were only corrected for slice timing, motion by realignment and then the data were transformed into a tem-

plate with 3 mm3 isotropic voxels. Fully pre-processed data additionally had residualisation with respect

to 24-motion-parameters, signals from white matter (WM) and cerebrospinal fluid (CSF), and linear and

quadratic low-frequency drifts. Conventionally this pipeline deletes the first three volumes to account for T1205

equilibration effects, but we examine the impact of omitting this step for the raw data.

Further, we also use all healthy subject of ABIDE (530 subjects) to show how DSE decomposition can

be used to compare the data-sets, cohorts and pipelines.

4. Results

4.1. Simulations210

Figure 2 shows the percentage bias for the null expected value µ0 (left panel) and variance σ2
0 (right

panel) for different levels of variance heterogeneity and time series length.

The direct estimates of the µ0 based on the DVARS2
t time series perform best on this clean, artifact-

free data, while µ0 estimated on variance of the differenced data (µ̂D0 and µ̃D0 ) degrades with increasing

heterogeneity. The estimates of variance have relatively less bias but it is difficult to identify one particular215

best method, save for IQR often (but not always) having less bias than hIQR, and lower d generally associated

with less bias.

On balance, given the generally equivocal results and concerns about robustness, for further consideration

we focus on µ̃DVARS
0 (median of {DVARS2

t}) and µ̃D0 (median of σ̂2
Di) as promising candidates for µ0, and

hIQR with d = 1 and hIQR with d = 3 for σ2
0 .220

Figure 3 shows log P-P plots for χ2 p-values and histograms of approximate Z scores, (DVARS2
t −µ0)/σ0;

values above the identity in the P-P plot correspond to valid behavior. While all methods have good

performance under homogeneous data, µ̃D0 (panels A & C) is not robust to variance heterogeneity and
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results in inflated significance. In contrast, µ̃DVARS
0 (panels B & D) has good performance over all, for

variance estimated with either d = 1 or d = 3 (top and bottom panels, respectively), and also yields good225

approximate Z-scores. On the basis of these results, we elected to use µ̃DVARS
0 as the only reliable option for

the mean, and hIQR, d = 3 as a variance estimate, and use these settings going forward.

Figure 4 shows the results of the power simulation. For all sample sizes and autocorrelation parameters,

and for the 1% and 10% artifact rates, power was always above 80% and often ≈100%. Increased autocor-

relation resulted in improvements in power, while higher artifact rates reduced power. For the 20% artifact230

rate power was adequate (≈ 80%), but falls to zero for the 30% artifact rate. These results suggest that, at

the highest spike rate, the artifacts start to be become indistinguishable from the overall noise (see Fig. S2

for one realization). However, the distribution of DVARS values (Fig. S1) suggest that the constituent null

and artifact components are distinguishable even at the highest spike rate, but would require yet more robust

methods for estimating the null component than we have employed.235
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d=4

None
Low

High
Heterogeneity

BA

d=1 d=2 d=3

Figure 2: Simulation results for estimation of mean and variance of DVARS2 under the null of temporal homogeneity. The

mean µ0 (left) and variance σ2
0 (right) are shown for no, low and high spatial heterogeneity of variance (rows). All estimators

improve with time series length T and most degrade with increased spatial heterogeneity.For the mean, both the sample mean

(µ̂DVARS
0 ) and median (µ̃DVARS

0 ) of DVARS2
t perform well, as does voxel-wise median of difference data variance (µ̂D0 ) for

sufficient T , though µ̂DVARS
0 of course lacks robustness. For T ≥ 200, all variance estimators have less than 1% bias.
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Figure 3: Simulation results for the validity of DVARS p-values for different estimators of µ0 and σ2
0 . The left two panels (A

& C) use µ̃D0 , the two right panels (B & D) use µ̃DVARS
0 ; the upper two panels (A & B) use variance based on hIQR with d = 1,

the lower two panels (C & D) use hIQR with d = 3. P-P plots and histograms of Z scores show that only use of µ̃DVARS
0 gives

reliable inferences, and that the power transformation parameter d seems to have little effect.
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Figure 4: Power of the DVARS hypothesis test to detect artifactual spikes. Plots show sensitivity (% true spikes detected)

versus number of true spikes as a percentage of time series length T , for varying degrees of temporal autocorrelations (line

color). Different T (rows) and degree of spatial variance heterogeneity (columns) are considered. These results show hat power

increases with autocorrelation but falls with increasing prevalance of spikes; for up to 10% spikes we have excellent power, and

for 20% spikes we have satisfactory power (60-90% sensitivity).

18

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2017. ; https://doi.org/10.1101/125021doi: bioRxiv preprint 

https://doi.org/10.1101/125021
http://creativecommons.org/licenses/by-nc/4.0/


4.2. Real Data

We first focus on selected results of two HCP subjects, then later summarize results for all HCP and

ABIDE subjects.

4.2.1. Temporal Diagnostics: DVARS Inference and Standardized Measures

Figure 5 shows different standardized DVARS measures, as introduced in section 2.5, as well as the other240

DSE components for subject 118730 of the HCP cohort (See Figs. S4, S5 and S6 for more results.). The

first six plots corresponds to the variants listed in Table 4; the bottom two plots show “DSE plots,” plots of

At, Dt, St and Et components, upper plot with minimal pre-processing, lower with full pre-processing. The

gray and magenta stripes indicate 19 data points identified as having significant DVARS after Bonferroni

correction, with magenta indicating time-points that are additionally practically significant by the criterion245

∆%D-var > 5%. In Figure 5, the largest Dt occurs at index 7 (i.e. 7th and 8th data points) and has
√
Dt = 4.07, large in terms of being %D-var=70.16% of average variance, Z = 36.33 indicating extreme

evidence for a spike, and having ∆%D-var = 41.20% more sum-of-squares variability than expected. The

least significant Dt occurs at index 726, with
√
Dt = 2.83; while its Z = 4.36 is not a small Z-score, with just

∆%D-var=4.95% excess variation, it is a relatively modest disturbance. In contrast, we find that the values250

of original DVARS or relative DVARS do not offer a meaningful interpretation. Table S3 shows values for

all significant scans.

The bottom panel of Figure 5 shows the DSE plot for fully pre-processed data. This data now exhibits

the idealized behavior of IID data, with D-var and S-var components converging at 50% of average variance

(see right-hand y-axis). However, interestingly, the change is not similar for all DSE components. Note255

how
√
Dt is around 2.6 before clean up, and 2.5 after clean up, while

√
St falls dramatically with cleaning,

indicating that nuisance variance removed was largely of a “slow” variety. Also observe that clean up results

in drops in total At variance where artifacts were observed, indicating variance removed by FIX.
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Figure 5: Comparison of different variants of DVARS-related measures on HCP 115320. The first six plots are variants of

DVARS listed in Table 4; ∆%D-var is marked with a practical significance threshold of 5%, and Z(DVARS) with the one-

sided level 5% Bonferroni significance threshold for 1200 scans. Vertical grey stripes mark scans that only attain statistical

significance, while orange stripes mark those with both statistical and practical significance. The bottom two plots show the 4

DSE components, total At (green), fast Dt (blue), St slow (yellow), and edge Et (purple), for minimally preprocessed (upper)

and fully preprocessed (lower) data. For minimally preprocessed data D-var is about 25% of A-var (see right axis), far below

S-var. For fully preprocessed data D-var and S-var converge to 50%A-var.
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Finally, Table 5 explores the use of the estimated χ2 degrees of freedom ν as an index of spatial effective

degrees of freedom. Raw data, exhibiting substantial spatial structure, has ν = 287, which increases to260

ν = 11, 086 for fully preprocessed data, still only about 5% of the actual number of voxels.

