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Abstract

The variability in population size is a key quantity for understanding the
evolutionary history of a species. We present a new method, CubSFS, for
estimating the changes in population size of a panmictic population from
the site frequency spectrum. First, we provide a straightforward proof for
the expression of the expected site frequency spectrum depending only on
the population size. Our derivation is based on an eigenvalue decomposition
of the instantaneous coalescent rate matrix. Second, we solve the inverse
problem of determining the variability in population size from an observed
SFS. Our solution is based on a cubic spline for the population size. The
cubic spline is determined by minimizing the weighted average of two terms,
namely (i) the goodness of fit to the SFS, and (ii) a penalty term based on
the smoothness of the changes. The weight is determined by cross-validation.
The new method is validated on simulated demographic histories and applied
on data from nine different human populations.
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Introduction

The variability in population history is informative about the evolution of
a species. Two recent examples are The 1000 Genomes Project Consortium
et al. (2015) and Terhorst et al. (2017) where smooth curves for the variability
in population size are estimated. Both applications are based on a two-step
procedure: First, a piecewise constant population size is estimated for one or
more individuals from the population. Second, a smoothing spline is applied
to produce visually appealing curves for the variability in population size. We
avoid this two-step procedure by tailoring the theory of smoothing splines
directly to the inference problem.

We propose a novel non-parametric method CubSFS for estimating the
changes in population size based on the site frequency spectrum (SFS). Polan-
ski et. al. (Polanski et al., 2003a; Polanski and Kimmel, 2003b) provide a
method for calculating the expected SFS given the changes in population
size. We aim to solve the inverse problem: Given an observed SFS we want
to estimate the changes in population size. Myers, Fefferman, and Patter-
son (2008) showed that the solution to this problem is in general not unique
(but see Bhaskar and Song (2014)), and we therefore need to regularize or
constrain the variability in population size.

Denote the SFS by ξ = (ξ1, ξ2, . . . , ξn−1) such that ξi is the number of
segregating sites with i derived alleles among the n sampled sequences. The
population size N(r) is the number of diploid individuals in the population
at generation r. We use scaled time t where one time unit corresponds to
2N(0) generations. In this time λ(t) = 2N(0)/[2N(2N(0)t)] is the coalescent
rate at time t. The integrated intensity is defined as

Λ(t) =

∫ t

0

λ(u)du for t ≥ 0.

The main aim is to estimate a curve Λ = {Λ(t) : t ≥ 0} that fits the data and
at the same time is regular. It is straightforward to transform the integrated
intensity to variability in population size.

The CubSFS method uses a roughness penalty approach (Green and Sil-
vermann, 1994) to solve the inverse problem (see Figure 1). The main idea
is to estimate the variability in population size by weighing two opposing
forces: The similarity between the expected and the observed SFS versus a
slowly varying curve.

In particular our solution is the function that minimizes the score function

S(Λ) = (1− α)
n−1∑
i=1

(E[ξi]− ξi)2

E[ξi]
+ α

∞∫
0

(Λ′′(t))
2
dt. (1)
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The first term in the score function is the sum of squares of the residuals
Ri = (E[ξi] − ξi)/

√
E[ξi] measuring the distance between the observed and

the expected SFS. Here E[ξi] is the expected number of sites with i derived
alleles determined from Λ. The second term

∫∞
0

(Λ′′(t))2 dt is a roughness
penalty, and the smoothing parameter 0 < α < 1 determines the amount of
regularization.

If α is large then the most important term in the score function is the
roughness penalty and the minimizer Λ̂ will display very little curvature. On
the other hand if α is small then the main contribution to the score function
is the residual sum of squares, and the curve estimate Λ̂ must resemble the
data even if it requires a rather variable curve. The smoothing parameter is
estimated using cross-validation.

In Figure 1 we illustrate the method. For a range of values of α we show
the expected site frequency spectrum (top left), the corresponding residuals
Ri (bottom left), the coalescent rate (top right), and the roughness penalty
(bottom right) for the estimated value of Λ.

The SFS is a popular summary statistics for genetic variation and in
the last few years multiple methods have been developed to infer population
histories from the SFS. These methods include estimates of the changes in
population for a single population (Reppell et al., 2014; Eldon et al., 2015;
Liu and Fu, 2015; Bhaskar et al., 2015; Gao and Keinan, 2016), and estimates
of ancestral population sizes, split times and migration rates using the joint
SFS for multiple populations (Gutenkunst et al., 2009, 2010; Lukic and Hey,
2011, 2012; Excoffier et al., 2013).

