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Abstract: 16 

 17 

The anterior cingulate cortex (ACC) is implicated in learning the value of actions, and thus in allowing 18 

past outcomes to influence the current choice.  However, it is not clear whether or how it 19 

contributes to the two major ways such learning is thought to happen: model-based mechanisms 20 

that learn action-state predictions and use these to infer action values; or model-free mechanisms 21 

which learn action values directly through reward prediction errors.  Having confirmed, using a 22 

classical probabilistic reversal learning task, that optogenetic inhibition of ACC neurons on single 23 

trials indeed affected reinforcement learning, we examined the consequence of this manipulation in 24 

a novel two-step decision task designed to dissociate model-free and model-based learning 25 

mechanisms in mice.  On the two-step task, silencing spared the influence of the trial outcome but 26 

reduced the influence of the experienced state transition.  Analysis using reinforcement learning 27 

models indicated that ACC inhibition disrupted model-based RL mechanisms. 28 

  29 
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Introduction: 30 

 31 

The anterior cingulate cortex (ACC) has long been implicated in reward guided decision making 32 

(Rushworth et al., 2004; Rushworth and Behrens, 2008).   ACC neurons encode diverse decision 33 

variables (Cai and Padoa-Schioppa, 2012; Ito et al., 2003; Matsumoto et al., 2003; Sul et al., 2010), 34 

but  ACC has been particularly associated with action reinforcement (Hadland et al., 2003; Kennerley 35 

et al., 2006; Rudebeck et al., 2008).  However, instrumental learning is not a unitary phenomenon 36 

but rather is thought to be mediated by parallel control systems which use different computational 37 

principles to evaluate choices (Balleine and Dickinson, 1998; Daw et al., 2005; Dolan and Dayan, 38 

2013).  It has recently become a pressing problem to understand the neural underpinnings of these 39 

controllers and their interactions.   40 

In familiar environments when executing well practiced actions, behaviour is apparently controlled 41 

by a habitual system thought to employ model-free reinforcement learning (RL) (Sutton and Barto, 42 

1998).  Model-free RL uses reward prediction errors to acquire or cache preferences between 43 

actions. However, when the environment or motivational state changes, model-free preferences can 44 

become out of date, and actions are instead determined by a goal-directed system believed to 45 

follow the precepts of model-based RL (Sutton and Barto, 1998).  Model-based RL learns a predictive 46 

model of the consequences of actions, i.e. the states and rewards to which they typically 47 

immediately lead, and evaluates options by using the model to simulate or otherwise estimate their 48 

resulting long-run outcomes. Such a dual controller approach is beneficial because model-free and 49 

model-based RL possess complementary strengths, the former allowing quick and computationally 50 

cheap decision making at the cost of slower adaptation to changes in the environment, the latter 51 

flexible and efficient use of new information at the cost of computational effort and decision speed.  52 

On specific anatomical and physiological grounds, we hypothesised that ACC is a component of the 53 

model-based control system.  Firstly, the ACC provides a massive input to posterior dorsomedial 54 

striatum (Oh et al., 2014; Hintiryan et al., 2016), a region critical for model-based control as assessed 55 

through outcome-devaluation (Yin et al., 2005a, 2005b; Hilario et al., 2012).   Secondly, decision 56 

related signals in ACC suggest that it plays a role in representing task contingencies beyond model-57 

free cached values (Daw et al., 2011; Cai and Padoa-Schioppa, 2012; Karlsson et al., 2012; O’Reilly et 58 

al., 2013; Doll et al., 2015).  We therefore sought to test the role of ACC in a reward guided decision 59 

task able to dissociate model-based and model-free mechanisms. 60 

The classical approach to dissociating the systems in the laboratory involves outcome devaluation 61 

(Adams and Dickinson, 1981; Colwill and Rescorla, 1985).  A subject is first trained to perform an 62 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 11, 2017. ; https://doi.org/10.1101/126292doi: bioRxiv preprint 

https://doi.org/10.1101/126292


3 
 

action to receive a reward.  The reward is then devalued, e.g. through pairing with illness, and the 63 

subject’s subsequent tendency to perform the action is tested in extinction, i.e. without further 64 

rewards being delivered.  If the action is mediated by a model-based prediction of the specific 65 

outcome to which it leads, devaluing that outcome will reduce the tendency to perform the action.  66 

If, on the other hand, the action is mediated by a cached model-free action value, devaluation will 67 

have no effect (Balleine and Dickinson, 1998; Daw et al., 2005).   Learned actions often transition 68 

from being devaluation sensitive or goal-directed early in learning to being devaluation insensitive or 69 

habitual after extensive training (Dickinson et al., 1983; Dickinson, 1985).  Lesion and inactivation 70 

studies using outcome devaluation indicate that goal-directed and habitual behaviours rely on 71 

partially separate cortical-basal ganglia circuits (Balleine et al., 2003; Killcross and Coutureau, 2003; 72 

Ostlund and Balleine, 2005; Yin et al., 2004, 2005b; Hilario et al., 2012; Gremel and Costa, 2013a, 73 

2013b).   74 

Unfortunately, outcome devaluation has limitations as a paradigm for decision neuroscience.  Firstly, 75 

the critical devaluation test during which behavioural strategies are dissociated must be short 76 

because it is performed in extinction, limiting the number of choices or actions performed.  77 

Secondly, devaluation is a unidirectional single-shot manipulation of value.  Neurophysiology thrives 78 

on behavioural paradigms that generate large decision datasets with parametric variation of decision 79 

variables. However, in workhorse tasks such as perceptual decision making or probabilistic reversal 80 

learning, the only uncertainty about the outcome of each decision is whether reward will be directly 81 

delivered. Thus, model-based prediction of future state and model-free prediction of future reward 82 

are ineluctably confounded. 83 

Instead, at least for human subjects, novel tasks have recently been developed which aim to 84 

distinguish model-free and model-based reasoning in a stable manner over many trials. These tasks 85 

generally require subjects to take multiple steps through a decision tree to reach rewards, thus 86 

licensing the simulation-based search that is characteristic of the model-based controller (Daw et al., 87 

2011; Simon and Daw, 2011; Huys et al., 2012).  The most widely used is the so called two-step task 88 

(Daw et al., 2011), in which a choice between two actions leads probabilistically to one of two 89 

different states, in which further actions lead probabilistically to reward.  Daw’s two-step task has 90 

been used to assess the influence on behavioural strategy of behavioural (Otto et al., 2013, 2014) 91 

and neuronal manipulations (Wunderlich et al., 2012; Smittenaar et al., 2013), genetic factors (Doll 92 

et al., 2016),  psychiatric illness (Sebold et al., 2014; Voon et al., 2015), and variants have also been 93 

used to examine more mechanistic aspects of interaction between the systems (Lee et al., 2014; 94 

Keramati et al., 2016; Doll et al., 2015). There is substantial interest from a number of groups in 95 

developing versions of the task for animal subjects to permit the use of more powerful neuroscience 96 
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tools (Miller at al. Soc. Neurosci. Abstracts 2013, 855.13, Groman et al. Soc. Neurosci. Abstracts 97 

2014, 558.19, Miranda et al. Soc. Neurosci. Abstracts 2014 756.09).   98 

Here, we report our adaptation of the two-step task to study model-based and model-free learning 99 

in mice, and the use of our novel variant to probe the involvement of the anterior cingulate cortex 100 

(ACC), a region expected to be centrally involved. Based on an in depth computational analysis 101 

(Akam et al., 2015), we substantially modified the implementation and structure of the task, 102 

developing a new version in which both the reward probabilities in the leaf states of the decision 103 

tree and the action-state transition probabilities change over time.  Here, detailed characterisation 104 

of subjects’ behaviour indicated that, as in the human version, choices were guided by a mixture of 105 

model-based and model-free RL. However, we also observed a number of previously unexplored 106 

characteristics, including forgetting about actions that were not chosen, perseverative influences 107 

that spanned multiple trials, and representation of actions both in terms of the choices they 108 

represent and the motor output they require. 109 

We found that optogenetic silencing of ACC neurons on individual trials reduced the influence of the 110 

experienced state transition on subsequent choice without affecting the influence of the trial 111 

outcome (rewarded or not).  Analysis using RL models suggested this effect was due to reduced 112 

influence of model-based RL on ACC inhibition trials.  For comparison purposes we performed the 113 

same ACC manipulation in a standard probabilistic reversal learning task, where it reduced the 114 

influence of the previous trial outcome on subsequent choice.  These data are consistent with 115 

subjects using a combination of model-based and model-free RL in both tasks, but with the two-step 116 

task uniquely allowing a dissociation of their respective contributions to choice behaviour. 117 