Table 5: Spatial effective degrees of freedom (EDF) for HCP subject 115320. As more spatial structure is removed with

preprocessing, spatial EDF rises, but never to more than 5% of the actual number of voxels.

Voxels Spatial EDF Spatial EDF / Voxels

Raw 162,768 287 0.176%

MPP 224,998 1,660 0.738%

FPP 224,998 11,086 4.928%

4.2.2. Effect of DVARS Inference Testing on Functional Connectivity

FC evaluations based on 55,278 unique edges from the Gordon atlas are shown in Figure 6 (see Fig. S9

for Power Atlas results). Panel A shows the QC-FC analysis of five thresholding methods, compared to

unscrubbed QC-FC. The results from the DVARS test appear comparable to the other methods, but Panel265

B of Figure 6 show that the DVARS test removes many fewer scans on average, preserving temporal degrees

of freedom. A related evaluation, comparing DVARS hypothesis test scrubbing to random scrubbing, finds

that FC is significant impacted by the DVARS scrubbing (Fig. S10 and S11).
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Figure 6: Impact of scrubbing on functional connectivity of 100 HCP subjects’ MPP data, comparing the DVARS test to four

other existing methods. Panel A shows the QC-FC analysis for five different thresholding methods (see body text for details);

shown are DVARS test, FD thresholding (FD-Lenient & FD-Conservative), arbitrary DVARS threshold, and DVARS boxplot

outlier threshold (DVARS IQR). Panel B shows the loss of temporal degree of freedom for each method (i.e. number of scans

scrubbed), one dot per subject and dot color following line colors in Panel A. These result show that, in terms of FC, all the

methods are largely equivalent, but the DVARS test is best at preserving degrees of freedom.

We note that the sole purpose of preceeding QC-FC analysis is to ensure that the DVARS inference

test outperforms other arbitrary thresholds available in literature, and therefore we do not show the similar270

results for FPP data.

4.2.3. Temporal Diagnostics: Before and After Clean-up

Figures 7 and 8 shows the minimally and fully pre-processed DSE decompositions, respectively, of HCP

subject 115320.

Figure 7, upper panel, shows that if the strict FD threshold, 0.2mm (Power et al., 2014b), were used 47%275

of scans would be flagged, while the lenient threshold , 0.5mm (Power et al., 2014b), appears to miss several

important events. For example, around scans 775 and 875 there are two surges in
√
Dt, rising to about 60%

and 40% average sum-of-squares (excesses of 30% and 10%, respectively, from a baseline of about 30%) while

FD remains low. The lower panel’s pie chart shows that S-var explains just under 75% of total, and almost

all of global sum-of-squares. The Edge component is also 1.5 above its expectation.280

22

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2017. ; https://doi.org/10.1101/125021doi: bioRxiv preprint 

https://doi.org/10.1101/125021
http://creativecommons.org/licenses/by-nc/4.0/


In Figure 8, the fully preprocessed data-set shows roughly equal fast and slow components, as reflected

in the overlapping Dt and St sum-of-squares time series (blue and yellow, respectively) and the pie and bar

charts for total sum-of-squares. Edge component E-var has also dropped to fall in line with IID expectations.

However, this convergence is not homogeneous over scans and excursions of S-var are still found after scan

650. However, these are much reduced relative to MPP data (no more than 75% of average sum-of-squares,285

compared to over 150% in Fig. 7).

Note that while significant DVARS are found in the FPP data, they are small in magnitude: Table 6

lists the 10 significant tests, none with ∆%D-var greater than 6%. If we used a ∆%D-var of 5% we would

still mark 4 of these 10 significant; while we might hope for better performance from the FIX method, note

the severe problems detected towards the end of the scan (Fig. 7).290

The smallest significant ∆%D-var is 2.66%, which is smaller than the least significant scan detected in

the minimally preprocessed data, 3.78%. This indicates the increased sensitivity in our procedure as the

background noise in the data is reduced. Note that the majority of the spikes detected in Figure 7 has been

removed by ICA-FIX (Fig. 8), however the algorithm has left down-spikes which could be detected via a

two-sided version of the test explained in section 2.4.295

Temporal diagnostics of before and after clean-up for three other subjects (HCP subject 118730, NYU-

ABIDE subjects 51050 and 51050) also reported in Supplementary Materials. See Figure S12 and S13

for HCP subject 118730, Figure S14 and S15 for NYU-ABIDE subject 51050 and Figure S16 and S17 for

NYU-ABIDE 51055.
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Figure 7: DSE and DVARS inference for HCP 115320 minimally pre-processed data. The upper panel shows four plots,

framewise displacement (FD), the DSE plot, the global variance signal GAt, and an image of all brainordinate elements. FD

plots show the conventional 0.2mm and 0.5mm, strict and lenient thresholds, respectively. All time series plots have DVARS

test significant scans marked, gray if only statistically significant (5% Bonferroni), in orange if also practically significant

(∆%D-var>5%). The bottom panel summaries the DSE ANOVA table, showing pie chart of the 4 SS components and a bar

chart relative to IID data, for whole (left) and global (right) components. Many scans are marked as significant, reflecting

disturbances in the latter half of the acquisition.
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Figure 8: DSE and DVARS inference for HCP 115320 fully pre-processed. Layout as in Figure 7. Cleaning has brought St

slow variability into line with Dt fast variability, each explaining about 50% of total sum-of-squares. While some scans are still

flagged as significant, %D-var (D as a % of A-var, right y axis) never rises above about 55%, indicating ∆%D-vars of 5% or

less lack of practical significance.

25

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2017. ; https://doi.org/10.1101/125021doi: bioRxiv preprint 

https://doi.org/10.1101/125021
http://creativecommons.org/licenses/by-nc/4.0/


Table 6: List of all statistically significant Dt fast SS components in the fully pre-processed HCP 115320. Spikes which represent

the highest (index 1177) and lowest (index 1035) are marked in bold.

