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3 Instituto de Bioloǵıa Molecular y Celular de Plantas (IBMCP), CSIC-UPV, 46022 Valencia, Spain
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Ecological networks, both displaying mutualistic or antagonistic interactions, seem to share com-
mon structural traits: the presence of nestedness and modularity. A variety of model approaches and
hypothesis have been formulated concerning the significance and implications of these properties.
In phage-bacteria bipartite infection networks, nestedness seems to be the rule in many different
contexts. Modeling the coevolution of a diverse virus-host ensemble is a difficult task, given the
dimensionality and multi parametric nature of a standard continuous approximation. Here we show
that this can actually be overcome by using a simple model of coevolving digital genomes on a
spatial lattice and having exactly the same properties, i.e. a genome-independent fitness associated
to fixed growth and death parameters. A matching allele model of phage-virus recognition rule is
enough to generate a complex, diverse ecosystem with heterogeneous patterns of interaction and
nestedness, provided that interactions take place under a spatially-constrained setting. It is found
that nestedness seems to be an emergent property of the coevolutionary dynamics. Our results indi-
cate that the enhanced diversity resulting from localized interactions strongly promotes the presence
of nested infection matrices.

I. INTRODUCTION

Our biosphere is a complex adaptive system where
flows of energy and matter take place through tangled
ecological networks (Montoya, Pimm, and Sole 2006).
Most of these flows occur at the level of microorgan-
isms, and microbial communities are in turn constantly
coevolving with their viruses in highly dynamical ways.
One dramatic illustration of the permanent arms race
between bacteria and their viral partners is provided by
the staggering scale of ecological interactions in marine
ecosystems (Suttle 2005; Suttle 2007). It has been esti-
mated that 1030 viruses might be present in the entire
marine biotas, while no less than 1023 phage infections
are taking place every second. The impact on population
dynamics is not less impressive: bacteriophages might
kill around 20% of the total microbial biomass in a single
day. This massive turnover happens in an evolutionary
context: bacteria and phages constantly (and rapidly)
coevolve. Such coevolutionary arms races occur in all
known examples, including the gut microbiome or soil
ecosystems, and provide a source of both phenotypic and
genotypic diversity while affecting community structure
(Koskella and Brockhurst 2014).

On a large-scale perspective, the resulting networks of
interaction between phages and their host microbes dis-
play a number of interesting regularities emerging from
the underlying arms race dynamics (Weitz et al. 2013).
One pervasive feature of the virus-host infection net-
works (along with modularity) is the presence of nest-
edness, namely the presence of a hierarchical pattern
where (ideally) we can order both microorganisms and
phages as illustrated in Figure 1. This type of pattern,
which appears widespread in a wide array of contexts,

has also been explained under rather different ways, from
species-specific approaches grounded in the given com-
munity organisation to abstract statistical physics mod-
els. Some of these studies support the existence of opti-
misation principles that would pervade the nested archi-
tecture of ecological webs (Suweis et al. 2013) . How-
ever, this idea has been challenged by further studies
revealing that nested structures are likely to be an in-
evitable byproduct of other more fundamental properties
of these graphs, in particular their heterogeneous charac-
ter (Johnson, Dominguez-Garcia, and Munoz 2013; Feng
and Takemoto 2014). What is the origin of nested webs
in antagonistic systems?

The nested pattern found in phage-bacteria infection
networks has been hypothesized to result from a coevolu-
tionary sequence of adaptations driven by gene-for-gene
recognition processes (Agrawal and Lively 2003; Flor
1956; Thompson and Burdon 1992; Weitz et al. 2013).
In a dynamic gene-for-gene coevolutionary sequence, new
mutations arising in the bacterial genome confer resis-
tance to concurrent phages, while maintaining resistance
to phages that were abundant in the past. Likewise, mu-
tations in the concurrent phages result in their ability to
infect these newly arose bacterial genotypes while still
being able of infecting past bacterial genotypes (Bohan-
nan and Lenski 2000). This process results in bacterial
genotypes that are resistant to a subset of all possible
phages and phages able of infecting a subset of all bacte-
rial genotypes. In other words, the most infectious phage
has access to most bacterial genotypes while the second
most infectious phage has only access to a subset of these
bacterial genotypes.