Results:  118 

Single-trial inhibition of ACC impairs probabilistic reversal learning. 119 

To confirm that ACC is involved in reward-guided decision making in mice, we first assessed whether 120 

optogenetic silencing of ACC neurons affected decision making in a standard probabilistic reversal 121 

learning task (Figure 1).  Mice were trained to initiate each trial in a central nose-poke port which 122 

was flanked by left and right poke ports (Figure 1A).   Trial initiation caused the left and right pokes 123 

to light up and subjects then chose between them for the chance of obtaining a water reward.  124 

Reward probabilities changed in blocks, with three block types; left good (left=0.75/right=0.25), 125 

neutral (0.5/0.5) and right good (0.25/0.75).  Subject’s choices tracked which option had higher 126 

reward probability (Figure 1B, C), choosing the correct option at the end of non-neutral blocks with 127 

probability 0.80 ± 0.04 (mean ± SD), and adapting to reversals in the reward probability with a time 128 

constant of 3.57 trials (exponential fit tau).   129 
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130 
Figure 1.  Optogenetic silencing of ACC in probabilistic reversal learning task.  A) Diagram of apparatus and 131 
trial events.  B)  Example session, black line shows exponential moving average (tau = 8 trials) of choices, grey 132 
bars indicate reward probability blocks with y position of bar indicating whether left or right side has high 133 
reward probability or a neutral block. C) Choice probability trajectories around reversal in reward probabilities: 134 
Pale blue line – average trajectory, dark blue line – exponential fit, shaded area – cross-subject standard 135 
deviation.  D) Logistic regression analysis showing predictor loadings for stimulated (red) and non-stimulated 136 
(blue) trials, for the ACC JAWS (left panel) and GFP controls (right panel).  Bars indicate ±1 standard deviation 137 
of the population level distributions, dots indicate maximum a posteriori session fits.   ** indicates significant 138 
difference (P<0.01) between stimulated and non-stimulated trials. 139 

The following figure supplements are available for figure 1. 140 

Figure supplement 1.  JAWS inhibition of ACC neurons. 141 

Figure supplement 2.  Average JAWS expression. 142 

 143 

We silenced the activity of ACC neurons on individual trials using the red-shifted halorhodopsin 144 

JAWS (Chuong et al., 2014).  An AAV viral vector expressing JAWS-GFP under the CaMKII promotor 145 

was injected bilaterally into ACC of experimental animals (n=10 JAWS), while control animals (n=10) 146 

were injected with an AAV expressing GFP under the CaMKII promotor.  Illumination was provided 147 

by a high power red LED chronically implanted above the cortical surface (Figure 1 - figure 148 

supplement 1).    Electrophysiological recordings in animals implanted with micro-wire bundles (n=2) 149 

confirmed that red light (50mW, 630nM) from the implanted LEDs robustly inhibited ACC neurons 150 

(Figure 1- figure supplement 1).   ACC neurons were inhibited using JAWS on a randomly selected 151 

1/6 trials, with a minimum of two non-stimulated trials between each stimulated trial.  Stimulation 152 

was delivered from when subjects poked in the side poke and received the trial outcome until the 153 
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subsequent choice.  The dataset comprised 12855 stimulated and 65186 non-stimulated trials for 154 

the JAWS animals and 11096 stimulated and 55913 non-stimulated trials for the controls. 155 

We assessed the effect of ACC silencing using a logistic regression analysis with previous choices and 156 

outcomes as regressors.  We separately analysed choices made during stimulation and on non-157 

stimulated trials and used permutation tests to identify significant differences between the predictor 158 

loadings in the two conditions (Figure 1D).   Previous choices predicted current choice with 159 

decreasing loading at increasing lag relative to the current trial.  Obtaining reward further predicted 160 

repeating the rewarded choice, again with decreasing loading at increasing lag.  ACC inhibition 161 

significantly reduced the influence of the most recent outcome (i.e., whether reward was received) 162 

on subsequent choice (permutation test P = 0.004 uncorrected, P = 0.024 Bonferroni corrected for 6 163 

predictors), but did not affect the influence of either previous choices or earlier outcomes (P > 0.18 164 

uncorrected).  Light stimulation did not affect the influence of previous outcomes or choices on 165 

subsequent choice in the GFP controls (P>0.38 uncorrected) and the stimulation-by-group 166 

interaction was significant for the influence of the most recent outcome on choice (P = 0.014, 167 

permutation test). 168 

These data indicate that transient ACC silencing disrupted reward-guided decision making in the 169 

probabilistic reversal learning task, however this task does not discriminate whether this was due to 170 

an effect on model-free mechanisms which learn action values directly, or model-based mechanisms 171 

which learn action-state transition probabilities and use these to guide choice.  We therefore 172 

performed the same optogenetic manipulation in a multi-step decision task designed to dissociate 173 

the contribution of model-based and model-free reinforcement learning. 174 

Development of a novel two-step task for mice 175 

The task was based on that developed for humans by Daw et al. (2011) but both the physical format 176 

in which it was presented to subjects and the task structure were heavily adapted for use with mice.  177 

We first summarise changes to the task structure and their rationale before detailing the task 178 

implementation.  As in the Daw two-step task, our version consisted of a choice between two ‘first-179 

step’ actions which lead probabilistically to one of two ‘second-step’ states where reward could be 180 

obtained.  Unlike the Daw task, in each second-step state there was a single action rather than a 181 

choice between two actions available, reducing the number of reward probabilities the subject must 182 

track from four to two (Figure 2 – figure supplement 1).  In the original task, the stochasticity of the 183 

state transitions and reward probabilities caused both model-based and model-free control to 184 

obtain rewards at a rate negligibly different from random choice at the first-step (Akam et al., 2015; 185 

Kool et al., 2016).  To promote task engagement, we increased the contrast between good and bad 186 
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options by using a block-based reward probability distribution rather than the random walks used in 187 

the original, and by increasing the probability of common state transitions (see below) from 0.7 to 188 

0.8.  The final, and most significant, structural change was the introduction of reversals in the 189 

transition probabilities mapping the first-step actions to the second-step states.  This step was taken 190 

to preclude subjects developing habitual strategies consisting of mappings from second-step states 191 

in which rewards had recently been obtained to specific actions at the first step (e.g. rewards in 192 

state X  chose action x, where action x is that which commonly leads to state X).  Such strategies 193 

can, in principle, generate behaviour that looks very similar to model-based control despite not using 194 

a forward model which predicts the future state given chosen action (see Akam et al. (2015) for a 195 

detailed discussion). 196 

We implemented the task using a set of four nose-poke ports: a low and a high poke in the centre, 197 

flanked by a left and a right poke (Figure 2A).  Each trial started with the central pokes lighting up, 198 

mandating a choice.  The resulting action led probabilistically to one of two states termed ‘left-199 

active’ and ‘right-active’, in which respectively the left or right poke was illuminated.  The subject 200 

then had to poke the illuminated side to gain a probabilistic water reward (Figure 2A,B).  A 1 second 201 

inter-trial interval started from when the subject exited the side port at the end of the trial. The next 202 

trial then started with the illumination of the central pokes.   203 

Both the transition probabilities linking the first-step actions to the second-step states, and the 204 

reward probabilities in each second-step state, changed in blocks (Figure 2C, D), such that each block 205 

was defined by the state of both the transition and reward probabilities.  There were three possible 206 

states of the reward probabilities: left good (left=0.8/right=0.2), neutral (0.4/0.4) and right good 207 

(0.2/0.8).   There were two possible states of the transition probabilities: high right / lowleft, in 208 

which the high poke commonly (80% of trials) gave access to the right-active state and the low poke 209 

commonly gave access to the left-active state, and high left / lowright in which the high poke 210 

commonly gave access to the left-active, and the low poke commonly gave access to the right-active 211 

state.  In either case, on 20% of trials, a rare transition occurred such that each first-step action gave 212 

access to the state commonly reached from the other first-step action.  At block transitions, either 213 

the reward probabilities or the transition probabilities changed, except on transitions to neutral 214 

blocks, 50% of which were accompanied by a change in the transition probabilities (See Fig S3 for full 215 

block transition structure).  Reversals in which first-step action (high or low) had higher reward 216 

probability, could therefore occur either due to the reward probabilities of the second-step states 217 

reversing, or due to the transition probabilities linking the first-step actions to the second-step states 218 

reversing.   Block transitions were triggered based on a behavioural criterion (see methods) which 219 

resulted in block lengths of 63.6 ± 31.7 (mean ± SD) trials. 220 
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 221 