Scan Index DVARS
√
D-var %D-var ∆%D-var RDVARS Z(D-var) FD

256 & 257 256 4.982 2.4910 52.519 3.362 1.038 5.093 0.136

257 & 258 257 5.077 2.538 54.553 5.397 1.058 8.175 0.172

774 & 775 774 5.095 2.547 54.935 5.779 1.062 8.753 0.290

777 & 778 777 4.955 2.477 51.950 2.794 1.033 4.232 0.247

873 & 874 873 5.089 2.544 54.805 5.649 1.061 8.556 0.255

1035 & 1036 1035 4.948 2.474 51.815 2.659 1.031 4.027 0.280

1175 & 1176 1175 4.960 2.480 52.062 2.905 1.034 4.401 0.109

1176 & 1177 1176 4.953 2.476 51.926 2.769 1.032 4.195 0.104

1177 & 1178 1177 5.096 2.548 54.964 5.807 1.062 8.796 0.301

1178 & 1179 1178 5.049 2.524 53.952 4.795 1.052 7.263 0.132

The DSE ANOVA tables for minimally and fully preprocessed (Table 7) gives concise summaries of the300

data quality. The RMS values provide concrete values that can be used to build intuition for data from a

given scanner or protocol. The total noise standard deviation falls from 5.015 to 3.437 with clean-up, but it

is notable that the fast component, D-var, falls only slightly from 2.598 to 2.406 (in RMS units), while slow

variability falls dramatically from about 4.287 to 2.454. This indicates that much of the variance reduction

in “cleaning” comes from removal of low frequency drifts and other slowly-varying effects. The magnitude of305

temporally structured noise is reflected by S-var explaining 73% of total sum-of-squares, and after clean-up

S-var and D-var fall into line around 50%. A measure of the spatially structured noise is the global AG-var

that, while small as a percentage, is seen to be about 1,500 that expected with IID before preprocessing,

and falling to about 275 relative to IID after preprocessing. That the majority of AG-var is due to SG-var

indicates that the global signal is generally low frequency in nature.310

We also show the DSE ANOVA tables for three other subjects; HCP subject 118730 in Table S4, NYU-

ABIDE subject 51050 and 51055 in Tables S5 and S6, respectively.
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Table 7: DSE ANOVA Tables for HCP 115320. Minimally preprocessed data (top), fully preprocessed (bottom) are readily

compared: Overall standard deviation drops from 5.015 to 3.437, while fast noise only reduces modestly from 2.598 to 2.406,

indicating preprocessing mostly affects the slow variability. The IID-relative values for D, S and E for the fully preprocessed

data are close to 1.0, suggesting successful clean-up in the temporal domain; the global signal, however, still explains about

275× more variability than expected under IID settings, indicating the (inevitable) spatial structure in the cleaned data.

Minimally Preprocessed Data

Source RMS % of A-var Relative to IID

A - All 5.015 100.000 1.000

D - Fast 2.598 26.837 0.537

S - Slow 4.287 73.039 1.462

E - Edge 0.176 0.124 1.486

AG - All Global 0.415 0.684 1539.383

DG - Fast Global 0.063 0.016 71.126

SG - Slow Global 0.408 0.662 2,980.787

EG - Edge Global 0.040 0.006 17,636.960

Fully Preprocessed Data

RMS % of A-var Relative to IID

A - All 3.437 100.000 1.000

D - Fast 2.406 48.980 0.980

S - Slow 2.454 50.948 1.020

E - Edge 0.092 0.072 0.860

AG - All Global 0.120 0.122 274.058

DG - Fast Global 0.037 0.012 52.830

SG - Slow Global 0.114 0.109 493.227

EG - Edge Global 0.008 <0.001 1,508.473

We observe that the cleaned data has Dt ≈ St, which implies that the average lag-1 autocorrelation

is close to zero (Sec. Appendix D.8). However, temporal autocorrelation is a ubiquitous feature of fMRI

data, suggesting a contradiction. To address this, Figure 9 shows maps of the lag-1 temporal autocorrelation315

across the pre-processing steps. For raw data, the autocorrelation coefficient is between 0.4 and 0.6, but

with successive pre-processing steps, the autocorrelation coefficient decreases until the FFP level where the

median of voxel-wise autocorrelation coefficients is approximately zero. (See Fig. S18 for similar results on

20 HCP subjects).
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Thus, while temporal autocorrelation is present in the data, we find that the lag-1 autocorrelation coef-320

ficients do get close to zero with cleaned data, indicating that the Dt ≈ St heuristic is correctly indicating

negligible average autocorrelation.
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Figure 9: Distribution of temporal lag-1 autocorrelation across three pre-processing levels. First three rows show maps of

autocorrelation for raw, minimally preprocessed and fully preprocessed, respectively, for one subject (only positive values);

bottom row shows dot plots of autocorrelation for that same subject and two other subjects (random selection of 1% voxels

plotted for better visualization). Fully preprocessed data has median correlation near zero, consistent with converging S-var

and D-var.)

Figure 10 illustrates the use of the DSE decomposition to summarize the DSE components of 100 unrelated
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subjects in the HCP cohort, normalized as a percentage of total variance (A-var) to be maximally comparable

across subjects. (See Fig. S22 for same results for ABIDE-NYU cohort). A non-normalized version of this plot325

(Fig. S23) is useful for viewing absolute changes, showing that S-var dramatically drops with preprocessing

while DS-var is relatively stable.

For the raw data, %D-var ranges from just over 5% to 40%, and S-var varies between 60% and 96%;

the E−var only ever explains a negligible portion of the sum-of-squares, 0.027 to 0.50% across all three

pre-processing levels. For all but two subjects the %D-var and %S-var components successively converge to330

50% ±5% for FPP data.

Considering only the global variance, the slow %SG-var is small, usually falling well below 1%, and fast

%DG-var is negligible, never exceeding 0.1%, reflecting the low frequency nature of the global signal.

To demonstrate the utility of the DSE decomposition in data quality control, we isolate four subjects

and observe how their DSE values change with successive preprocessing.335

Subject 151627, marked with a square, is one of the most extreme subjects for S-var and D-var in raw and

MPP data, but has one of the smallest %S-var − %D-var differences for FPP data. This dramatic reduction

in autocorrelation is confirmed in Figure 11-A, showing the cumulative distribution of lag-1 autocorrelation,

and is likely linked to physiological noise around brain stem and other inferior regions (Fig. 12-A1) successfully

removed by ICA-FIX (Fig. 12-A2).340

Subject 122620, marked with an triangle, has small %S-var − %D-var differences for all versions of the

data, also reflected in its distribution of autocorrelation (Fig. 11-B). However, there is still some notable

spatial structure in the S-var and D-var images even after clean up (Fig. 12-B2). This illustrates that if a

small portion of the image possess problems, it may not be detected in any simple summary.
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Figure 10: Normalized DSE decomposition for 100 HCP subjects across Raw, MPP and FPP data. The left panels show each

DSE component for whole variability and the right panels illustrate the global variability of each component. Four marker types

were used to follow the changes in slow and fast variability of four subjects across the pre-processing steps (see body text).
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Figure 11: Cumulative distribution of the voxel-wise lag-1 autocorrelation coefficients for four subjects. Solid black (raw), blue

(MPP) and red (FPP) lines indicates the empirical CDF and the dashed vertical lines indicate the median of autocorrelation

of corresponding colors.
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Figure 12: Square root D-var (fast) and S-var (slow) variability images of four subjects, for minimally (left sub-panels) and

fully preprocessed data (right sub-panels). Subject 151627 appears to have been successfully cleaned, others less so; see text

for detailed interpretation with respect to Figures 10 and 11

Subject 135932, marked with circle, has absolutely typical S-var and D-var among the 100 subjects in the345
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raw and MPP data, but in the FPP data it has one of worst %S-var − %D-var differences. The distribution

of autocorrelation coefficients reflects this (Fig. 11-C), with FPP (red line) having more large values of

ρ than the other subjects. Inspection of the raw data S-var map (Fig. reffig:VarImg-C1) shows evidence

of substantial structured noise that is, by in large, mostly removed by ICA-FIX correction (Fig. 12-C2).