The SFS approach most often assumes independence between the segre-
gating sites. Methods that take recombination or linkage into account have
recently been developed. Palacios (Palacios and Minin, 2013; Palacios et al.,
2015) and Lan et al. (2015) develop a method based on gene genealogies.
They provide a non-parametric Bayesian estimate of the population size us-
ing a Gaussian process as a prior on the coalescent rate variability. However,
the gene genealogies are not directly available and the error of inferring these
have large effects on the estimated population size (Palacios et al. (2015)).
Hidden Markov models (HMMs) are a popular framework for integrating out
the unknown gene genealogies. The HMM framework for estimating changes
in population size is well known in the PSMC method (Li and Durbin, 2011)
and the MSMC method (Schiffels and Durbin, 2014) (see also Sheehan et al.
(2013) and Terhorst et al. (2017)).

An alternative method is based on the Approximate Bayesian Compu-
tation (ABC) approach (Boitard et al., 2016). Here, the idea is to simulate
changes in population size, calculate the corresponding appropriate summary
statistics, and compare with the observed data summary statistics. If the sim-
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Figure 1: The elements of the score function. The effect of the smoothing
parameter α on the elements of the score function (see equation (1)) for the
CEU population (m = 14 and tm = 1.875). To the left, is A: The expected
and the observed SFS (black dots), and C: The residuals which is the square
root of the relative distance to the observed SFS. For both plot the tail is
grouped to include at most 10% of the sites. To the right, is B: The coalescent
rate, and D: The derived coalescent rate with time in coalescent units. Notice
that the colour legend is not linear.
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ulated data is similar to the observed data, then the population size history
is accepted. Finally, the posterior distribution of the population histories is
determined based on the accepted samples.

We show that CubSFS is an attractive alternative to the methods men-
tioned above. In particular we can handle a multitude of samples through the
SFS. Further, we avoid simulation-based methodology and prior parametric
assumptions by detailed analytical considerations. Our method is validated
through simulations and applied to data from nine different populations from
the 1000 Genomes project (The 1000 Genomes Project Consortium et al.,
2015).

Results

Inference on 9 different populations

We estimate the variability in population size for 9 different populations using
the CubSFS method. The results are shown in Figure 2 (additional results
are shown in Supplementary Figures S16 - S24). The results are very similar
within continents Asia (CHB, CHS, and JPT), Europe (CEU, FIN, GBR,
and TSI) and Africa (LWK and YRI). The Asian and European populations
agree on an overall bottleneck ranging from 2 to 300 thousand years ago, with
a possible slightly increase in populations size approximately 20 - 30 thousand
years ago. The African populations agree on one bottleneck coherent with
the decline in population size of the other 7 populations happening furthest
back in time. The African bottleneck is indicated slightly earlier than the
other 7 populations, agreeing with the out of Africa hypothesis.

Simulation studies

To verify our method we consider four different scenarios: Exponential growth,
two epochs, a bottleneck, and a zigzag model (Schiffels and Durbin, 2014).
We consider 200 sequences of length 5 · 108 and the number of segregating
sites is 6 · 106.

The population size inferred from CubSFS is shown in Figure 3 (addi-
tional results are provided in Supplementary Figures S6 - S10). The method
generally provides sensible results for all models. The exponential growth
model is inferred particularly well. For instantaneous changes as the two
epochs, the bottleneck, and the zigzag models the smoothing seems to detect
the trends in general, but the instantaneous changes in population size are
more difficult to detect.
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Figure 2: The final choice for the 9 different populations. The red line is
the point-wise median of the bootstrap estimates using the CubSFS method.
The orange lines are the point-wise confidence intervals. The final choice of
parameter setting is determined by the AIC based on the point-wise median.
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Figure 3: The final choice for the simulated models. The black line is the true
model and the red line is the point-wise median of the bootstrap estimates
based on the CubSFS method. The orange lines are the point-wise confidence
intervals. The dotted grey vertical lines are the expected time to most recent
common ancestor for each of the four models. The rug points are the time
points used by the CubSFS method. For three of the models A: exponential
growth, B: two epochs and C: bottleneck the times points are placed linearly
on an logarithmic scale in coalescent units prior to estimation. For model
D: zigzag the time points are placed according to knowledge of the model.
The final choice of parameter setting is determined by the AIC based on the
point-wise median of the results from the bootstrap samples.
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Methods

Theory

Recall that ξ = (ξ1, ξ2, . . . , ξn−1) is the SFS for n sequences. Furthermore
N(·) is the population size, λ(t) = N(0)/N(2N(0)t) is the coalescent rate,
and Λ(t) =

∫ t
0
λ(u)du is the integrated intensity. The score function is given

by

S(Λ) = (1− α)
n−1∑
i=1

(E[ξi]− ξi)2

E[ξi]
+ α

∞∫
0

(Λ′′(t))
2
dt,

where 0 < α < 1 is the smoothness parameter, and E[ξi] is the expected num-
ber of sites with i derived alleles based on the integrated intensity function
Λ.