Figure 2.  Two-step task. A) Diagram of apparatus and trial events.  B) State diagram of task.  C) Block 222 
structure, left side shows the three possible states of the reward probabilities, right side shows the two 223 
possible states of the transition probabilities. D) Example session: Top panel - Exponential moving average (tau 224 
= 8 trials) of choices. Horizontal grey bars show blocks, with correct choice (high, low or neutral) indicated by y 225 
position of bars.  Middle panel – reward probabilities in left active (red) and right active (blue) states.  Bottom 226 
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panel – Transition probabilities linking first-step actions (high, low pokes) to second step states (left/right 227 
active). E) Reversal analysis:  Pale blue line – average trajectory, dark blue line – exponential fit, shaded area – 228 
cross-subject standard deviation. Left panel - reversals in reward probability, right panel – reversals in 229 
transition probabilities. F) Second step reaction times following common and rare transitions - i.e. the time 230 
between the first step choice and side poke entry.  Error bars show cross-subject SEM.   231 

The following figure supplements are available for figure 2. 232 

Figure supplement 1.  Comparison of original and new two-step task structures. 233 

Figure supplement 2.  Block transition probabilities.   234 

Figure supplement 3.  Body weight trajectory across training. 235 

 236 

Subjects learned the task in 3 weeks with minimal shaping (see methods) and performed an average 237 

of 576 ± 174 (mean ± SD) trials per day thereafter.  The baseline behavioural dataset consisted of 238 

sessions from day 22 of training onwards from 17 subjects, for a total of 400 sessions and 230237 239 

trials.  Subject’s choices tracked which first-step action had higher reward probability (Figure 2D,E), 240 

choosing the correct option at the end of non-neutral blocks with probability 0.68 ± 0.03 (mean ± 241 

SD).     Choice probabilities adapted faster (P = 0.009, bootstrap test) following block transitions in 242 

which the action-state transition probabilities reversed (exponential fit tau = 17.6 trials), compared 243 

with block transitions in which the reward probabilities in the two second-step states reversed (tau = 244 

22.7 trials, Figure 2E).  Reaction times at the second step, i.e. the latency from when the left or right 245 

side illuminated till the subject poked in the corresponding port, were faster following common than 246 

rare transitions (P = 2.8 x 10-8, paired t-test) (Figure 2F). 247 

The choice probability trajectories around reversals show that subjects tracked which choice is best, 248 

but do not discriminate whether they used model-based or model-free RL.  Both strategies are 249 

capable of tracking the best option, but do so in different ways: a model-based strategy learns 250 

estimates of the transition-probabilities linking the first-step actions to second-step states, and the 251 

reward probabilities in these states, and calculates the expected value of choosing each first-step 252 

action by combining these.  By contrast, a model-free strategy directly learns action values for the 253 

first-step actions through the reward prediction errors that occur when the second-step is reached, 254 

and, via what is known as an eligibility trace, when the outcome (rewarded or not) is obtained after 255 

the second-step.  As these different strategies learn different representations of the world, which 256 

are updated in different ways based on experienced events, it may be possible to dissociate them 257 

based on the fine structure of how events on each trial affect subsequent choices.  We employ both 258 

of the two analysis approaches that are traditionally employed to do this: logistic regression showing 259 

how events on each trial affect subsequent choices, and direct fitting to the behavioural data of 260 

combined model-based and model-free reinforcement learning models.  We detail these approaches 261 

below, and use them to unpick the effects of silencing the ACC. 262 
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263 
Figure 3. Stay probability and logistic regression analyses.  A) Stay probability analysis.  Fraction of trials the 264 
subject repeated the same choice following each combination of outcome (rewarded (1) or not (0)) and 265 
transition (common (C) or rare (R)).  Error bars show cross-subject SEM.  B) Logistic regression loadings for 266 
predictors; outcome (tendency to repeat choices following reward), transition (tendency to repeat choices 267 
following common transitions) and transition-outcome interaction (tendency to repeat choices following 268 
rewarded common transition trials and non-rewarded rare transition trials), comparing subject’s data (blue) 269 
with simulated data from a model-free (yellow) and model-based (pink) agent fit to the subjects behaviour.  270 
For subjects data; blue bars indicate ±1 standard deviation of the population level distributions, blue dots 271 
indicate maximum a posteriori (MAP) session fits.  The full set of predictor loadings is shown in figure 272 
supplement 1. 273 

The following figure supplements are available for figure 3. 274 

Figure supplement 1.  Full logistic regression model fit.   275 

 276 

Logistic regression analysis to disambiguate model-based versus model-free strategies 277 

The simplest picture of behaviour is the raw so-called stay probabilities of repeating the first-step 278 

choice for the four possible combinations of transition and outcome (Figure 3A).  Subjects were most 279 

likely to repeat choices following rewarded common transition trials, with a lower stay probability on 280 

rewarded rare-transition trials and non-rewarded trials.  Logistic regression analyses of the 281 

relationship between choice and trial events test the nature of the interaction between transition 282 

and outcome, as this has historically been taken indicative of model-based reasoning.  However, 283 

drawing such conclusions requires including various additional predictors in the model to capture 284 

strong, potentially confounding, effects.  Some of these are conventional – for instance, 285 

accommodating perseveration or alternation between first-step choices and other direct biases of 286 

choice.  However, we recently showed (Akam et al., 2015) the necessity of including an additional 287 

predictor which promotes repeating correct choices, as this avoids the effect of untoward 288 

correlations. 289 
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We therefore performed a logistic regression analysis which predicted stay probability as a function 290 

of trial events (outcome, transition and their interaction), with four additional regressors: the 291 

regressor discussed above which promoted repeating correct choices, a regressor which promoted 292 

repeating the previous choice, and two regressors capturing choice biases discussed below (Figure 293 

3B, Figure 3 – figures supplement 1).  Positive loading on the outcome predictor indicated that 294 

receiving reward was reinforcing (i.e. predicted staying) (P < 0.001, bootstrap confidence interval).   295 

Positive loading on the transition predictor indicated that experiencing common transitions was also 296 

reinforcing (P < 0.001).  Loading on the transition-outcome interaction predictor was not significantly 297 

different from zero (P = 0.79). The absence of transition-outcome interaction has been used in the 298 

context of the traditional Daw two-step task (Daw 2011) to suggest that behaviour is model-free. 299 

However, we have previously shown (Akam et al. 2015) that this depends on the subjects not 300 

learning the transition probabilities from the transitions they experience.  Such fixedness is 301 

reasonable for the traditional task, for which the probabilities are fixed and are known to be so by 302 

the human subjects. It is not for our task. Our analysis (Akam et al. 2015) suggests that when model-303 

learning is included, loading in the logistic regression analysis is shifted off the interaction predictor 304 

and onto the outcome and transition predictors. 305 

To understand more precisely the implications of this analysis, we simulated the behaviour of a 306 

model-based and a model-free RL agent, with the parameters of both fit to the behavioural data, 307 

and performed the logistic regression analysis on the data simulated from both models (Figure 2B).  308 

Data simulated from the model-free agent showed a large loading on the outcome regressor (i.e. 309 

rewards were reinforcing), but minimal loading on the transition and transition-outcome interaction 310 

regressors.  By contrast, data simulated from the model-based agent showed a large loading on both 311 

outcome and transition predictors (i.e. both rewards and common transitions were reinforcing), and 312 

a small loading on the interaction predictor.  The robust loading on the transition predictor observed 313 

in the experimental data in therefore consistent with subjects using model-based control as a 314 

component of their behavioural strategy.   315 

In addition to the three predictors reflecting the influence of the previous trial’s events, positive 316 

loading on the ‘stay’ predictor (Figure 3 – figure supplement 1, P < 0.001), indicated an overall 317 

tendency to repeat choices, consistent with the raw stay probabilities (Fig 3a).  The ‘correct’ 318 

predictor also showed positive loading (P < 0.001) indicating that subjects were more likely to repeat 319 

choices to the correct, i.e. higher reward probability option irrespective of the experienced trial 320 

outcome.  Subjects showed a small bias towards the high poke (P < 0.001) suggesting that the 321 

physical layout of the pokes made this action somewhat easier to execute.  We included a second 322 

bias predictor which captured asymmetry in subject’s bias dependent on the side they finish the 323 
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previous trial on, i.e. a positive loading on this predictor promoted a bias towards the high poke if 324 

the previous trial ended on the left side, and towards the low poke if the previous trial ended on the 325 

right side.  We term this a ‘rotational’ bias as positive loading promotes clockwise movement around 326 

the set of pokes (e.g. lefthigh, rightlow), while negative loading promotes counter-clockwise 327 

movement.  Though loading on this predictor was not on average different from zero (P = 0.092), it 328 

exhibited a substantial spread across the population of sessions such that a subset of sessions 329 

showed a strong rotational bias in either direction.  Including this predictor substantially improved 330 

integrated Bayes Information Criterion (iBIC) scores for the regression model (Δ iBIC = 2639) 331 

indicating it captured a real feature of the data.  Subjects may have developed this form of bias 332 

because it is the simplest fixed response pattern that was not penalised by the block transition rule: 333 