However the FPP S-var map shows vascular structure, likely a branch of the posterior cerebral artery near350

the lingual gryus; this is likely an element of physiological noise that ICA-FIX would have ideally removed

but missed. Note also that this subject has low movement as measured by median FD (Fig. S21), eliminating

motion as the likely source of the problem.

Finally, subject 101107, marked as a diamond, has the worst quality as measured by divergent %S-var

and %D-var across preprocessing levels, with FPP level having S-var= 77% and D-var= 23%, and reflected355

in the largest autocorrelation values among the four subjects (Fig. 11-D). Images of S-var show substantial

structured variability that remains even in the FPP data (Fig. 12-D), while the D-var image is improves

notably with ICA-FIX. (This was a high-motion subject; note loss of ventromedial prefrontal cortex).

DSE time series plots of these four subjects confirm these findings, with 122620 and 151627 having flat

and converged S-var and D-var time series, while 135932 and especially 101107 have structured and diverged360

S-var time series (Figs. S19 & S20).

To demonstrate the value of the S-var time series, Figure 13 explores time points where St is particularly

large and small for subject 135932. Four “St images” are shown, (Yit+Yi,t+1)2/4 for voxel i, the constituents

of St (Eqn. 4). Panel A of Figure 13 shows a ’clean’ time point, with a minimum of structured noise apparent,

while panels B-D all show a similar vascular pattern. Examination of the ICA components fed into FIX finds365

3 components that reflect this vascular structure that were classified as ’good’ (Fig. S24). This demonstrates

the value of the DSE decomposition to identify subtle structured noise in the data.
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Figure 13: Investigation of S-var, slow variability artifacts. When St and Dt coincide, like at t = 871 (Panel A), the S-var

image shows no particular structure. In contrast, we find multiple S-var excursions correspond to a common pattern of vascular

variability across the acquisition, with time points t = 591, 202 and 1030 shown in panels B, C and D, respectively.

Finally, in addition to using DSE plots to investigate the quality of scans across pre-processing levels,

they can also be used as a universal measure to compare the quality of scans across cohorts, data-sets and

pipelines. We computed the DSE decomposition of 530 healthy subjects across 20 acquisition sites in the370

ABIDE dataset (Fig. S25), identifying particular sites (e.g. NYU & OHSU) and the CPAC preprocessing

pipeline generally to have minimal temporal autocorrelation as reflected in S-var/D-var divergence.

5. Discussion

We have provided a formal context for the diagnostic measure DVARS, showing DVARS2
t to be part of a

decomposition of sum-of-squares at each successive scan pair and over the whole 4D data. We have proposed375
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a significance test for the DVARS measure which, when detected scans are removed based on p-values, we

found to address corruptions of FC while preserving temporal degrees of freedom better than other arbitrary

approaches. We have also proposed the DSE decomposition which is particularly useful for summarizing

data quality via DSE plots and DSE ANOVA tables. These tools concisely summarize the interplay of the

fast, slow, total and global sum-of-squares, and our derived nominal expected values for each table entry380

facilitates the identification spatial and temporal artifacts.

Our analysis shows that D-var (and DVARS) scales with overall noise variance, and is deflated by

temporal autocorrelation. We observe that as data becomes cleaner, and the background noise falls, we

have greater power to identify DVARS2
t spikes. Therefore, to avoid ’over-cleaning’ the data we complement

the statistical significance of DVARS p-values with the practical significance of ∆%D-var, a standardized385

measure of the excess variance explained by a spike as a percentage of average variance. Consequently,

the final candidate time-points to be scrubbed is a conjunction of statistical and practical significance; we

choose a 5% familywise error rate significance level via Bonferroni and a 5% ∆%D-var cut-off; this practical

significance threshold worked adequately in the HCP data we examined but may need to be recalibrated for

other data sources.390

Yet one more advantage of using χ2 tests, proposed in this work, is that we can estimate the effective

spatial degrees of freedom which may prove to be a useful index of spatial structure in the data, but we

stress this particular χ2 degrees-of-freedom ν is specific to this setting and is unlikely to be useful in other

contexts (e.g. as a Bonferroni correction over space).

Besides ∆%D-var, we have introduced two standardised measures which facilitate the inter-cohort com-395

parison of the fast (or DVARS) component regardless of intensity normalisation used in the pre-processing

pipelines. For example, standardised measure %D-var shows the proportion of variability which can be

explained via fast component while %S-var shows the similar proportion for the slow variability in data.

The DSE plots allow D-var to be judged relative to S-var, checking for convergence to approximately

50% of A-var as data approaches temporal independence , and consequently the level of autocorrelation as400

measure of corruption can be tightly monitored across pre-processing steps.

Using DSE plots we found two HCP subjects (101107 & 136932) where the motion-parameter regression

and further ICA-FIX algorithm failed to clean the data and clearly stand out from others in the 100 unrelated

subject cohort. We have used the DSE variability images to temporally and spatially locate the corruptions.

It is important to note that the DSE decomposition technique should only be used before any form of resting-405

state bandpass filtering (such as 0.01Hz-0.1Hz) and autocorrelation modelling (such as FILM pre-whitening

techniques).

Finally, we stress that we don not believe there is any one strategy can address all fMRI artifacts. Each

method used in this work has it is merits and pitfalls. For example, while scrubbing was shown to be useful
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to remove the head motion induced spikes, it fails to remove the nuisance due to physiological signals on it410

is own and requires alternatives like ICA-based methods. Regardless of method, we still see value of using

DSE plots and images throughout the analysis to choose a right combination of methods; see Ciric et al.

(2016) for a recent comparison of various combinations of artifact methods.

5.1. Limitations and Future Work

Our DVARS p-values depend critically on accurate estimates of µ0 and σ2
0 . Despite finding exact expres-415

sions for the null mean and variance, we found the most practical and reliable estimates to be based on the

sample DVARS2
t time series itself, using median for µ0 and hIQR to find σ0.Of course this indicates that our

inference procedure can only infer relative to the background noise level of the data, picking out extreme

values that are inconsistent with our approximating χ2 approximation.

