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Abstract 

Immunotherapy is a growing field in cancer research. A privileged tumor-associated 

antigen that has received much attention is N-glycolyl (NeuGc) GM3. This 

ganglioside is present in several types of cancer, but is almost undetectable in 

human healthy tissues. However, its non-hydroxylated variant, NeuAc GM3, is 

abundant in all mammals. Due to a deletion in the human gene encoding the key 

enzyme for synthesis of NeuGc, humans, in contrast to other mammals, cannot 

synthesize NeuGc GM3. Therefore the presence of this ganglioside in human cancer 

cells represents an enigma. It has been shown that hypoxic conditions trigger the 

expression of NeuGc gangliosides, which not only serve as attractive targets for 

cancer therapy, but also as diagnostic and prognostic tumor marker. Here, we 

confirm hypoxia-induced expression of the NeuGc GM3 ganglioside also in HeLa 

cells and reveal several candidate proteins, in particular GM3 synthase and subunit B 

of respiratory complex II (SDHB), that may be involved in the generation of NeuGc 

GM3 by SILAC-based proteome analysis. These findings have the potential to 

significantly advance our understanding of how this enigmatic tumor-associated 

antigen is produced in humans, and also suggest a possible mechanism of action of 

anti-tumor antibodies that recognize hypoxia markers, such as 14F7.  
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Introduction 

Cancer immunotherapy promises a revolution in cancer therapy, and was 

consequently selected by Science as Breakthrough of the year 2013 [1]. This type of 

therapy represents an entirely different approach to targeting and treating cancer 

compared to conventional therapies, such as radiation and chemotherapy. By 

selective targeting of tumor-specific antigens, treatment becomes more rational, with 

the potential for tailored personalized therapies. 

One group of tumor-associated antigens with particularly attractive properties 

comprises sialic acid containing glycosphingolipids or gangliosides [2, 3]. In 

mammalian tissues, the most abundant forms of sialic acids are N-acetyl neuraminic 

acid (NeuAc) and N-glycolyl neuraminic acid (NeuGc), however, in human healthy 

tissue, NeuGc is present only in minute amounts, suggestive of contamination, rather 

than active generation [4, 5]. The synthesis of this glycolipid requires an enzyme, 

cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH), which 

catalyzes the hydroxylation of NeuAc to yield NeuGc. This enzyme is non-functional 

in humans due to a 92-bp deletion in the gene encoding its active site [6]. However, 

when healthy cells transform into malignant cells, NeuGc is expressed [7]. The origin 

of this change in carbohydrate profile is unknown. Approaches to solve this mystery 

have so far focused mainly on diet incorporation of NeuGc from animal sources [5, 8-

11]. For example, it has recently been shown that Cmah knockout mice can 

incorporate NeuGc from dietary sources [12, 13]. NeuGc uptake and recycling by the 

lysosomal transporter sialin is well studied [14], and may be enhanced under hypoxic 

conditions [9]. Furthermore, an endogenous NeuGc-degrading pathway has been 

identified that produces N-acetylhexosamine metabolites, which may serve as 

precursors for the synthesis of synthesis of NeuGc [15, 16]. 
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A NeuGc-containing ganglioside called NeuGc GM3 has attracted significant 

attention as tumor-associated antigen [7, 17, 18]. It is present on the surface of 

multiple types of cancers, such as breast cancer [19], melanoma [20], lung cancer 

[21] and retinoblastoma [22]. NeuGc GM3 not only has promising therapeutic and 

diagnostic potential but also holds a prognostic value, since its expression correlates 

with more aggressive disease [21, 23, 24]. Hypoxia has been recognized as an 

important and common characteristic of many advanced tumors, where progression 

occurs as a result of adaptation to and survival within the environment limited in 

oxygen [25]. In addition, hypoxia-induced cancer progression can affect the 

expression of cell surface antigens, and indeed, the expression of NeuGc 

gangliosides has been shown to be triggered by hypoxic condition [9]. Moreover, the 

aggressiveness of tumors correlates with CMAH expression levels [24], whereas in 

the brain, which is rich in oxygen, CMAH gene and NeuGc expression are 

suppressed [26]. However, the cellular mechanism causing the hypoxia-induced 

expression of NeuGc GM3 is still unknown. 