From the bacterial perspective, the most resistant
bacteria can be only infected by a limited number of
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phages (usually the most infectious one) while the sec-
ond most resistant bacteria can be infected a a larger
number of phages (Figure 1). According to the gene-
for-gene coevolutionary dynamics, fitness costs may ap-
pear to limit the phages to broader their host range
without limits; bacteria also suffer of fitness costs that
limit their capacity to resist all possible phages (Ashby
and Boots 2017; Jover, Cortez, and Weitz 2013; Jover
et al. 2015). The gene-for-gene model produces a wide
variety of evolutionary outcomes that include stable ge-
netic polymorphisms either within a range of infectivity
or defence (Segarra 2005) or across multiple ranges pro-
vided direct frequency-dependent selection is on opera-
tion (Tellier and Brown 2007), and fluctuating selection
between narrow- and broad-range specialists and gener-
alists (Agrawal and Lively 2003).

A popular alternative to the gene-for-gene model is the
matching allele model (Agrawal and Lively 2003; Weitz
et al. 2013). In this model, bacteria evolve resistance to a
single phage genotype and lose resistance to other phages.
Likewise, mutations in phage genomes confer the ability
to infect new evolved bacterial genotypes while losing the
capacity to infect ancestral bacterial genotypes. Hence-
forth, bacteria attempt to avoid the most common phage
while phages seek to match the most common host (Frank
1993). The indirect negative frequency-dependent selec-
tion created by the matching allele model leads to fluc-
tuating selection between equally highly specific geno-
types. This high specificity between bacterial host and
the viruses that can infect them translates into a mod-
ular structure in the phage bacteria infection networks
(Weitz et al. 2013). In the extreme case in of a one-to-
one matching between bacteria and phages, the resulting
infection network is call monogamous (Korytowski and
Smith 2015).

The majority of empirical evidences, some being gen-
erated within evolution experiments, from bacteria and
phages (Bohannan and Lenski 2000; Flores et al. 2011),
plants and diverse plant pathogens (Flor 1956; Hillung et
al. 2014; Thompson and Burdon 1992), fruit flies and the
sigma virus (Bangham et al. 2007), and fishes (Mouillot,
Krasnov, and Poulin 2008; Vazquez et al. 2005) support
that variation in hosts and parasites degrees of special-
ization is in general good agreement with the expecta-
tions from the gene-for-gene model. Modular infection
networks have been also described at higher taxonomic
levels, yet with a nested structure within each module
(Flores, Valverde, and Weitz 2013; Roux et al. 2015).

In this paper we present a minimal model of bacteria-
phage interaction that provides a minimal framework to
address the problem of what are the requirements for
evolving a nested infection network structure. Although
other models have been formulated to that goal (Beckett
and Williams 2013; Jover, Cortez, and Weitz 2013; Jover
et al. 2015; Korytowski and Smith 2015) they rely on a
large number of parameters and required some special as-
sumptions concerning the shape of interaction functions.
Here we have assumed the smallest amount of complexity
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FIG. 1: Many ecological networks are characterised by a pat-
tern of nestedness. Our mathematical definitions of nested-
ness are derived from studies of bipartite networks (or two-
mode) networks. A nested network displays a particular pat-
tern of interactions that we can measure and detect. The
left panel shows a bipartite network with two set of nodes.
For example, one set corresponds to bacteria (blue balls) and
the other to phages (red balls). Links represent interactions
(infections) between pairs of dissimilar types. This bipar-
tite network also accepts a matrix representation where rows
and columns represent the two types of nodes and the en-
tries of the matrix indicate the presence (white square) or
absence (empty square) of pairwise interactions. The right
panel shows an example of perfectly nested network, i.e., the
non-zero elements of each row in the matrix are a subset of
the non-zero elements in the subsequent rows.

by using a quasi-neutral model of bacteria-phage interac-
tions that can account for the emergence of nested webs.