There are two essentials avenues as continuation of this work. First is to study the effect of global signal420

regression via DSE decompositions. As regressing out the global mean deflates the global segment of each

variability component, the DSE decomposition can be used to investigate whether global signal regression is

helpful to suppress the spatial artifacts. Second, both cleaning algorithms used in this work, scrubbing and

ICA-FIX, leave down-spikes (or dips) after regressing out the nuisance. These down-spikes may also affect

the FC and could be detected with a two-sided variant of our hypothesis test.425

Software and Reproducibility

In this work majority of the analysis have been done on MATLAB 2015b and MATLAB 2016b, supported

by FSL 5.0.9 for neuroimaging analysis.

Inference on DVARS as well as DSE decomposition techniques proposed in this paper is available via

MATLAB scripts, found at http://www.github.com/asoroosh/DVARS. Also, a dedicated web page, http:430

//sorooshafyouni.com/shiny/DSE/, present the DSE decompositions of HCP and ABIDE cohort and is

regularly updated with new publicly available resting-state data sets.

Results and figure scripts presented in this work is publicly available on http://www.github.com/

asoroosh/DVARS_Paper17.
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Appendix A. DVARS History

As far as we are aware, DVARS was first used to compute frame censoring by Smyser et al. (2011).445

Power et al. 2012 reported the first systematic analysis of DVARS in relation to FD in resting state fMRI.

However, at least as early as 2006, a web page at the Cambridge Cognitive Brain Unit maintained by Matthew

Brett’s titled “Data Diagnostics” offered tsdiffana.m, a Matlab script that produces the same measure (see

http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics; when viewed on 28 October, 2012, the

page listed the “last edited” data as 31 July 2006) and there are likely earlier uses in fMRI.450

The idea of working with differences dates to at least 1941 in the statistics literature in work John

von Neumann and colleagues (von Neumann et al., 1941). That work focused on estimation of “standard

deviation from differences” when the mean slowly varied from observation to observation. They point out

that the idea can traced back further, as early as 1870. In signal processing this estimator can be known

as the Allan variance, developed as a robust variance estimator in the presence of 1/f noise (Allan, 1966).455

In cardiology the “root mean square successive difference” is a standard measure of heart period variability

(Berntson et al., 2005), and as “mean successive squared difference” (MSSD) it has recently been used in

neuroimaging as an index neuronal variability (Samanez-Larkin et al., 2010; Garrett et al., 2013). For yet

more background see Kotz et al. (1988).

Despite successive work on finding the exact distribution of this variance estimate (Harper, 1967), or460

using it in a test for the presence of autocorrelation (Cochrane and Orcutt, 1949), we are unaware of any

study of the distribution of the individual differences averaged over a multivariate observation, as is the case

in this fMRI application.

Appendix B. Plotting the global variance decomposition

The global variance components, at each time point, are just a single scalar value squared. Thus they

may be more intuitively plotted in a signed RMS form. For example, instead of plotting variance AGt, DGt

and SGt, the signed quantities

GAt =Ȳt

GDt =(Ȳt+1 − Ȳt)/2

GSt =(Ȳt + Ȳt+1)/2

(B.1)
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can be plotted. These set of three time series may seem arbitrary, but have the feature of the sum of squares465

of GDt and GSt sum to the mean-square GAt and GAt,t+1.

Appendix C. Derivation of DSE variance decomposition

The decomposition of the average variance at time t and t + 1, Eqn. (5), is based on a simple algebraic

identity; for variables a and b,

a2 + b2 =
1

2
(a− b)2 +

1

2
(a+ b)2. (C.1)

This justifies a decomposition of the average variance at each voxel i, for each time t = 1, . . . , T − 1,

Y 2
it + Y 2

i,t+1

2
=

(
Yi,t+1 − Yit

2

)2

+

(
Yit + Yi,t+1

2

)2

. (C.2)

Averaging this expression over voxels i = 1, . . . , I gives the decomposition for scan pair variance At,t+1 in

Eqn. (5). Summing image variance At,t+1 over t, however,

T−1∑

t=1

At,t+1 =
T−1∑

t=1

(At +At+1)/2

=
1

2
A1 +

T−1∑

t=2

At +
1

2
AT

(C.3)

misses 1/2 of edge terms, which are added to produce the fundamental DSE decomposition in Eqn. (7).

Appendix D. Derivation of DSE ANOVA Mean Squares

Here we set out the least restrictive model possible to justify our expected values for the DSE ANOVA470

table (Table 1). While the DSE ANOVA table and decompositions A = D+S+E and AG = DG+SG+EG

are in mean-square (MS) units, below we develop the results in terms of sum-of-squares (SS) that, in each

case, can be divided by I × T to obtain the MS.

All of the results follow from application of rules for expectations and variances of quadratic forms of

mean zero vectors. For reference, if w is a mean zero random vector with covariance Σ, and B is a square475

matrix, then E(w>Bw) = tr(BΣ) and V(w>Bw) = 2 tr(BΣBΣ).

Appendix D.1. Model

In defining the the joint distribution of all I × T elements of the 4D data {Yit}, we will always assume

is that Yit is mean zero and has constant variance over time, V(Yit) = V(Yit′) for t 6= t′, but allow variance

to vary over space. For data organized as time series, length-T vectors Yi, let

V(Yi) =(ΣS)iiΣ
T
ii,

C(Yi, Yi′) =(ΣS)ii′Σ
T
ii′ ,

(D.1)
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where ΣS is the I × I spatial covariance matrix, common to all time points, and (ΣS)ii is the variance at

the ith voxel, ΣTii is the T ×T temporal autocorrelation matrix for voxel i, C(·) denotes covariance, and ΣTii′

is the T × T temporal cross correlation matrix for voxels i and i′. This implies that, for data organized as

images, length-I vectors Yt,

V(Yt) = ΣS . (D.2)

When a time-space separable covariance structure is assumed then ΣTii′ = ΣT for all i, i′.

Appendix D.2. A-var Expected SS

Total SS
∑
it Y

2
it has expected value

E

(
I∑

i=1

Y >i Yi

)
=
∑

i

(ΣS)ii tr(ΣTii)

= tr(ΣS)T.

(D.3)

Appendix D.3. D-var and S-var Expected SS.480

The total D-var SS is
∑I
i=1

∑T−1
t=1 (Yi,t+1 − Yit)2/4 =

∑I
i=1(DYi)

>DYi/4 where

D =




−1 1

−1 1

. . .
. . .

−1 1




(D.4)

is the (T − 1)× T finite difference matrix. We have

E(Y >i D
>DYi) = tr(D>D(ΣS)iiΣ

T
ii)

=(ΣS)ii

(
2(T − 1)− (ΣTii)1,2 − 2

T−1∑

t=2

(ΣTii)t,t+1 − (ΣTii)T,T−1

)
,

(D.5)

where notably the last expression only depends on the lag-1 temporal autocorrelations. To obtain more

interpretable results we further assume that there is a constant lag-1 autocorrelation at each voxel, ρi =
(
ΣTii
)
t,t+1

, for t = 1, . . . , T − 1, which reduces (D.5) to 2(T − 1)(ΣS)ii(1− ρi). This gives the expected total

D-var SS as

E

(∑

i

Y >i D
>DYi/4

)
= (T − 1)

∑

i

(ΣS)ii(1− ρi)/2. (D.6)

If we yet further assume constant temporal autocorrelation ρ, corresponding to our separable model, this SS

simplifies to tr(ΣS)(T − 1)(1− ρ)/2.