As block transitions were triggered based on a moving average of correct choices, developing an 334 

overall bias for the high or low poke resulted in the favoured poke spending most of the time as the 335 

bad option.  Rotational bias may therefore be a default action which could be quickly executed when 336 

there was little evidence to suggest one option was better than the other. 337 

Single-Trial Anterior Cingulate silencing in the two-step task impairs model based strategies 338 

Parameters for optogenetic silencing in the two-step task were as closely as possible matched to 339 

those used in the probabilistic reversal learning task, with the same viral vector, injection sites and 340 

light stimulation.   Again, optogenetic inhibition was delivered on a randomly selected 1/6 of trials, 341 

with a minimum of two non-stimulated trials between each stimulation trial.  Inhibition was 342 

delivered from when the subject entered the side poke and received the trial outcome until the 343 

subsequent choice.  The JAWS dataset comprised 11 animals with 12827 stimulated and 64523 non-344 

stimulated trials, the GFP control dataset 12 animals, 11663 stimulated and 59408 non-stimulated 345 

trials. 346 

We evaluated the effect of ACC inhibition on behaviour by performing the logistic regression analysis 347 

separately for choices which occurred during stimulation and on non-stimulated trials.   As in the 348 

baseline dataset, both experimental and control animals showed positive loading on both the 349 

outcome and transition predictors on non-stimulated trials, indicating that both receiving reward 350 

and experiencing common transitions was reinforcing (Figure4 A,B).  Optogenetic inhibition of ACC 351 

neurons reduced the influence of the previous state transition (common or rare) on subjects 352 

subsequent choice (P < 0.0002 uncorrected permutation test, P < 0.0006 Bonferroni corrected for 353 

multiple comparison of 3 predictors, stimulation by group interaction P = 0.029), but did not affect 354 

the influence of the previous reward (P = 0.94 uncorrected), or the transition-outcome interaction (P 355 

= 0.90 uncorrected).   356 
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357 
Figure 4.  Optogenetic silencing of ACC in two-step task. A) Logistic regression analysis of ACC inhibition 358 
dataset showing loadings for the outcome, transition and transition-outcome interaction predictors for choices 359 
made on stimulated (red) and non-stimulated (blue) trials.  B) As (a) but for GFP control animals.  *** indicates 360 
significant difference (P<0.001) between stimulated and non-stimulated trials. 361 

The following figure supplements are available for figure 4. 362 

Figure supplement 1. ACC inhibition stay probabilities. 363 

Figure supplement 2.  ACC inhibition full logistic regression model fits.   364 

Figure supplement 3.  ACC inhibition reaction times.   365 

 366 

This selective reduction in influence of the previous state transition while sparing the influence of 367 

the previous trial outcome is consistent with a shift from model-based towards model-free control 368 

as it is the transition predictor which most strongly differentiates behaviour generated by these two 369 

strategies (Figure 3B).  Neither outcome, transition nor transition-outcome interaction predictors 370 

were affected by light stimulation in the GFP controls (Bonferroni corrected P > 0.2).  In both 371 

experimental and control groups, light stimulation produced a small but significant bias towards the 372 

high poke, potentially reflecting an orienting response to the light (Bonferroni corrected P < 0.0015) 373 

(Figure 4 – figure supplement 1).  Reaction times were not affected by light stimulation in either 374 

group (Paired t-test P > 0.36) (Figure 4 – figure supplement 2). 375 

Reinforcement learning model analysis 376 

To gain a sharper picture of the baseline behaviour and the effects of ACC silencing, we fitted and 377 

compared RL models to the respective datasets.  Using our large baseline dataset, we performed an 378 

in-depth comparison of different RL models, as detailed in the supplementary material.  Here, we 379 

summarise the principal findings.  Our starting point was the RL agent used in the original Daw two-380 

step task (Daw et al., 2011) in which behaviour is generated by a mixture of model-based and model-381 

free strategies.  Since the state transition probabilities change over time in our task, we modified the 382 

model to include ongoing learning about the transition probabilities.   383 
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384 
Figure 5. Reinforcement learning model fitting: A) Parameter values for best fitting RL model on baseline 385 
dataset. Bars indicate ±1 standard deviation of the population level distributions, dots indicate maximum a 386 
posteriori session fits.  B) Reinforcement learning model fit to ACC inhibition dataset whose parameters take 387 
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separate values on stimulated (red) and non-stimulated (blue) trials. C) As (b) but for GFP control animals.  * 388 
indicates significant difference (P<0.05) between stimulated and non-stimulated trials, ** indicates P < 0.01. 389 

The following figure supplements are available for figure 5. 390 

Figure supplement 1.  Baseline dataset BIC score model comparison. 391 

Figure supplement 2.  Alternative RL model fits. 392 

Figure supplement 3.  Simulating effects of stimulation. 393 

 394 

As with human behaviour on the Daw two-step task, the model (Figure 5A, Figure 5 - figure 395 

supplement 1) that best fit our baseline dataset used a mixture of model-based and model-free 396 

control.  However, model comparison indicated the existence of a number of further structural 397 

features that have not previously been reported in models used for the Daw two-step task: 398 

forgetting about the values and state transitions for not-chosen actions, action perseveration effects 399 

spanning multiple trials, and representation of actions both at the level of the choice they represent 400 

(e.g. high poke) and the motor action they require (e.g. lefthigh movement).  These are discussed 401 

in detail in the supplementary material. Taken together, the additional features produced a very 402 

substantial improvement in fit quality (Δ iBIC = 11018) over the model which lacked them (Figure 5 – 403 

figure supplements 1,2).   404 

In seeking to use the model that fit the baseline dataset most parsimoniously to identify what aspect 405 

of learning or control was disrupted by ACC stimulation, we therefore had to understand their 406 

potential disrupting effects on telling apart model-based and model-free behaviour from data.  As 407 

we also discuss in the supplementary material, this is a significant concern because either 408 

perseveration or model-free RL occurring at the level of motor actions rather than choices can 409 

generate loading on the transition predictor in the logistic regression (Figure 5 – figure supplement 410 

3), breaking the simple pattern observed in figure 3B whereby only model-based RL gives substantial 411 

loading on the transition predictor.    412 

We therefore sought to understand what aspect of learning or control was affected by the ACC 413 

inhibition by fitting a version of the RL model to the stimulation dataset in which parameters were 414 

free to take different values on stimulated and non-stimulated trials.  In the JAWS animals (Figure 415 

5B), the weighting parameter for the model-based system, which controls how strongly model-based 416 

action values influence choice, was significantly reduced on stimulation trials (P = 0.021, 417 

permutation test).   This was not observed in control GFP animals (P = 0.348).   We also found that 418 

the learning rate for motor-level perseveration was increased in stimulation trials (P = 0.01).  The 419 

absolute size of the effects were not large, though this is likely influenced by the fitting procedure 420 

we used whereby we fit a version of the model in which parameters were constrained to take the 421 

same value on stimulated and unstimulated trials and then used this fit as the starting conditions for 422 
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fitting the full model (see methods).   Consistent with the logistic regression analyses, bias towards 423 

the high poke was significantly higher in both JAWS and GFP control animals on stimulation trials (P 424 

< 0.001), which likely reflects a bias caused by the light.  The control animals also showed a 425 

significantly higher value for the eligibility trace parameter on stimulated trials (P = 0.027).    426 

Taken in isolation this model fitting analysis would not be taken as robust support for an effect of 427 

ACC inhibition on model-based control because the effects would not survive multiple comparison 428 

correction for the large number of model parameters.  However, we are not using this analysis to 429 

demonstrate the existence of an effect, but rather to test a hypothesis and probe the nature of the 430 

effect found in the regression analysis.  Therefore, the lack of multiple comparison correction is 431 

appropriate here.  We know that ACC inhibition affected some aspect of learning or control which 432 

causes experiencing a common transition to promote repeating the preceding choice (Figure 4A).  433 

Standard model-free RL does not predict any effect of transition type on choice while model-based 434 

RL does (Figure 3B), however we found that such an influence could also be generated by other 435 

factors, specifically perseveration or model-free RL occurring at the level of motor actions (Figure 5 – 436 

figure supplement 3).  The RL analysis of the stimulation data supports the hypothesis that it is 437 

reduced influence of model-based RL on choice that explains the effect observed in the regression 438 

analysis as the weighting parameter for the model-based component was reduced on stimulation 439 

trials.   The increased learning rate for motor-level perseveration should if anything increase loading 440 

on the transition predictor and hence could not explain the regression analysis effect.  The 441 

probabilistic reversal learning task further argues against the effect of ACC inhibition being on 442 

outcome independent perseveration at the motor-level as in this task ACC inhibition reduced the 443 

influence of the most recent outcome. 444 

Discussion: 445 

 446 

We developed a novel two-step decision task for rodents that was designed to dissociate model-447 

based and model-free RL.  We used this task to probe the effect on reward guided behaviour of 448 

silencing ACC neurons, finding that optogenetic inhibition on individual trials reduced the influence 449 

of the experienced state transition, but not the trial outcome, on subsequent choice.  Analysis using 450 