II. NEUTRAL COEVOLUTION MODEL

In this section we define our digital model of host-
phage coevolution (all results published in this article are
available upon request). Instead of using a model where
a diverse repertoire of parameters is associated with
each potential phenotype (resulting from a predefined
genotype-phenotype mapping) we take the most simpli-
fying assumption, namely a fully neutral system. In
the spirit of other theoretical and modelling approaches
(Alonso, Etienne, and McKane 2006) the species-level
idiosyncrasies are ignored in favour of an upper-level of
description. By using this toy model approach, we hope
to gather insight into the network-level universals.

The model considers two populations of replicators,
namely phages and bacteria, each represented as a ν-
dimensional string. Specifically, we indicate as Sip and

Sjh, respectively the digital genomes (bit strings) associ-
ated to the i-th and j-th phage and bacteria genotypes.
In other words, we have the strings given by the bit se-
quences:

Sih = (si1h , ..., s
iν
h ) (1)

Sip = (si1p , ..., s
iν
p ) (2)
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FIG. 2: Coevolution in coupled landscapes associated to a phage-bacteria model based on a digital genomes representation.
Each individual is described by means of a digital genome of length ν. The model dynamics is defined on a two-dimensional
surface (a) where the color of each site indicates (in this case) the presence of different strings. In (b) an expanded area show
the presence of local patchiness where each site (c) can be occupied by one string of each class. Strings can move randomly to
neighbouring free sites, as indicated by the grey arrows. From the point of view of the genotype space, we have two coupled
sequence hypercubes (here ν = 4) where similarity between phage and bacteria recognition sequences (i.e. the matching allele
model or recognition, determines the probability of interaction. Two different hypercubes are shown, one for phages (left) and
another (right) for bacteria. One given virus (like 1110) will be able to interact with those bacteria whose genome is closer
(the probability of this interaction is indicated by weighted gray lines). The basic rules used in the model are summarised in
(e-h). These are: (e) sequence removal (death), (f) replication of host string, which can be accurate H → 2H or inaccurate
H → H +H ′, for the phage-bacteria interaction.

with Sijh , S
ij
p ∈ {0, 1} where i = 1, ..., 2ν . Both popula-

tions reproduce and evolve on a two-dimensional space
with toroidal boundary conditions. In Figure 2 we dis-
play the structure of the coupled interaction between
phages and bacteria, which will interact under a genome
matching rule, defined below.

The model is intended to define a minimal setting of
rules including a random death of strings at a given rate,
which can be represented as decay reactions, namely

Sih
δh−→ 0 Sjp

δp−→ 0 (3)

independent on their specific genome sequence. The bac-
terial strains are assumed to replicate leading to two iden-
tical copies with a probability that depends on the mu-
tation rate, namely

Sih
rh(1−µ)ν−−−−−−→ 2Sih (4)

where (1 − µ)ν is the probability that all the bits are
properly copied (no mistakes occur). Any mutation in at
least one bit in the string will lead to a different sequence,
namely

Sih
rhW

h
ij−−−−→ Sih + Sjh (5)

where Sjh will be usually a one-mutation neighbour in
sequence space (provided that mutation rates are small
enough) but in general the probability associated to a

mutation from Sih to Sjh will be

W k
ij = (1− µ)ν−dH [Ski ,S

k
j ]µdH [Ski ,S

k
j ],

being dH [Ski , S
k
j ] the Hamming distance between two se-
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FIG. 3: Temporal dynamics of connectance in a typical run of
the model. The connectance stabilises around a well-defined
average value C ≈ 0.45. This density of links allows for a
high diversity of possible system configurations. From left to
right, the snapshots (whose location is pointed with stars in
the curve) display an evolving pattern of spatial heterogeneity.
Here we use the same parameters described in the main text.

quences:

dH [Ski , S
k
i ] =

ν∑
i=1

|ski − ski |. (6)