NeuGc was originally considered an oncofetal antigen, since it is present in fetal 

tissue, but repressed during adult life. Normal embryonic development occurs in an 

environment low in oxygen, and hypoxia therefore also represents an important 

aspect of developmental morphogenesis [27, 28], promoting differentiation and 

proliferation [29, 30]. The fact that hypoxia promotes both tumor progression and 

embryonic development could suggest that alternative mechanisms to synthesize 

NeuGc gangliosides exist in humans, but that hypoxia is required to induce 

production. Indeed, this antigen has been detected in the epithelial lining of hollow 

organs and the endothelial lining of the vasculature [8, 10, 31]. A requirement for 

hypoxia for NeuGc expression would also explain why NeuGc is hardly detectable in 
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the brains of most mammals, where the oxygen content is high [26], while other sialic 

acid variants are abundant in brain tissue [32]. 

Here, we used a combination of fluorescence-activated cell sorting (FACS) and 

stable isotope labeling by amino acids in cell culture (SILAC) to probe the origin of 

NeuGc GM3 expression, as triggered by hypoxia. SILAC is a quantitative proteomics 

method that reveals up- or down-regulated proteins upon exposure to different 

conditions [33]. The present work builds on a recent comprehensive SILAC study, 

where we analyzed protein regulation in HeLa cells in response to hypoxia [34]. 

Using an anti-tumor antibody that specifically recognizes NeuGc GM3 (14F7), we 

confirmed hypoxia-induced expression of this ganglioside in HeLa cells and identified 

several candidate proteins potentially involved in its de novo synthesis in humans, 

rescuing CMAH activity. 
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Materials and Methods 

 

Cell cultivation 

For hypoxic conditions, HeLa P cells were grown inside an InVivo2 400 incubator box 

(Ruskinn Technology, UK) where the oxygen level inside the box was set to 1%, 

while a standard CO2 incubator was used normoxic conditions. Prior to treatment, the 

cells were cultivated in Dulbecco’s modified Eagle’s medium (DMEM), supplemented 

with NeuGc free 10% human or chicken serum (H4522-Sigma, C5405-Sigma) and 

1% penicillin/streptomycin for two to three weeks in order to ensure that no NeuGc 

was available in the medium. The experiment was performed in three biological 

replicates.   

 

Flow cytometry 

After growing the cells for 72h in hypoxia or normoxia, they were trypsinized and 

thereafter washed twice with a solution containing 49 ml phosphate buffered saline 

(PBS), 1 ml of either fetal bovine serum, human or chicken serum, 200 µl EDTA 

before fixation with 4% paraformaldehyde for 15 minutes. After a third washing step, 

the cells were incubated in 50 µl of primary antibody (14F7, a murine anti-NeuGc 

GM3 antibody obtained from Center of Molecular Immunology, Havana) for 1h. The 

samples were then washed 2 times before 50µl of the secondary antibody was added 

(goat anti-mouse IgG1-FITC, Santa Cruz-2010) for 30 minutes in dark. After another 

washing step the cells were filtered and analysed by flow cytometry (BD Accuri C6 

flow cytometer). 
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Bioinformatic data analyses 

Bioinformatics analysis was performed with STRING 9.1 (http://string.embl.de/) [35, 

36], on data acquired previously by NanoLC-LTQ Orbitrap mass spectrometry, as 

described [34]. 
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Results and Discussion 

Hypoxia-induced expression of NeuGc gangliosides has previously been observed in 

LS174T, Caco-2 and ZR-75-1 cells [9]. To probe if hypoxia also triggers increased 

expression of NeuGc GM3 in HeLa cells, flow cytometry experiments were 

performed. For detection, we used the murine antibody 14F7, which specifically 

recognizes NeuGc GM3 and can discriminate it from the very similar NeuAc 

derivative [20, 37-39]. This antibody was earlier subjected to glycoarray screening by 

the Functional Glycomics Consortium (www.functionalglycomics.org), with negative 

results, even for the NeuGc GM3 trisaccharide (data not shown), indicating that it is 

indeed very specific and furthermore requires the ganglioside’s sphingolipid part for 