The value E[ξi] is evaluated using the probability pi(Λ) of observing a site
with i derived alleles as

E[ξi] = Snpi(Λ)

where Sn is the number of segregating sites,

pi(Λ) =
E[ξi(Λ)]

n−1∑
l=1

E[ξl(Λ)]

=

n∑
j=2

j∑
k=2

j(j − 1)
(
n−k
i−1

) (n−i−1)!(i−1)!
(n−1)!

Akj ej(Λ)

n∑
j=2

ej(Λ)
j∑

k=2

j(j−1)
k−1

Akj

, (2)

and Akj and ej(Λ) are defined by Polanski et al. (2003a):

Akj =

n∏
l=k,l 6=j

(
l
2

)
n∏

l=k,l 6=j

[(
l
2

)
−
(
j
2

)]
for k ≤ j ≤ n, Ann = 1, and

ej(Λ) =

∞∫
0

e−(j
2)Λ(t)dt.

Equation (2) can be evaluated using constants defined by Polanski and Kim-
mel (2003b). A straightforward proof of equation (2), different from that
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provided by Polanski et al. (2003a), is given in the Supplementary Informa-
tion.

We estimate the integrated intensity by a cubic spline (Green and Sil-
vermann, 1994) defined on m + 1 time points back in time (see Supplemen-
tary Figure S2). The time points 0 = t0 ≤ t1 ≤ . . . ≤ tm are proposed to be
evenly distributed on a logarithmic scale (Li and Durbin, 2011), however, the
placement should incorporate any prior knowledge of the model. The cubic
spline has the following properties (see also the Supplementary Information):

(i) λ(0) = Λ′(0) = 1

(ii) Λ(0) = a0 = 0

(iii) after tm the intensity is constant

(iv) the integrated intensity is increasing.

Implementation

Given α, t0, t1, . . . , tm and the values Λ(ti) = ai for i = 0, . . . ,m the cubic
spline of Λ is fully specified (see the Supplementary Information). The score
function (1) is minimized with respect to the values of 0 = a0 ≤ a1 . . . ≤ am
given α and t0, t1, . . . , tm. The search in (a1 ≤ · · · ≤ am), determining an
increasing cubic spline that minimize the score function S(Λ), is performed
used the augmented Lagrangian algorithm implemented in the nloptr pack-
age provided in R (Birgin and Martnez, 2008) using COBYLA (Constrained
Optimization BY Linear Approximations) as the local solver (Powell, M. J.
D., 1994; Powell, 1998). The method is called successively until the distance
between two successive estimates are less than 10−3 for all m parameters.

The implementation of the CubSFS method also applies to the folded
SFS (see the Supplementary Information).

Estimation of the smoothing parameter and confidence
intervals

The smoothness parameter α is determined using cross-validation (see Sup-
plementary Figure S4). Briefly, we divide the segregating sites into K ran-
dom groups. For each group we treat the SFS from that specific group as
the validation data and the SFS from the remaining groups as the train-
ing data. For group k we calculate the expected SFS based on the training
data E[ξ(k)], and compare to the observed SFS from the validation data, ξ(k)

(k = 1, . . . , K). We treat each group as a validation group exactly once and
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calculate the cross-validation mean square error. We finally estimate the
smoothing parameter by minimizing the mean square error

α̂ = argmax
α

1

K

K∑
k=1

n−1∑
i=1

(
ξ

(k)
i − E[ξ

(k)
i ]
)2

E[ξ
(k)
i ]

.

Point-wise confidence intervals can be determined by means of bootstrap-
ping from a multinomial distribution defined from the observed SFS and the
number of monomorphic sites. For each bootstrapped SFS we find Λ̂i, and
the lower and upper limits of the confidence interval at time t is then de-
termined as the 2.5% and the 97.5% quantile, respectively, of {Λ̂i(t)}i=1,...,B,
where B is the number of bootstrap samples. The median is given by the
50% quantile of the bootstrap samples.We choose B = 200.

Validation and data analysis

Four different models are used to validate the CubSFS method: Exponential
growth, two epochs, a bottleneck, and a zigzag model (Schiffels and Durbin,
2014). Recall that we consider 200 sequences of length 5 ·108 and the number
of segregating sites is 6 · 106.

In order to apply the CubSFS method we must choose the number and
placement of the points t1, . . . , tm. We place the points using the same pro-
cedure as Li and Durbin (2011; see Supplementary Information eq. (33)).
We use a number of points m + 1 equal to 4, 7, 10 or 15, and the last time
point tm is placed at 0.5, 1 or 1.5 times the expected time to the most recent
common ancestor. For the zigzag model, further results are produced for 15,
20 and 30 time points placed according to knowledge of the model.