The reproduction of the phage requires the infection of
a bacterial cell provided that a genome matching occurs.
If the matching is perfect (and thus dH = 0) we assume
that the interaction occurs with probability φ = 1, but
if dH > 0 the probability φ will decay linearly with the
Hamming distance (since recognition and matching are
less accurate):

φ(dH) = 1− dH
ν

(7)

Specifically, two strings belonging to a phage Sip and a

host Sjh will lead to an error-free reaction:

Sih + Sjp
rp(1−µp)ν−−−−−−−→ 2Sjp (8)

and the alternative scenario with a mutated offspring:

Sih + Sjp
rpW

p
jl−−−−→ Sjp + Slp (9)

where the term W p
jl is defined as before.

The final set of rules involves the spatial dynamics
of strings on the lattice. Each site in this lattice can
be occupied by one string of each class. Host and
parasite strings move, independently and randomly, to
empty neighbour cells with diffusion probabilities Dh

and Dp, respectively. To simplify the analysis, all the
simulations were run with maximum diffusion constants
Dh = Dp = 1, also setting δh = δp = 10−2. In this way,
we strongly reduce the parameter space, considering the
diffusion and decay properties of all strings identical, no
matter their precise sequence.

The rest of the parameters has been chosen as follows.
The mutation rate of the virus must be larger than the
one exhibited by the host. Here we use a mutation rate
of µ = 10−4 for the phage and µ = 10−5 for the bacteria.
Other parameters have been used (avoiding very high
rates that can lead to an error catastrophe) and similar
results of those reported here have been found. Finally,
the replication parameter r of the host strings is fixed
to r = 0.8. An important point to be made here is that
our genome-independent parameters mades our model a
highly homogeneous one, that is an effectively neutral
model, except for the functional dependence associated
to the matching rule. The lattice was randomly inoc-
ulated by either bacteria and phage random sequences,
starting from an initial condition were 25% of sites are
randomly seeded by phages and the same amount (but
different random sites) for the bacteria. All initial strings
are identical, defined by the sequence 1000. As we can see
from this model description, the whole dynamics will lead
(if both populations are present and parameters allows)
to an arms race that is limited to a constant movements
through the sequence hypercube.

III. SPATIAL DYNAMICS AND THE
EMERGENCE OF BACTERIA-PHAGE

BIPARTITE NESTED NETWORKS

The degree of interaction among species is not ran-
domly distributed and captures different ecological and
evolutionary factors. Disentangling these components re-
quires a combination of empirical measurements and of
theoretical models (see below). How ecological, genetics
and epidemiological processes interact to generate and
maintain structural variation? What is the general struc-
ture of bacteria-virus infection networks? Empirical and
theoretical studies have shown that bipartite networks
can be (i) nested, i.e., the interactions between nodes
can be represented as subsets of each other (Flores et al.
2011), (ii) modular, i.e., a network composed of densely
connected groups of nodes, and (iii) multi-scale, i.e., the
network shows different features depending on whether
the whole or smaller components are under considera-
tion (Flores, Valverde, and Weitz 2013). In this study,
we are particularly interested in how the spatial com-
ponent influences the emergence of nestedness (see next
section).

An infection network involves two disjoint subsets
of species, i.e., bacterial hosts and viruses. Any pair
of species is always related (i, j) ∈ E provided that
pathogen j can infect host i. The set of links of this
network can be described with the (binary) adjacency
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FIG. 4: Temporal dynamics of the statistical significance of
nestedness. After an initial transient period, the global or-
ganisation of the γ-matrix settles in stable nested patterns
(the average Z ≈ 5). The top row shows several snapshots
of the bacteria-phage interaction network taken at different
evolutionary stages (whose location is given by stars in the
curve). Both the binary structure and the quantitative pref-
erence matrix are significantly nested. The matrix at time
t has been obtained by first counting the frequency of in-
teractions Bi,j observed in the time period [t − ∆t, t] (here
∆t = 2000 time steps) and then discarding the mass action
term (xixj) . In each matrix, darker colours represent higher
interaction preferences. Tests for nestedness are based in the
null model described in the main text.