RL models suggested these effects were due to a disruption of model-based control. 451 

The task was adapted from the two-step decision making task developed for human subjects by Daw 452 

and colleagues (Daw et al., 2011).  The Daw two-step has been widely adopted because it offers the 453 

possibility of dissociating control strategies during ongoing learning and decision making, and 454 

generates large decision datasets well suited to behavioural modelling, manipulations and 455 
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neurophysiology.  However, in Akam et al. (2015) and here, we identified and addressed a significant 456 

challenge for the presently popular programme of developing versions of this task for animal 457 

subjects – that subjects may develop habitual mappings from where rewards are received to first 458 

step actions (referred to as extended state representations) which can generate behaviour that 459 

closely resembles model-based strategies.  This is a particular concern in animal studies due to the 460 

different way subjects learn the task.  Human subjects participating in the Daw two-step task are 461 

given detailed information about the structure of the task beforehand such that they start with a 462 

largely correct model, and then perform a limited number (~200) of trials.  By contrast, animal 463 

subjects are typically extensively trained to reach the required performance level before recordings 464 

or manipulations are performed, giving ample opportunity to learn alternative strategies.  In 465 

humans, extensive training renders apparently model-based behaviour resistant to a cognitive load 466 

manipulation (Economides et al., 2015) which normally disrupts model-based control (Otto et al., 467 

2013), suggesting that it is possible to develop automatized strategies which closely resemble 468 

planning.  469 

Motivated by this concern, we modified the task structure, introducing reversals into the transition 470 

probabilities mapping the first-step actions to the second-step states.  This breaks the long term 471 

predictive relationship between where rewards are obtained and which first-step action has higher 472 

value, precluding a habit-like strategy that exploits this simple relationship, but not confounding a 473 

model-based strategy beyond requiring ongoing learning about the current state of the transition 474 

probabilities.  The resulting task is quite complex compared with typical rodent decision tasks, and it 475 

is notable that mice are capable not just of learning it, but of doing so in a few weeks with minimal 476 

shaping.  A further advantage of introducing reversals in the transition probabilities is that over the 477 

course of a session, the action-state transition probabilities, first-step action-values, and second-step 478 

state values are mutually decorrelated from each other.  This should provide rich opportunity for 479 

future work identifying these decision variables in neural activity. 480 

Our approach to developing a rodent two-step task contrasts with that taken by Miller et al. (Miller 481 

et al., 2016b) who retained the fixed transition probabilities of the original Daw task.  Model-free use 482 

of extended state representations can produce a similar pattern of regression loadings to those 483 

observed by Miller et al., but interpreted by them in model-based terms.  Indeed, the rats in the 484 

Miller et al. study showed little or no evidence of classical model-free behaviour leading to their 485 

conclusion that the behaviour is dominated by model-based planning.  This might be surprising as 486 

even humans who have been explicitly told the correct structure of the Daw two-step task show an 487 

approximately even mix of model-based and model-free strategies. 488 
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Using our large baseline dataset, we performed a detailed characterisation of subject’s behaviour on 489 

the new task, including an extensive process of RL model comparison.  This indicated that subjects 490 

used a mixture of model-based and model-free RL, consistent with human subjects on the Daw two-491 

step task.  The model comparison also revealed a number of unexpected features of the behaviour; 492 

forgetting about value and state transition probabilities for not chosen actions, perseveration effects 493 

spanning multiple trials, and representation of actions both in terms of the choice they represent 494 

and the motor action they require.    We are not aware of studies which have yet compared models 495 

including these elements on human two-step task data. 496 

In retrospect, given the finding that representations at the motor-level influenced choice behaviour, 497 

the physical implementation of the task we used had a significant shortcoming:  The action required 498 

to execute a given first step choice was different depending on the state reached at the second step 499 

on the previous trial.  This caused unnecessary ambiguity in interpreting regression loadings in terms 500 

of control strategy and should be remedied in future work with this class of tasks by modifying the 501 

physical layout of the apparatus.  502 

As a target for silencing, we chose the cingulate cortex between AP +1 and AP -0.5 (Figure 2 – figure 503 

supplement 2), which a recent cytoarchitectural study classifies as straddling the boundary between 504 

anterior-cingulate regions 24a and 24b and mid-cingulate regions 24a’ and 24b’ (Vogt and Paxinos, 505 

2014).  Although it has not hitherto been studied in the context of distinguishing actions and habits, 506 

there are anatomical, physiological and lesion-based reasons in rodents, monkeys and humans for 507 

considering this particular role for the structure. First, neurons in rat (Sul et al., 2010) and monkey 508 

(Ito et al., 2003; Matsumoto et al., 2003; Kennerley et al., 2011; Cai and Padoa-Schioppa, 2012) ACC 509 

carry information about chosen actions, reward, action values and prediction errors during decision 510 

making tasks.  Where reward type (juice flavour) and size were varied independently (Cai and Padoa-511 

Schioppa, 2012), a subset of ACC neurons encoded the chosen reward type rather than the reward 512 

value, consistent with a role in learning action-state relationships.  In a probabilistic decision making 513 

task in which reward probabilities changed in blocks, neuronal representations in rat ACC underwent 514 

abrupt changes when subjects detected a possible block transition (Karlsson et al., 2012).  This 515 

suggests that the ACC may represent the block structure of the task, a form of world model used to 516 

guide action selection, albeit one based on learning about latent states of the world (Gershman and 517 

Niv, 2010; Akam et al., 2015), rather than the forward action-state transition model of classical 518 

model-based RL.   519 

Second, neuroimaging in the Daw two-step task has identified representation of model-based value 520 

in the BOLD signal in anterior- and mid-cingulate regions (Daw et al., 2011; Doll et al., 2015). 521 
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Likewise, neuroimaging in a saccade task in which subjects constructed and updated a model of the 522 

location of target appearance observed ACC activation when subjects updated an internal model of 523 

where saccade targets were likely to appear, (O’Reilly et al., 2013).    524 

Third, ACC lesions in macaques produce deficits in tasks which require learning of action-outcome 525 

relationships (Hadland et al., 2003; Kennerley et al., 2006; Rudebeck et al., 2008), though the designs 526 

do not identify whether it is representation of the value or other dimensions of the outcome which 527 

were disrupted.   Lesions of rodent ACC produce selective deficits in cost benefit decision making 528 

where subjects must weigh up effort against reward size  (Walton et al., 2003; Rudebeck et al., 529 

2006); however, again, the associative structures concerned are not clear.  530 

Finally, the ACC provides a massive innervation to the posterior dorsomedial striatum (Oh et al., 531 

2014; Hintiryan et al., 2016), a region necessary for learning and expression of goal directed action 532 

as assessed by outcome devaluation (Yin et al., 2005a, 2005b; Hilario et al., 2012). 533 

We duly found that silencing ACC neurons on individual trials produced a selective change in how 534 

the previous trials events affected choice, reducing the influence of the previous state transition, 535 

while sparing the influence of reward.  This appeared to be due reduced influence of model-based 536 

control on stimulated trials. 537 

Recent discussion has focussed on whether ACC plays a direct role in decision making by calculating 538 

decision variables such as the expected value of possible courses of action, or a higher level function 539 

of deciding how much computational effort to expend on a decision (Kolling et al., 2016; Shenhav et 540 

al., 2016).  Our results do not discriminate between these theories, because a shift in the balance 541 

between model-based and model-free control could occur either due to directly disrupting the 542 

model-based controller, or disrupting a higher-level system which arbitrated between their usage.   543 

In sum, we suggest that our study offers a pioneering example of both the prospects and perils for 544 

the development of a new class of behavioural neuroscience investigations. We showed that it is 545 

possible to fashion sophisticated behavioural tasks that even mice can acquire quickly and 546 

effectively, thus affording all the benefits of modern genetic tools.  However, in doing so, we showed 547 

the necessity for examining the behaviour in painstaking detail, lest one be misled by surface 548 

characteristics. We then provided suitably qualified support for the involvement of a key region of 549 

the brain in a cognitive trade-off of great contemporary interest. Our methods should offer rich 550 

opportunities for addressing this and other questions concerning the implementation and 551 

interaction of different neural control systems. 552 
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 553 