The SFS for the 9 different populations used by Liu and Fu (2015) are
kindly provided by the authors, and we used the CubSFS method for esti-
mating the changes in populations size back in time. We set the expected
time to most recent common ancestor to 600 thousand years ago, and let
the last time point be either 1, 1.5 or 2 times 600 thousand years ago. The
time points are placed according to equation (33) of the Supplementary In-
formation using a total of 15, 20 or 30 time points. The time points are
transformed into coalescent units prior to running the CubSFS method by
means of N(0) = 10, 000 and a generation time of 24 years, leaving the last
time point tm in coalescent units at 1.25, 1.875(= E[TMRCA]) or 2.5 back in
time.

The final results are transformed from coalescent units back to calendar
years using a total of G = 3, 234.83 Mbp and a mutation probability of
µ = 1.2 · 10−8 per generation per bp (see the Supplementary Information).
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Akaike’s Information Criteria

The final choice of parameter setting is chosen among all suitable parameter
settings using the Akaike’s Information Criteria (AIC): The number of free
parameters are 2m and the likelihood of the observed SFS is assessed through
the multinomial distribution defined by the probability of observing a site
with i derived alleles pi(Λ) (see equation (2)). This probability is either
determined from the estimated integrated intensity, or from the points-wise
median of the bootstrap samples (see the Supplementary Information)

Discussion

In this paper we have assumed a Kingmans coalescent in a panmictic popu-
lation. Under these assumption the reciprocal coalescent rate is in fact the
effective population size. However, a panmictic population is very rare, and
whether the change in population size is possible to identify using the SFS is
still under debate. Mazet et al. (2016) takes the interpretation of the recipro-
cal coalescent rate a step further by loosing the panmictic assumption. They
find that the estimated coalescent rate can be explained by two different sce-
narios: Either changes in population size for one panmictic population, or
migration between multiple populations with constant population sizes.

The CubSFS method estimates the changes in coalescent rate dependent
only on prior defined time points placed back in time on a coalescent scale.

A basic assumption of our roughness penalty approach is that the pop-
ulation size is slowly varying. This assumption is valid for the exponential
growth model, and we believe this is the main reason why this model is in-
ferred particularly well. For the dis.continuous models, increasing the num-
ber of time points seems to enable more specific timing of the instantaneous
changes in population size. With only a few, i.e. 4 or 7, time points the
dependencies between time points is high. However, with more than 10 or
15 time points the CubSFS method is able to evaluate both instantaneous
changes in population size and confidence limits.

The ability to estimate the population size depends on the placement of
the time points. Placing the last time point before the expected time to
the most recent common ancestor may induce additional fluctuations in the
recent past. The time points have to capture the whole period of which the
SFS provides information. The CubSFS method provides plausible estimates
for well placed time points, even when reaching beyond the time to the most
recent common ancestor. In this case the CubSFS method recognises the lack
of information after the time to most recent common ancestor by inferring a
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constant population size.
The score function (equation (1)) is composed of two elements, which

both of them may be changed to accomidate any prior knowledge or different
scenarios. The first term, measuring the similarities between the observed
data and the expected from the model specified by the spline, can include
any other summary statistics, i.e. LD patterns or runs of homozygosity.
Hence dependencies between sites and quality of the observed data can be
included in the estimation similar to the PopSizeABC (Boitard et al., 2016).
The main advantage of our approach is that we avoid simulations by detailed
analytical considerations.

Future studies would be able to build on the joint SFS of multiple popu-
lations, using the covariance between population specific SFSs as a measure
of similarity, enabling inference of the different changes in size of the popu-
lations. However, adding admixture and migration to this set-up, as well as
analysing the analytical expression of the covariance within changing popu-
lation sizes is a topic for further research.

Likewise, the second term of the score function, i.e. the regularisation
term, can be adjusted. Here we use the L2 norm of the smoothing spline.
However, other functions can be used such as the absolute value of the
smoothing spline (the L1 norm). The choice of regularisation will affect
the smoothness of the estimated spline.

Green and Silvermann (1994) discuss the fact that using the L2 norm
for regularisation is similar to assigning a Gaussian prior to the space of all
smooth function in a Bayesian setting (see Green and Silvermann (1994),
section 3.8). Hence, our method is similar to those developed by Palacios
et. al. (Palacios and Minin, 2013; Palacios et al., 2015), without the need to
infer the gene genealogies.

The last part of the score function is the amount of smoothing, and here
we use a cross-validation technique on the segregating sites to estimate the
smoothing parameter. Other methods can be used, such as the leave-one-out
theory used in kernel estimation. However such techniques may depend on
the sample size n, of which the cross-validation technique is independent.

Software Availability

The CubSFS method is implemented in R and is available upon request
(please contact BLW at berit@econ.au.dk). An R package will be available
soon.
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