The expected SS for S-var is follows the same arguments with differencing matrix replaced with a running

sum matrix abs(D), negating the three negative terms in Eqn. D.5, and reducing to tr(ΣS)(T − 1)(1 + ρ)/2

under spatially and temporally homogeneous lag-1 temporal autocorrelation.485
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Appendix D.4. E-var Expected SS.

The total SS E-var is
∑I
i=1

∑
t=1,T Y

2
it/2 =

∑
t=1,T Y

′
t Yt/2, with expected value

E


∑

t=1,T

Y ′t Yt/2


 = tr(ΣS). (D.7)

Appendix D.5. AG-var Expected SS.

The global time series is Ȳt and total SS due to global is

I∑

i=1

T∑

t=1

Ȳ 2
t =I

∑

t

(1> Yt/I)2

=
∑

t

(1> Yt)
2/I,

(D.8)

where 1 is a vector of ones. The expectation of the squared term is V(1> Yt) = 1>ΣS 1, and thus the

expected SS is
T

I
1> ΣS 1 . (D.9)

Appendix D.6. DG-var and SG-var Expected SS.

Write the global differenced time series as Ȳ Dt = 1Y Dt /I where Y Dt = (Yt+1 − Yt) for t = 1, . . . , T − 1.

The total SS due to half differenced global DGt is then

I∑

i=1

T−1∑

t=1

(Ȳ Dt )2/4 =
T−1∑

t=1

(1> Y Dt )2/(4I). (D.10)

To find the expectation of the squared term, note that

V(Y Dt ) =2(ΣS − ΣS ◦ ΣSTt,t+1), (D.11)

where ◦ is the Hadamard product and ΣSTt,t+1 is the spatiotemporal covariance matrix, elements extracted

from the temporal cross correlation matrix as per (ΣSTtt′ )ii′ = (ΣTii′)t,t′ , and that

V(1> Y Dt ) =2

(
1′ ΣS 1−

∑

ii′

ΣSii′(Σ
T
ii′)t,t+1

)
. (D.12)

The final expression for the expected SS is then, with successive assumptions

T−1∑

t=1

V(1> Y Dt )/(4I) =
T−1∑

t=1

1′ ΣS 1(1− ΣTt,t+1)/(2I)

=(T − 1)1′ ΣS 1(1− ρ)/(2I),

(D.13)

where first equality comes from assuming a separable covariance structure and the second from a common

lag-1 autocorrelation.490

The result for SG-var follows similarly.
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Appendix D.7. EG-var Expected SS.

The total SS EG-var is
∑I
i=1

∑
t=1,T Ȳ

2
t /2, and following same arguments as for AG-var has expected

value
1

I
1>ΣS 1 . (D.14)

Results for the non-global terms in the decomposition AN = DN + SN + EN follow as difference of

respective total and global terms.

Appendix D.8. Expected value of the difference of percent S-var & D-var495

The convergence of S-var and D-var is a visual diagnostic indicating cleaned data. Here we find the

expression for the difference of the average normalized S-var and D-var measures. The most general case is

found using Equation D.5:

E (S/A−D/A) =E

(
1

T

T−1∑

t=1

St/A−
1

T

T−1∑

t=1

Dt/A

)

=
1

4ITA

∑

i

E
(
Y >i abs(D)> abs(D)Yi − Y >i D>DYi

)

=
1

IT

∑

i

(ΣS)ii
A

(
1

2
(ΣTii)1,2 +

T−1∑

t=2

(ΣTii)t,t+1 +
1

2
(ΣTii)T,T−1

)
,

(D.15)

where we’ve assumed A has negligible variability. This result can be seen to be a variance-weighted average

of lag-1 temporal autocorrelations over time and space. It can also be shown that a similar result holds for

each time t = 1, ..., T − 1,

E (St/A−Dt/A) =
1

I

∑

i

(ΣS)ii
A

(ΣTii)t,t+1, (D.16)

If we assume ρi =
(
ΣTii
)
t,t+1

, i.e. time-constant lag-1 autocorrelations at each voxel, D.15 reduces to

1

I

T − 1

T

∑

i

(ΣS)ii
A

ρi, (D.17)

as does D.16 but without the (T − 1)/T term.

These results show that the difference between normalized S-var and D-var is a weighted average of lag-1

autocorrelations.

Appendix E. Derivation of DVARS Null Distribution

As results are more naturally defined for squared quantities, we seek a null distribution for

DVARS2
t = Y Dt

>
Y Dt /I, (E.1)
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where Y Dt = Yt+1 − Yt as above. While an expression of the mean of DVARS can be obtained from Eqn.

(D.11), note also

E(DVARS2
t ) = tr(V(Y Dt ))/I. (E.2)

That is, the expected value of DVARS2
t is simply the variance of each voxel in the differenced data, averaged500

over voxels. The natural estimator of this is the sample mean (or robust equivalent) of the sample variance

image (or robust equivalent) of the differenced 4D data.

The variance is more involved

V
(
DVARS2

t

)
= 2 tr

(
V(Y Dt )V(Y Dt )

)
/I2, (E.3)

in particular depending on the entirety of the I×I difference image variance matrix. For the most restrictive

assumptions considered above V(Y Dt ) = 2(1− ρ)ΣS and thus

V
(
DVARS2

t

)
= 8(1− ρ)2

tr(ΣSΣS)

I2
. (E.4)

This dependence on the full spatial covariance demands the empirical approaches to variance estimations

taken in the body of the paper.

Only at this point do we invoke a normality assumption, and make use of the classic chi-square approx-505

imation for sums-of-squared normal variates (Satterthwaite, 1946). In this approach we equate the mean

and variance of c × DVARS2
t (cµ0 & c2σ2

0) and χ2
ν (ν & 2ν) and solve for c and ν, giving the multiplier

c = 2µ0/σ
2
0 and degrees-of-freedom ν = 2µ2

0/σ
2
0 as found in Section 2.4.

Appendix F. Power Transformations to Improve DVARS Variance Estimation

The robust IQR-based variance estimate reflects a normality assumption, equating the sample IQR with510

that of a standard normal. DVARS2
t , as a sum-of-squares and as reflected by its χ2 approximation, may

exhibit positive skew. Hence we consider power transformations of DVARS2
t that may improve symmetry

and the accuracy of the IQR variance estimate. While the asymptotically optimal power transformation to

normality for χ2 is known to be the d = 3 cube-root transformation (Hernandez and Johnson, 1980), our test

statistic is only approximately χ2 and, in particular, variance heterogeneity can worsen the approximation.515

To obtain a quantity that should be more symmetric consider the power transformation

Wt =
(
DVARS2

t

)d
. (F.1)

IQR-based estimates of the variance of W , σ2
W , will hopefully be more accurate than such estimates on

DVARS2. However, ultimately we seek estimates of the variance of DVARS2, and so for a given d we
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compute

V(DVARS2
t ) =V(W

1/d
t )

=
1

d
µ
2(1/d−1)
W σ2

W ,
(F.2)

where the last expression is the delta method variance of W
1/d
t , and µW is the mean of Wt (which we robustly

estimate with the median of Wt).