Methods: 554 

 555 

Animals. All procedures were reviewed and performed in accordance with the Champalimaud Centre 556 

for the Unknown Ethics Committee guidelines.  59 male C57BL mice aged between 2 – 3 months at 557 

the start of experiments were used in the study.  Mice were housed socially, except for 1 week in 558 

individual housing post-surgery where applicable.  Animals were housed under a 12 hours light/dark 559 

cycle with experiments performed during the light cycle.   17 subjects were used in the two-step task 560 

baseline behaviour dataset.  14 subjects (8 JAWS, 6 GFP controls) were used for the two-step task 561 

ACC manipulation only.  14 subjects (8 JAWS, 6 GFP controls) were used for the probabilistic reversal 562 

learning task ACC manipulation only.  14 subjects (8 JAWS, 6 GFP controls) were first trained and 563 

tested on the two-step ACC manipulation, then retrained for a week on the probabilistic reversal 564 

learning task and tested on the ACC manipulation in this task.   7 JAWS-GFP animals were excluded 565 

from the study due to poor or mislocated JAWS expression.  In the group that was tested on both 566 

tasks, 1 Jaws and 2 control animals were lost from the study before optogenetic manipulation on the 567 

probabilistic reversal learning task due to failure of the LED implants.  The resulting group sizes for 568 

the optogenetic manipulation experiments were as reported in the results section. 569 

Behaviour 570 

Mice were placed on water restriction 48 hours before the first behavioural training session, and 571 

given 1 hour ad libitum access to water in their home cage 24 hours before the first training session.  572 

Mice received 1 training session per day of duration 1.5 – 2 hours, and were trained 6 days per week 573 

with 1 hour ad libitum water access in their home cage on their day off.   During behavioural training 574 

mice had access to dry chow in the testing apparatus as we found this increased the number of trials 575 

performed and amount of water consumed.  On days when mice were trained they typically 576 

received all their water in the task (typically 0.5-1.25ml), but additional water was provided as 577 

required to maintain a body weight >85% of their pre-restriction weight.  Under this protocol, 578 

bodyweight typically dropped to ~90% of pre-restriction level in the first week of training, then 579 

gradually increased over weeks to reach a steady state of ~95-105% pre-restriction body weight 580 

(Figure 2 – figure supplement 3). 581 

Behavioural experiments were performed in 14 custom made 12x12cm operant chambers using 582 

pyControl (http://pycontrol.readthedocs.io/en/latest/), a behavioural experiment control system 583 

built around the Micropython microcontroller.  The pyControl task definition files are included in 584 

supplementary material.  The apparatus, trial structure and block structure of the two-step task are 585 
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described in the results section.  Block transitions were triggered based on subject’s behaviour, 586 

occurring 20 trials after an exponential moving average (tau = 8 trials) of subject’s choices crossed a 587 

75% correct threshold.  The 20 trial delay between the threshold crossing and block transition 588 

allowed subjects performance at the end of blocks to be assessed without selection bias due to the 589 

block transition rule.  In neutral blocks where there was no correct choice, block transitions occurred 590 

with 0.1 probability on each trial after the 40th, giving a mean neutral block length of 50 trials.  591 

Subjects started each session with the reward and transition probabilities in the same state that the 592 

previous session finished on.  593 

Subjects encountered the full trial structure from the first day of training.  The only task parameters 594 

that were changed over the course of training were the reward and state transition probabilities and 595 

the reward sizes.  These were changed to gradually increase task difficulty over days of training, with 596 

the typical trajectory of parameter changes as follows: 597 

Session number Reward size (ul) Transition probabilities 

(common / rare) 

Reward probabilities 

(good / bad side) 

1 10 0.9 / 0.1 First 40 trials all rewarded, 

subsequently 0.9 / 0.1 

2 - 4 10 0.9 / 0.1 0.9 / 0.1 

5 - 6 6.5 0.9 / 0.1 0.9 / 0.1 

7 - 8 4 0.9 / 0.1 0.9 / 0.1 

9 - 12 4 0.8 / 0.2 0.9 / 0.1 

13+ 4 0.8 / 0.2 0.8 / 0.2 

 598 

The trials structure and block structure of the probabilistic reversal learning task are described in the 599 

results section.  Block transitions from non-neutral blocks were triggered 10 trials after an 600 

exponential moving average (tau = 8 trials) crossed a 75% correct threshold.   Block transitions from 601 

neutral blocks occurred with probability 0.1 on each trial after the 15th of the block to give an 602 

average neutral block length of 25 trials. 603 

Optogenetic Inhibition 604 

Experimental animals were injected bilaterally with AAV5-CamKII-Jaws-KGC-GFP-ER2 (UNC vector 605 

core, titre: 5.9 x 1012) using 16 injections each of 50nL (total 800nL) spread across 4 injection tracks 606 

(2 per hemisphere) at coordinates: AP: 0, 0.5, ML: ±0.4, DV: -1, -1.2, -1.4, -1.6mm relative to dura.  607 

Control animals were injected with AAV5-CaMKII-GFP (UNC vector core, titre: 2.9 x 1012) at the same 608 
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coordinates.  Injections were performed at a rate of 4.6nL/5 seconds, using a Nanojet II (Drummond 609 

Scientific) with bevelled glass micropipettes of tip diameter 50-100um.  A circular craniotomy of 610 

diameter 1.8mm was centred on AP: 0.25, ML: 0, and a high power red led (Cree XLamp XP-E2) was 611 

positioned above the craniotomy touching the dura.  The LED was mounted on a custom designed 612 

insulated metal substrate PCB (Figure 1 – figure supplement 1A).  The LEDs were powered using a 613 

custom designed constant current LED driver built around the AL8805 integrated circuit.  Light 614 

stimulation (50mW, 630nM) was delivered on stimulation trials from when the subject entered the 615 

side poke until the subsequent choice, up to a maximum of 6 seconds.  Stimulation was delivered on 616 

a randomly selected 17% of trials, with a minimum of 2 non-stimulated trials between each 617 

stimulation trial followed by a 0.25 probability of stimulation on each subsequent trial.  At the end of 618 

behavioural experiments, animals were sacrificed and perfused with paraformaldehyde (4%).  The 619 

brains were sectioned in 50um coronal slices and the location of viral expression was characterised 620 

with fluorescence microscopy (Figure 1 – figure supplement 2).   621 

Two animals were injected unilaterally with the JAWS-GFP virus using the coordinates described 622 

above and implanted with the LED implant and a movable bundle of 16 tungsten micro-wires of 623 

23μm diameter (Innovative-Neurophysiology) to record unit activity.  After 4 weeks of recovery, 624 

recording sessions were performed at 24 hour intervals and the electrode bundle was advanced by 625 

50 um after each session, covering a depth range of 300 – 1300um from dura over the course of 626 

recordings.  During recording sessions mice were free to move inside a sound attenuating chamber.  627 

Light pulses (50mW power, 5 second duration) were delivered at random intervals with a mean 628 

inter-stimulus interval of 30 seconds.  Neural activity was acquired using a Plexon recording system 629 

running Omniplex v. 1.11.3. The signals were digitally recorded at 40000 Hz and subsequently band-630 

pass filtered between 200 Hz and 3000 Hz. Following filtering, spikes were detected using an 631 

amplitude threshold set at twice the standard deviation of the bandpass filtered signal.  Initial 632 

sorting was performed automatically using Kilosort (Pachitariu et al., 2016).  The results were refined 633 

via manual sorting based on waveform characteristics, PCA and inter-spike interval histogram. 634 

Clusters were classified as single units if well separated from noise and other units and the spike rate 635 

in the 2ms following each spike was less than 1% of the average spike rate. 636 

Behavioural analysis:  All analysis of behaviour was performed in Python, full analysis code and 637 

behavioural data is included in supplementary material.   638 

Logistic regression model 639 

The logistic regression model for the two-step task predicted the probability of choosing the high 640 

poke as a function events on the previous trial using the following set of predictors: 641 
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Variables used to define two-step task regression predictors 

𝐶 +1 if previous choice to high poke, -1 if previous choice to low poke 

𝑂 +1 if previous trial rewarded, -1 if previous trial not rewarded 

𝑇 +1 if previous trial had common transition, -1 if previous trial had rare transition 

𝑅 +1 if previous choice to correct (higher reward probability) option, -1 if previous choice to 

incorrect (lower reward probability) option, 0 if neutral block 

Predictors used in two-step task logistic regression 

Bias: high/low 1 for all trials.   (Promotes choosing high poke) 

Bias: clockwise 

/counter-clockwise 

0.5 if previous trial ended on left side, -0.5 if right side.   (Promotes 

choosing high following trials ending on left, low following trials ending on 

the right) 

Stay 0.5 𝐶           (Promotes repeating previous Choice) 

Correct 0.5 𝐶 𝑅       (Promotes repeating correct choices) 

Outcome 0.5 𝐶 𝑂       (Promotes repeating rewarded choices) 

Transition 0.5 𝐶 𝑇       (Promotes repeating choices following common transitions) 

Transition outcome 

interaction 

0.5 𝐶 𝑇 𝑂  (Promotes repeating choices following rewarded common 

transitions and non-rewarded rare transitions). 