antigen recognition. Since NeuGc GM3 is abundant in most mammalian tissues 

(except brain tissue), but deficient in healthy human adults [26, 40], we cultivated the 

cells in human serum for 2-3 weeks before analysis. Figure 1 shows that hypoxic 

conditions indeed induced a three-fold increase in expression of NeuGc GM3 in 

HeLa cells, in support of the hypothesis that hypoxia is an important factor for the 

generation of this antigen. To confirm our results, we repeated the experiment using 

chicken serum. Chicken, like other birds (as well as humans, reptiles and platypus), 

are deficient in NeuGc [41]. We observed that hypoxia induced a similar two-fold 

increase in expression of NeuGc GM3 in chicken serum, as determined by FACS 

analysis with 14F7 (Figure S1), whereas culturing in NeuGc-rich fetal bovine serum 

showed no such effect (Figure S2), in keeping with the hypothesis that de novo 

NeuGc synthesis can be induced by hypoxia. 

But how does hypoxia trigger the expression of NeuGc GM3? What are the cellular 

mechanisms involved, and is de novo synthesis required or could other factors be at 

play? It has been suggested that hypoxic culture induces the expression of sialin, a 
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sialic acid transporter, leading to increased incorporation of NeuGc from the external 

environment [9]. Indeed, a recent study of aggressive melanoma showed that the 

amount of NeuGc GM3 depended on the external medium [24]. However, we did not 

observe an increased expression of NeuGc GM3 using media supplemented with 

fetal bovine serum, which contains NeuGc (Figure S2). Sialin (SLC17A5) was not 

identified in our recent SILAC study, not even at below-significance levels, even 

though 26 other proteins from the SCL-family were detected, of which four were up-

regulated [34]. One of them was the GM3 synthase (ST3GAL5/SLC35E1) 

responsible for catalyzing the covalent addition of sialic acid to lactosylceramide to 

generate the GM3 ganglioside. Upregulation of GM3 synthase (1.5 fold; p = 0.11) 

was below statistical significance, but was confirmed by Western blot analysis 

(Figure 2).  

In the same study, we found an iron-sulfur [Fe2S2]-containing protein to be 

significantly up-regulated under hypoxic conditions (1.9 fold; p=0.0057), while many 

other mitochondrial proteins were down-regulated [34]. The protein in question is 

subunit B of the succinate dehydrogenase complex (which represents complex II of 

the respiratory chain). It is only this subunit (SDHB) that was found up-regulated, 

while the other subunits of complex II were not affected. We have now confirmed 

hypoxia-induced up-regulation of SDHB by Western blot analysis (Figure 2). This is 

interesting since the cmah gene responsible for NeuGc synthesis in mammals 

exhibits a 92-bp deletion in humans. The deleted gene fragment codes for a Rieske 

domain, an [Fe2S2]-cluster, which presumably comprises the active site of the 

enzyme. – Could it be that SDHB can take on the function of the missing Rieske 

domain? Or do other mechanisms lie at the heart of hypoxia-induced NeuGc GM3 

expression? 
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Gangliosides can rearrange in the membrane and create “clusters” together with 

cholesterol (referred to as ‘lipid rafts’), forming more ordered regions of the 

membrane [42-44]. The density, presentation and organization of glycosphingolipids 

may affect antibody specificity [3, 45, 46], and it has been shown that some 

ganglioside antigens are not fully antigenic and thus fail to interact with antibodies 

when their density is below a threshold value [47]. Currently, we cannot exclude that 

the increased binding of the 14F7 antibody after hypoxia treatment is caused or 

enhanced by such membrane remodeling. Another possibility is the recycling of 

gangliosides from other compartments in the cell and transport to the cell surface, 

where antibody detection occurs. 

Nevertheless, it is intriguing that GM3 synthase appears to be up-regulated under 

hypoxic conditions, suggesting that in vivo NeuGc GM3 synthesis might actually 

occur. This would also explain the enhanced CMAH expression levels observed in 

aggressive human tumors [24] and the low expression levels in the vertebrate brain 

[26], protecting the brain from NeuGc’s (or CMAH’s) presumed toxic effects. If this 

can be confirmed, we may have discovered a salvaging pathway for the biosynthesis 

of NeuGc that is induced by hypoxia. The central player of our hypothesis is subunit 

B from respiratory complex II, or SDHB. Figure 3 shows how SDHB is clearly 

associated with mitochondrial deficiency, affecting clusters of mitochondrial 

ribosomal proteins (MRPs) and translocases of the inner and outer mitochondrial 

membrane (TIMM/TOMM) (down-regulated), while glycolysis is up-regulated. 