matrix A = [Aij ] in which Aij = 1 (presence) if the nodes
i and j are connected or Aij = 0 (absence), otherwise.
The degree of a species

ki =
∑
j

Aij

is the number of connections attached to this node. Now,
assume that hosts are indexed 1, 2, .., NH and viruses are
labeled NH + 1, NH + 2, ..., NH + NV where NH is the
number of bacterial species, NV is the number of virus
species, and N = NH +NV is the total number of species
in our system. Using this vertex labelling approach, we
can show the adjacency matrix has a block off-diagonal
form as follows:

A =

 0 BNV ×NH

BTNH ×NV 0

 (10)

where B is the NH × NV incidence matrix, 0 is the all-
zero matrix that reflects the bipartite constraint, i.e., we
only allow interactions between alike species.

Reliable nestedness measurement takes into account
the strength of infections in the bipartite network. For

example, previous studies have shown that ubiquitous
nestedness of binary adjacency matrices (Flores et al.
2011) is not always reproduced by quantitative studies
(Staniczenko, Kopp, and Allesina 2013). The entries of
a quantitative incidence matrix B take values different
from 1 or 0, like the number of infected individuals. In
both the binary and quantitative cases, an incidence ma-
trix is perfectly nested when its rows and columns can
be sorted such that

Bij ≤ min(Bi,j−1, Bi−1,j)

with B1,j > 0 and Bi,1 > 0 for all 1 ≤ i ≤ NP and
1 ≤ j ≤ NV , that is, the set of edges in each row i
contains all the edges in row i+ 1 while the set of edges
in column j contains the set of edges in column j + 1.

The above suggests a costly approach to maximal nest-
edness that looks for the optimal matrix ordering. This
algorithm has several computational disavantages and it
is, in fact, the basis for many published methods. The
spectral radius ρ(B) (or the largest eigenvalue of the ma-
trix) gives a natural scale for nestedness, with higher
spectral radius corresponding to more nested configura-
tions (Staniczenko, Kopp, and Allesina 2013). The spec-
tral radius of the incidence matrix has two useful proper-
ties: (i) matrix eigenvalues are independent of arbitrary
permutations of rows and columns and (ii) this quantity
can be derived for both binary and quantitative infection
networks.

We now investigate the temporal evolution of nested-
ness in our model. Nestedness is a relative value that
depends on the size and the density of interactions. In
our model, the number of species N it is bounded by the
fixed genome lengths. On the other hand, link density
is a key parameter defined by the network connectance
C, or the proportion of possible network connections i.
e. C = L/N2, where the number of links K is simply
L =

∑
i ki.

It has been proposed that the stability of dynamical
processes constraints the possible values of connectance
(May 1972). In our computational simulations, we have
observed that connectance reaches an average value C ≈
0.45 (see Figure 3). A detailed analysis of interactions re-
veal a highly dynamical system where connections among
species are constantly added or removed while keeping
the same average connectance.

In general, there is a contribution g(xi, ~x) to the
growth of population i from interactions with other
species in the system ~x = (x1, x2, ...xN ), where xi is
the population density of individual species (Staniczenko,
Kopp, and Allesina 2013). We can further divide the in-
teraction between any pair of species (i, j) in two com-
ponents: the frequency of interactions γi,jxixj and the
effect of each interaction h(xi, ~p). Then,

g(xi, ~x) =
∑
j

γi,jxixjh(xi, ~x) (11)
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FIG. 5: In the absence of space, the model does not tend to
a pattern of significant nestedness (the average Z ≈ 0). The
top row shows several snapshots of the host-phage interaction
network taken at different evolutionary stages (whose location
is given by stars in the curve). The binary structure of these
matrices is nested but the quantitative preferences are found
to be distributed in an anti-nested manner. The matrix at
time t has been obtained by aggregating the interactions ob-
served in the time period [t − ∆t, t] (here ∆t = 2000 time
steps). In each matrix, darker colours represent higher pref-
erence of interactions. Tests for nestedness are based in the
null model described in the main text.

where xixj is a mass action term γi,j indicates the rel-
ative probability of interaction compared to mass action.
Assuming the mass action hypothesis, the expected num-
ber of interactions is proportional to the product of the
densities xi and xj of the pair of species. Other factors
like the spatial component, consumer search efficiency,
or handling time are aggregated in the preference matrix
γ = [γi,j ]. This matrix measures pairwise interaction
preferences: γi,j > 1 indicates the interaction is more
likely to occur than expected, γi,j < 1 denotes a less
favourable interaction and γi,j = 1 is exactly the expec-
tation based on mass action.