 642 

Note, regression predictors were scaled to take values of ±0.5 such that the loading are in units of 643 

log-odds.  The two-step task logistic regression excluded the first 20 trials after each reversal in the 644 

transition probabilities as it is ambiguous which transitions are common and rare at this point.  This 645 

resulted in ~9% of trials being excluded from the logistic regression analysis. 646 

The logistic regression analysis for the probabilistic reversal learning task predicted the probability of 647 

choosing the left poke as a function of events on the previous 3 trials, using the following set of 648 

predictors: 649 
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Variables used to define probabilistic reversal learning task regression predictors 

𝐶−𝑡  1 if left poke chosen on trial –t, -1 if right poke chosen. 

𝑂−𝑡 1 trial –t rewarded, -1 if trial –t not rewarded. 

Predictors used in probabilistic reversal learning task logistic regression 

Bias 1 for all trials (Promotes choosing left poke) 

𝐶ℎ𝑜𝑖𝑐𝑒−𝑡   0.5 𝐶−𝑡       for  𝑡 ∈  {1,2,3}    (Promotes repeating choices) 

𝑂𝑢𝑡𝑐𝑜𝑚𝑒−𝑡   0.5 𝐶−𝑡𝑂−𝑡  for  𝑡 ∈  {1,2,3}  (Promotes repeating rewarded choices) 

 650 

Reinforcement learning modelling: 651 

The following variables and parameters were used in the RL models: 652 

RL model variables 

𝑅 Reward obtained on trial (0 or 1) 

𝑎1 Action taken at first step (high or low poke) 

𝑎2 Action taken at second step (left or right poke) 

𝑎′1 Action not taken at first step (high or low poke) 

𝑎′2 Action not taken at second step (left or right poke) 

𝑚1 Motor-level action taken at first step (e.g. lefthigh) 

𝑚′1 Motor-level action not taken at first step 

𝑠1 First step state (choice state) 

𝑠2 Second step state (left-active or right-active) 

𝑠′2 State not reached at second step (left-active or right-active) 
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𝑄𝑚𝑓(𝑠, 𝑎) Model-free action value for action a in state s 

𝑄𝑚𝑜(𝑠1, 𝑚) Motor-level model-free action value for motor action m following in state 𝑠1 

𝑃(𝑠|𝑎) Estimated transition probability of reaching state s after taking action a 

𝐶(𝑠1, 𝑎) Choice perseveration variable 

𝑀(𝑠1, 𝑚) Motor perseveration variable 

𝐵(𝑠1, 𝑎𝑖) Choice bias variable 

𝑅(𝑠1, 𝑚𝑖) Rotational bias variable. 

RL model parameters 

𝛼𝑄 Value learning rate 

𝑓𝑄 Value forgetting rate 

𝜆 Eligibility trace parameter 

𝛼𝑇 Transition learning rate 

𝑓𝑇 Transition forgetting rate 

𝛼𝑐 Learning rate for choice perseveration 

𝛼𝑚 Learning rate for motor-level perseveration 

𝐺𝑚𝑓 Model-free action value weight 

𝐺𝑚𝑜 Motor-level model free action value weight 

𝐺𝑚𝑏 Model-based action value weight 

𝐵𝑐 Choice bias (high/low) 

𝐵𝑟 Rotational bias (clockwise/counter-clockwise) 

𝑃𝑐 Choice perseveration strength 
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𝑃𝑚 Motor-level perseveration strength 

 653 

RL Model equations: 654 

Model-free RL:  The action value update used by the model-free RL component was: 655 

𝑄𝑚𝑓(𝑠1, 𝑎1)  ⃪   (1 − 𝛼𝑄)𝑄𝑚𝑓(𝑠1, 𝑎1) +  𝛼𝑄  (𝑄𝑚𝑓(𝑠2, 𝑎2) +  𝜆 (𝑅 − 𝑄𝑚𝑓(𝑠2, 𝑎2))) 656 

𝑄𝑚𝑓(𝑠2, 𝑎2)  ⃪    (1 − 𝛼𝑄)𝑄𝑚𝑓(𝑠2, 𝑎2) +  𝛼𝑄𝑅 657 

In models that included value forgetting this value of not chosen actions was updated as: 658 

𝑄𝑚𝑓(𝑠1, 𝑎′1) ⃪(1 − 𝑓𝑄)𝑄𝑚𝑓(𝑠1, 𝑎′1)  659 

𝑄𝑚𝑓(𝑠′2, 𝑎′2) ⃪ (1 − 𝑓𝑄) 𝑄𝑚𝑓(𝑠′2, 𝑎′2) 660 

Model-based RL:  The model-based component updated its estimate of the state transition 661 

probabilities mapping first-step action to second-step state as: 662 

𝑃(𝑠2|𝑎1)   ⃪ (1 − 𝛼𝑇)𝑃(𝑠2|𝑎1) +  𝛼𝑇 663 

𝑃(𝑠′2|𝑎1)  ⃪ (1 − 𝛼𝑇)𝑃(𝑠′2|𝑎1) 664 

In models that included transition probability forgetting, the state transition probabilities for the not 665 

chosen action decayed towards a uniform distribution as: 666 

𝑃(𝑠2|𝑎′1)  ⃪  (1 − 𝑓𝑇)𝑃(𝑠2|𝑎′
1)  + 0.5𝑓𝑇 667 

𝑃(𝑠′2|𝑎′1) ⃪  (1 − 𝑓𝑇)𝑃(𝑠′2|𝑎′1) +  0.5𝑓𝑇 668 

At the start of each trial, model-based first step action values were calculated as: 669 

 𝑄𝑚𝑏(𝑠1, 𝑎𝑖) =  𝑄(𝑠1, 𝑎𝑖) = ∑ 𝑃(𝑠𝑗|𝑎𝑖)𝑄𝑚𝑓(𝑠𝑗, 𝑎2) 𝑗  670 

Motor-level model-free RL: Agents which included motor-level model-free RL learned values for the 671 

first step actions represented as motor movements (e.g. lefthigh).  The motor movement 𝑚𝑖 for a 672 

given choice 𝑎𝑖  (high or low) at the first step is dependent on the second-step state (left or right) the 673 

previous trial ended on.  Motor-level model-free action values were updated as: 674 

𝑄𝑚𝑜(𝑠1, 𝑚1)   ⃪   (1 − 𝛼𝑄)𝑄𝑚𝑜(𝑠1, 𝑚1) + 𝛼𝑄  (𝑄𝑚𝑓(𝑠2, 𝑎2) +  𝜆 (𝑅 − 𝑄𝑚𝑓(𝑠2, 𝑎2))) 675 

In models with motor-level model-free RL and value forgetting, all motor-level model-free values 676 

except that of the action taken decayed as: 677 
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𝑄𝑚𝑜(𝑠1, 𝑚′1) ⃪(1 − 𝑓𝑄)𝑄𝑚𝑜(𝑠1, 𝑚′
1) 678 

Perseveration:  Choice perseveration was modelled using variables 𝐶(𝑠1, 𝑎) which reflected the 679 

previous choice history.   In models using a single trial choice kernel these were updated as: 680 

𝐶(𝑠1, 𝑎1) ⃪ 0.5 681 

𝐶(𝑠1, 𝑎′1) ⃪ 0 682 

In models which used an exponential choice kernel, 𝐶(𝑠1, 𝑎) were updated as: 683 

𝐶(𝑠1, 𝑎1)  ⃪  (1 − 𝛼𝑐)𝐶(𝑠1, 𝑎1)  +    0.5 𝛼𝑐   684 

𝐶(𝑠1, 𝑎′1)  ⃪  (1 − 𝛼𝑐)𝐶(𝑠1, 𝑎′1) 685 

In models which used motor-level perseveration this was modelled using variables 𝑀(𝑠1, 𝑚) which 686 

reflected the previous history of motor actions at the first step. The motor-preservation variable for 687 

the motor action executed was updated as: 688 

𝑀(𝑠1, 𝑚1)  ⃪  (1 − 𝛼𝑚)𝑀(𝑠1, 𝑎1)  +    0.5 𝛼𝑚 689 

The motor perseveration variables for all other motor actions was updated as: 690 

𝑀(𝑠1, 𝑎′1)  ⃪  (1 − 𝛼𝑚)𝑀(𝑠1, 𝑎′1) 691 

Biases: A bias for the high/low poke was modelled with a bias variable B which took values: 692 

𝐵(𝑠1, 𝑎𝑖) = 0.5 if 𝑎𝑖  is high poke, -0.5 if 𝑎𝑖  is low poke. 693 

The rotational bias (see results section) was modelled with a variable 𝑅(𝑚𝑖) which took values: 694 