References

Allan, D.W., 1966. Statistics of Atomic Frequency Standards. Proceedings of the IEEE 54, 221–230.

doi:10.1109/PROC.1966.4634.520

Berntson, G.G., Lozano, D.L., Chen, Y.J., 2005. Filter properties of root mean square successive difference

(RMSSD) for heart rate. Psychophysiology 42, 246–252. doi:10.1111/j.1469-8986.2005.00277.x.

Burgess, G.C., Kandala, S., Nolan, D., Laumann, T.O., Power, J.D., Adeyemo, B., Harms, M.P., Petersen,

S.E., Barch, D.M., 2016. Evaluation of denoising strategies to address motion-correlated artifacts in

resting-state functional magnetic resonance imaging data from the human connectome project. Brain525

Connectivity 6, 669–680.

Ciric, R., Wolf, D.H., Power, J.D., Roalf, D.R., Baum, G., Ruparel, K., Shinohara, R.T., Elliott, M.A., Eick-

hoff, S.B., Davatzikos, C., Gur, R.C., Gur, R.E., Bassett, D.S., Satterthwaite, T.D., 2016. Benchmarking

confound regression strategies for the control of motion artifact in studies of functional connectivity.

ArXiv URL: http://dx.doi.org/10.1016/j.neuroimage.2017.03.020, doi:10.1016/j.neuroimage.530

2017.03.020, arXiv:1608.03616.

Cochrane, D., Orcutt, G.H., 1949. Application of Least Squares Regression to Relationships Containing

Auto- Correlated Error Terms. Journal of the American Statistical Association 44, 32–61. URL: http:

//www.jstor.org/stable/2280349, doi:10.2307/2280349.

Cole, D.M., Smith, S.M., Beckmann, C.F., 2010. Advances and pitfalls in the anal-535

ysis and interpretation of resting-state FMRI data. Frontiers in systems neuroscience

4, 8. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2854531{&}tool=

pmcentrez{&}rendertype=abstracthttp://www.ncbi.nlm.nih.gov/pubmed/20407579, doi:10.3389/

fnsys.2010.00008.

Craddock, R., Benhajali, Y., Chu, C., Chouinard, F., Evans, A., Jakab, A., Khundrakpam, B., Lewis, J.,540

Li, Q., Milham, M., et al., 2013. The neuro bureau preprocessing initiative: open sharing of preprocessed

neuroimaging data and derivatives. Frontiers in Neuroinformatics (Neuroinformatics 2013) .

42

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2017. ; https://doi.org/10.1101/125021doi: bioRxiv preprint 

http://dx.doi.org/10.1109/PROC.1966.4634
http://dx.doi.org/10.1111/j.1469-8986.2005.00277.x
http://dx.doi.org/10.1016/j.neuroimage.2017.03.020
http://dx.doi.org/10.1016/j.neuroimage.2017.03.020
http://dx.doi.org/10.1016/j.neuroimage.2017.03.020
http://dx.doi.org/10.1016/j.neuroimage.2017.03.020
http://arxiv.org/abs/1608.03616
http://www.jstor.org/stable/2280349
http://www.jstor.org/stable/2280349
http://www.jstor.org/stable/2280349
http://dx.doi.org/10.2307/2280349
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2854531{&}tool=pmcentrez{&}rendertype=abstract http://www.ncbi.nlm.nih.gov/pubmed/20407579
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2854531{&}tool=pmcentrez{&}rendertype=abstract http://www.ncbi.nlm.nih.gov/pubmed/20407579
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2854531{&}tool=pmcentrez{&}rendertype=abstract http://www.ncbi.nlm.nih.gov/pubmed/20407579
http://dx.doi.org/10.3389/fnsys.2010.00008
http://dx.doi.org/10.3389/fnsys.2010.00008
http://dx.doi.org/10.3389/fnsys.2010.00008
https://doi.org/10.1101/125021
http://creativecommons.org/licenses/by-nc/4.0/


Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., Anderson, J.S., Assaf, M.,

Bookheimer, S.Y., Dapretto, M., et al., 2014. The autism brain imaging data exchange: towards a large-

scale evaluation of the intrinsic brain architecture in autism. Molecular psychiatry 19, 659–667.545

Garrett, D.D., Samanez-Larkin, G.R., MacDonald, S.W.S., Lindenberger, U., McIntosh, A.R., Grady,

C.L., 2013. Moment-to-moment brain signal variability: a next frontier in human brain map-

ping? Neuroscience and biobehavioral reviews 37, 610–24. URL: http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=3732213&tool=pmcentrez&rendertype=abstract, doi:10.1016/

j.neubiorev.2013.02.015.550

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S.,

Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M., 2013. The minimal preprocessing pipelines

for the Human Connectome Project. NeuroImage 80, 105–124. URL: http://dx.doi.org/10.1016/j.

neuroimage.2013.04.127, doi:10.1016/j.neuroimage.2013.04.127, arXiv:NIHMS150003.

Gordon, E.M., Laumann, T.O., Adeyemo, B., Huckins, J.F., Kelley, W.M., Petersen, S.E., 2014. Gen-555

eration and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. Cerebral Cor-

tex URL: http://www.cercor.oxfordjournals.org/cgi/doi/10.1093/cercor/bhu239, doi:10.1093/

cercor/bhu239.

Harper, W.M., 1967. The Distribution of the Mean Half-Square Successive Difference. Biometrika 54,

419–433. URL: http://www.jstor.org/stable/2335034.560

Hernandez, F., Johnson, R., 1980. The large-sample behavior of transformations to normality. Journal of

American Statistical Association 75, 855–861. URL: http://www.tandfonline.com/doi/abs/10.1080/

01621459.1980.10477563, doi:10.1080/01621459.1980.10477563.

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012. Fsl. Neuroimage 62,

782–790.565

Kotz, S., Johnson, N., Read, C., 1988. Successive Differences in. Number v. 2 in Encyclopedia of Statistical

Sciences, Wiley. URL: http://onlinelibrary.wiley.com/book/10.1002/0471667196.

von Neumann, J., Kent, R.H., Bellinson, H.R., Hart, B.I., 1941. The mean square successive difference. The

Annals of Mathematical Statistics 12, 153–162. URL: http://www.jstor.org/stable/2235765.

Nichols, T., 2013. Notes on Creating a Standardized Version of DVARS , 1–5arXiv:1704.01469.570

Power, J., Schlaggar, B., Petersen, S., 2014a. Studying Brain Organization via Spontaneous fMRI Sig-

nal. Neuron 84, 681–696. URL: http://linkinghub.elsevier.com/retrieve/pii/S0896627314007958,

doi:10.1016/j.neuron.2014.09.007.