When measuring nestedness in our system, we first ad-
just for the mass action effect (xixj) to isolate interac-
tion preferences. The incidence matrix B is related to
the preference matrix by the following: Bi,j = γi,jxixj .
We compare the nestedness value in the preference ma-
trix with an ensemble of random matrices having simi-
lar properties (Weitz et al. 2013; Beckett and Williams
2013). We use the null model proposed by (Staniczenko,
Kopp, and Allesina 2013), which keeps the structural fea-
tures of the network while swapping the order of weighted
links (so-called ’binary shuffle’). Specifically, the Z-score
defines the statistical significance:

Z =
ρ(B)− 〈ρ〉

σρ
(12)

where 〈ρ〉 and σρ are the average value and the stan-
dard deviation of the network measure in a random en-
semble, respectively. In this study, we will consider that
host-phage interactions are significantly nested whenever
the corresponding Z > 2 (i.e., p < 0.05 using the Z-test).

Figure 4 shows the statistical significance of nested-
ness in the γ-matrix tends to a high, well-defined value.
In the absence of space, the same model does not tend
to a pattern of significant nestedness (see Figure 5). In-
terestingly, the average connectance is also close to the
reported value for the spatial simulation (C ≈ 0.45), and
thus suggesting that nestedness is largely a consequence
of spatial correlations associated to (transient) similari-
ties between spatially close genomes.

IV. DISCUSSION

Host-virus ecological networks are characterised
(among other things) by the presence of a nested organ-
isation. Since nestedness has been proposed as a key
attribute with a relevant role in community stability and
diversity, to is specially important to understand its ori-
gins. Previous work using available host-phage networks
has shown that nestedness appears to be a very common
trait in most cases. What is less obvious is to determine
the causal origins of this particular feature. A specially
elegant work in this context is the study by (Beckett and
Williams 2013) on the coevolutionary diversification of
bacteria and phage using a lock-and-key model. This
work aimed to account for both nestedness and modu-
larity using a multi-strain chemostat system where the
coevolving strains use a single resource. Genotypes are
represented by means of a single scalar value, thus lacking
our genotype space described by an explicit sequence hy-
percube. Importantly, the genetic matching is mediated
by predefined functional correlations between ”genotype
distance” and key traits such as adsortion rates of phages
on hosts.

In our analysis we have followed a rather different di-
rection, by introducing a coevolution process where the
specific choices of parameters (allowing populations to
persist) is not relevant, genotypes are introduced in an
explicit way and phenotypes are the same (as described
by the kinetic parameters) for all genomes. In our study,
the limited interactions among digital genomes associ-
ated to the presence of space play a key role in enhanc-
ing correlations and nestedness. We should expect that
digital host genomes in a given neighborhood will also
be relatively close among them through recent mutation
events (in terms of Hamming distance) and exhibit closer
ties with their parasites, which will also appear locally
correlated. This necessarily helps enforcing the kind of
correlations expected for nested graphs.
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Despite its limitations, it is remarkable that such a sim-
ple set of assumptions recovers the nested organisation
of these antagonistic systems. As it occurs with other
relevant properties, spatial dynamics makes a difference
when explicitly included in the description of ecosystem
interactions. The loss of nestedness when global mixing
is allowed clearly supports our conjecture. Future work
should consider different extensions of our model, includ-
ing spatial heterogeneity (which could lead to modular-
ity) or theoretical developments that might help deter-
mine the validity and implications of our neutral approx-
imation.
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