Whether this iron-sulfur domain could, provided hypoxic conditions, replace the 

function of the original Rieske domain is yet to be investigated. Mitochondria are the 

major consumers of iron in the cell and hence the primary sites for the synthesis of 

iron-sulfur clusters [48]. Since Fe/S clusters are required for viability and exist in all 
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kingdoms of life, the loss of these components is lethal during early embryonic 

development, and mutations in genes encoding proteins with such functionalities can 

cause severe disease in humans [48, 49]. Similarly, Fe/S clusters may be important 

for survival and growth of cancer cells, by inducing NeuGc ganglioside synthesis. 

Another interesting aspect of this study relates to cancer immunotherapy. The strong 

evidence for hypoxia causing tumor progression and its importance in therapy 

resistance makes hypoxia-regulated molecules valuable therapeutic targets. Anti-

tumor antibodies that recognize or mimic such hypoxia markers, like 14F7 and 1E10 

(racotumumab), may owe their promising clinical potential [17, 50-56] at least in part 

to their ability to home in on the tumor center or generate anti-idiotypic antibodies 

with this ability. Inside the tumor, where hypoxia rules, expression of the targets is 

greatest; hence antibody binding will be strongest. Initial binding to the tumor surface 

should hence trigger the antibody’s walk to the tumor center, to treat it from its roots. 

Antibodies recognizing hypoxia-rich regions of the tumor, especially with highly 

dynamic association-dissociation kinetics, should hence be highly attractive for 

cancer therapies, either stand-alone or as potential adjuvants. 
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Figures 

Fig. 1.  
 
 
 
 

 

 
 
 

 
Figure 1. NeuGc GM3 expression in normoxia (A) and hypoxia (B). Using human 

serum, the tumor antigen showed three-fold increased expression under hypoxic 

conditions. Experiments were performed in biological triplicates, and the figure shows 

an overlay of the triplicate samples. 
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Fig. 2. 
 
 
 
 
 
 

 
 

 

 

Figure 2. Western blot analysis of SDHB and GM3 synthase. Representative 

Western blots for succinate dehydrogenase subunit B and ST3GAL5/SLC35E1 from 

HeLa cells grown are shown, comparing hypoxic or normoxic conditions. The 

experiments were performed in biological triplicates. Additionally, the expression of β-

tubulin is shown to demonstrate an equal loading of gels. 
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Fig. 3.  

 

 

 

 

 

 
Figure 3. Succinate dehydrogenase subunit B (blue) and associations to up- or 

down-regulated clusters in response to hypoxia. The STRING bioinformatical tool 

(http://string.embl.de/) was used to visualize known and predicted protein-protein 

interactions. The 3D structure of the entire succinate dehydrogenase complex is 

shown on top, with subunit B (blue) aligned with the Rieske domain (turquoise). Iron-

sulfur clusters are depicted in red.  
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Supplementary Figures 

 

Figure S1. 

 

 

Figure S1. Flow cytometry histogram showing NeuGc GM3 expression in HeLa cells 

grown in media supplemented with chicken serum under normoxic (yellow) and 

hypoxic (purple) conditions. As for the experiments with human serum, the tumor 

antigen showed increased expression under hypoxic conditions (here: two-fold 

increase). Experiments were performed in biological triplicates, with reproducible 

results. One representative histogram is shown in the figure.  
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Figure S2.  

 

 

Figure S2.  Flow cytometry histogram showing NeuGc GM3 expression in HeLa cells 

grown in media supplemented with fetal bovine serum under normoxic (red) and 

hypoxic (yellow) conditions. In contrast to the experiments with human and chicken 

serum, the tumor antigen did not show increased expression under hypoxic 

conditions. Experiments were performed in biological triplicates, with reproducible 

results. One representative histogram is shown in the figure.  
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