43

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2017. ; https://doi.org/10.1101/125021doi: bioRxiv preprint 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3732213&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3732213&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3732213&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1016/j.neubiorev.2013.02.015
http://dx.doi.org/10.1016/j.neubiorev.2013.02.015
http://dx.doi.org/10.1016/j.neubiorev.2013.02.015
http://dx.doi.org/10.1016/j.neuroimage.2013.04.127
http://dx.doi.org/10.1016/j.neuroimage.2013.04.127
http://dx.doi.org/10.1016/j.neuroimage.2013.04.127
http://dx.doi.org/10.1016/j.neuroimage.2013.04.127
http://arxiv.org/abs/NIHMS150003
http://www.cercor.oxfordjournals.org/cgi/doi/10.1093/cercor/bhu239
http://dx.doi.org/10.1093/cercor/bhu239
http://dx.doi.org/10.1093/cercor/bhu239
http://dx.doi.org/10.1093/cercor/bhu239
http://www.jstor.org/stable/2335034
http://www.tandfonline.com/doi/abs/10.1080/01621459.1980.10477563
http://www.tandfonline.com/doi/abs/10.1080/01621459.1980.10477563
http://www.tandfonline.com/doi/abs/10.1080/01621459.1980.10477563
http://dx.doi.org/10.1080/01621459.1980.10477563
http://onlinelibrary.wiley.com/book/10.1002/0471667196
http://www.jstor.org/stable/2235765
http://arxiv.org/abs/1704.01469
http://linkinghub.elsevier.com/retrieve/pii/S0896627314007958
http://dx.doi.org/10.1016/j.neuron.2014.09.007
https://doi.org/10.1101/125021
http://creativecommons.org/licenses/by-nc/4.0/


Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious but systematic

correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59, 2142–575

2154. URL: http://dx.doi.org/10.1016/j.neuroimage.2011.10.018, doi:10.1016/j.neuroimage.

2011.10.018.

Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.a., Vogel, A.C., Laumann, T.O.,

Miezin, F.M., Schlaggar, B.L., Petersen, S.E., 2011. Functional network organization of the human brain.

Neuron 72, 665–78. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3222858&580

tool=pmcentrez&rendertype=abstract, doi:10.1016/j.neuron.2011.09.006.

Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2014b. Methods to

detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84, 320–341. URL:

http://dx.doi.org/10.1016/j.neuroimage.2013.08.048, doi:10.1016/j.neuroimage.2013.08.048.

Salimi-Khorshidi, G., Douaud, G., Beckmann, C.F., Glasser, M.F., Griffanti, L., Smith, S.M., 2014. Au-585

tomatic denoising of functional MRI data: combining independent component analysis and hierarchical

fusion of classifiers. NeuroImage 90, 449–68. URL: http://www.ncbi.nlm.nih.gov/pubmed/24389422,

doi:10.1016/j.neuroimage.2013.11.046.

Samanez-Larkin, G.R., Kuhnen, C.M., Yoo, D.J., Knutson, B., 2010. Variability in nucleus accumbens

activity mediates age-related suboptimal financial risk taking. The Journal of Neuroscience 30, 1426–1434.590

URL: http://www.ncbi.nlm.nih.gov/pubmed/20107069, doi:10.1523/JNEUROSCI.4902-09.2010.

Satterthwaite, F.E., 1946. An Approximate Distribution of Estimates of Variance Components. Biometrics

Bulletin 2, 110–114. URL: http://www.jstor.org/stable/3002019.

Smith, S.M., Vidaurre, D., Beckmann, C.F., Glasser, M.F., Jenkinson, M., Miller, K.L., Nichols, T.E.,

Robinson, E.C., Salimi-Khorshidi, G., Woolrich, M.W., Barch, D.M., Uurbil, K., Van Essen, D.C., 2013.595

Functional connectomics from resting-state fMRI. Trends in cognitive sciences 17, 666–82. URL: http:

//www.ncbi.nlm.nih.gov/pubmed/24238796, doi:10.1016/j.tics.2013.09.016.

Smyser, C.D., Snyder, A.Z., Neil, J.J., 2011. Functional connectivity MRI in infants: Exploration of the

functional organization of the developing brain. NeuroImage 56, 1437–1452. URL: http://dx.doi.org/

10.1016/j.neuroimage.2011.02.073, doi:10.1016/j.neuroimage.2011.02.073, arXiv:NIHMS150003.600

Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H.,

et al., 2013. The wu-minn human connectome project: an overview. Neuroimage 80, 62–79.

44

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2017. ; https://doi.org/10.1101/125021doi: bioRxiv preprint 

http://dx.doi.org/10.1016/j.neuroimage.2011.10.018
http://dx.doi.org/10.1016/j.neuroimage.2011.10.018
http://dx.doi.org/10.1016/j.neuroimage.2011.10.018
http://dx.doi.org/10.1016/j.neuroimage.2011.10.018
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3222858&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3222858&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3222858&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1016/j.neuron.2011.09.006
http://dx.doi.org/10.1016/j.neuroimage.2013.08.048
http://dx.doi.org/10.1016/j.neuroimage.2013.08.048
http://www.ncbi.nlm.nih.gov/pubmed/24389422
http://dx.doi.org/10.1016/j.neuroimage.2013.11.046
http://www.ncbi.nlm.nih.gov/pubmed/20107069
http://dx.doi.org/10.1523/JNEUROSCI.4902-09.2010
http://www.jstor.org/stable/3002019
http://www.ncbi.nlm.nih.gov/pubmed/24238796
http://www.ncbi.nlm.nih.gov/pubmed/24238796
http://www.ncbi.nlm.nih.gov/pubmed/24238796
http://dx.doi.org/10.1016/j.tics.2013.09.016
http://dx.doi.org/10.1016/j.neuroimage.2011.02.073
http://dx.doi.org/10.1016/j.neuroimage.2011.02.073
http://dx.doi.org/10.1016/j.neuroimage.2011.02.073
http://dx.doi.org/10.1016/j.neuroimage.2011.02.073
http://arxiv.org/abs/NIHMS150003
https://doi.org/10.1101/125021
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Theory
	Notation
	DSE Variance Decomposition
	DSE ANOVA Table & Reference Values
	Inference for DVARS
	Standardized DVARS

	Methods
	Simulations
	Analysis of Functional Connectivity
	Real Data
	Human Connectome Project (HCP)
	Autism Brain Imaging Data Exchange (ABIDE)


	Results
	Simulations
	Real Data
	blackTemporal Diagnostics: DVARS Inference and Standardized Measures
	Effect of DVARS Inference Testing on Functional Connectivity
	Temporal Diagnostics: Before and After Clean-up


	Discussion
	Limitations and Future Work

	DVARS History
	Plotting the global variance decomposition
	Derivation of DSE variance decomposition
	Derivation of DSE ANOVA Mean Squares
	Model
	A-var Expected SS
	D-var and S-var Expected SS.
	E-var Expected SS.
	AG-var Expected SS.
	DG-var and SG-var Expected SS.
	EG-var Expected SS.
	Expected value of the difference of percent S-var & D-var

	Derivation of DVARS Null Distribution
	Power Transformations to Improve DVARS Variance Estimation