𝑅(𝑠1, 𝑚𝑖) = 0.5     if  𝑚𝑖 is a clockwise movement (lefthigh or rightlow) 695 

𝑅(𝑠1, 𝑚𝑖) = -0.5    if  𝑚𝑖 is a counter-clockwise movement (leftlow or righthigh) 696 

Combined action values: Model-free, motor-level model-free and model-based action values were 697 

combined with perseveration and bias terms to give the net action values that drove choice 698 

behaviour. 699 

𝑄𝑛𝑒𝑡(𝑠1, 𝑎𝑖) = 𝐺𝑚𝑓𝑄𝑚𝑓(𝑠1, 𝑎𝑖) + 𝐺𝑚𝑜𝑄𝑚𝑜(𝑠1, 𝑚𝑖) + 𝐺𝑚𝑏𝑄𝑚𝑏(𝑠1, 𝑎𝑖) + 𝑃𝑐  𝐶(𝑠1, 𝑎𝑖) + 𝑃𝑚 𝑀(𝑠1, 𝑚𝑖)700 

+  𝐵𝑐𝐵(𝑠1, 𝑎𝑖) + 𝐵𝑟𝑅(𝑠1, 𝑚𝑖) 701 

Where  𝐺𝑚𝑓, 𝐺𝑚𝑜 and 𝐺𝑚𝑏 are weights controlling the influence of respectively the model-free, 702 

motor-level model-free and model-based action values, 𝑃𝑐   & 𝑃𝑚 control the strength of choice- and 703 

motor-level perseveration, and 𝐵𝑐 & 𝐵𝑟 control the strength of choice and rotational biases, 𝑚𝑖 is 704 
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that motor action which equates to choice  𝑎𝑖  given the second step state reached on the previous 705 

trial. 706 

Given the net action values for the two first step actions, choice probability was given by the softmax 707 

decision rule: 708 

Probability of choosing action  𝑎𝑖  = 
𝑒𝑄𝑛𝑒𝑡(𝑠1,𝑎𝑖)

∑ 𝑒
𝑄𝑛𝑒𝑡(𝑠1,𝑎𝑗)

𝑗

 709 

Hierarchical modelling: 710 

Both the logistic regression analyses and reinforcement learning model fitting used a Bayesian 711 

hierarchical modelling framework (Huys et al., 2011),  in which parameter vectors 𝒉𝑖 for individual 712 

sessions were assumed to be drawn from Gaussian distributions at the population level with means 713 

and variance 𝜽 = {𝝁, 𝜮}.  The population level prior distributions were set to their maximum 714 

likelihood estimate: 715 

𝜽𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜽{𝑝(𝐷|𝜽} 716 

= 𝑎𝑟𝑔𝑚𝑎𝑥𝜽{∏ ∫ 𝑑 𝒉𝑖 𝑝(𝐷𝑖|𝒉𝑖)𝑝(𝒉𝑖|𝜽)

𝑁

𝑖

} 717 

Optimisation was performed using the Expectation-Maximisation algorithm with a Laplace 718 

approximation for the E-step at the k-th iteration given by: 719 

𝑝(𝒉𝑖
𝑘|𝐷𝑖) = 𝑁(𝒎𝑖

𝑘 , 𝑽𝑖
𝑘) 720 

𝒎𝑖
𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒉{𝑝(𝐷𝑖|𝒉)𝑝(𝒉|𝜽𝑘−1)} 721 

Where 𝑁(𝒎𝑖
𝑘 , 𝑽𝑖

𝑘) is a normal distribution with mean 𝒎𝑖
𝑘 given by the maximum a posteriori value 722 

of the session parameter vector 𝒉𝑖given the population level means and variance 𝜽𝑘−1, and the 723 

covariance 𝑽𝑖
𝑘given by the inverse Hessian of the likelihood around 𝒎𝑖

𝑘.  For simplicity we assumed 724 

that the population level covariance 𝜮 had zero off-diagonal terms.  For the k-th M-step of the EM 725 

algorithm the population level prior distribution parameters 𝜽 = {𝝁, 𝜮} are updated as: 726 

𝝁𝑘 =
1

𝑁
∑ 𝒎𝑖

𝑘

𝑁

𝑖=1

 727 

𝜮 =
1

𝑁
∑ [(𝒎𝑖

𝑘)
𝟐

+ 𝑽𝑖
𝑘]

𝑁

𝑖=1

− (𝝁𝑘)
2
 728 
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Parameters were transformed before inference to enforce constraints (0 <  { 𝐺𝑚𝑓 , 𝐺𝑚𝑜, 𝐺𝑚𝑏}, 0 <729 

 { 𝛼𝑄 , 𝑓𝑄, 𝜆, 𝛼𝑇 , 𝑓𝑇 , 𝛼𝑐 , 𝛼𝑚} < 1). 730 

To avoid local minima reinforcement learning models fits were repeated 16 times with the means of 731 

the population level prior distributions initialised to random values, the repeat with the best 732 

likelihood was then used. 733 

Model comparison:  734 

To compare the goodness of fit for models with different numbers of parameters we used the 735 

integrated Bayes Information Criterion (iBIC) score.  The iBIC score is related to the model log 736 

likelihood 𝑝(𝐷|𝑀) as: 737 

log 𝑝(𝐷|𝑀) = ∫ 𝑑𝜽  𝑝(𝐷|𝜽)𝑝(𝜽|𝑀) 738 

       ≈ −
1

2
𝑖𝐵𝐼𝐶 = log 𝑝(𝐷| 𝜽𝑀𝐿) −

1

2
|𝑀|log |D| 739 

Where |M| is the number of fitted parameters of the prior, |D| is the number of data points (total 740 

choices made by all subjects) and iBIC is the integrated BIC score.  The log data likelihood given 741 

maximum likelihood parameters for the prior log 𝑝(𝐷| 𝜽𝑀𝐿) is calculated by integrating out the 742 

individual session parameters: 743 

log 𝑝(𝐷| 𝜽𝑀𝐿) = ∑ 𝑙𝑜𝑔 ∫ 𝑑𝒉  𝑝(𝐷𝑖|𝒉)𝑝(𝒉|

𝑁

𝑖

𝜽𝑀𝐿) 744 

≈ ∑ 𝑙𝑜𝑔
1

𝐾
∑ 𝑝(𝐷𝑖|𝒉𝑗)

𝐾

𝑗=1

𝑁

𝑖

 745 

Where the integral is approximated as the average over K samples drawn from the prior 𝑝(𝒉|𝜽𝑀𝐿).  746 

Bootstrap 95% confidence intervals were estimated for the iBIC scores by resampling from the 747 

population of samples drawn from the prior. 748 

Permutation testing: 749 

Permutation testing was used to assess the significance of differences in model fits between 750 

stimulated and non-stimulated trials.  For the logistic regression analyses, the regression model was 751 

fit separately to stimulated and non-stimulated trials to give two sets of population level parameters 752 

𝜽𝒔 = {𝝁𝒔, 𝜮𝒔} and 𝜽𝒏 = {𝝁𝒏, 𝜮𝒏}, where 𝜽𝒔 are the parameters for the stimulated trials and 𝜽𝒏 are 753 

the parameters for the non-stimulated trials.  The distance between the population level means for 754 

the stimulated and non-stimulated conditions were calculated as:  755 
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∆𝑡𝑟𝑢𝑒= |𝝁𝒔−𝝁𝒏| 756 

An ensemble of L permuted datasets was then created by shuffling the labels on trials such that 757 

trials were randomly assigned to the ‘stimulated’ and ‘non-stimulated’ conditions.  The model was fit 758 

separately to the stimulated and non-stimulated trials for each permuted dataset and the distance 759 

between population level means in the stimulated and non-stimulated conditions was calculated for 760 

each permuted dataset i as: 761 

∆𝑝𝑒𝑟𝑚
𝑖 = |𝝁𝒔

𝒊 − 𝝁𝒏
𝑖 | 762 

The distribution of distances ∆𝑝𝑒𝑟𝑚 over the population of permuted datasets approximates the 763 

distribution of distances under the null hypothesis that stimulation does not affect the model 764 

parameters.  The P-values for the observed distances ∆𝑡𝑟𝑢𝑒 are then given by: 765 

𝑷 =
1

𝐿
∑ 𝒙𝑖

𝐿

𝑖=1

 766 

where 𝒙𝑖 = 1  for ∆𝑝𝑒𝑟𝑚
𝑖 ≥ ∆𝑡𝑟𝑢𝑒 ,   𝒙𝑖 = 0  for ∆𝑝𝑒𝑟𝑚

𝑖 < ∆𝑡𝑟𝑢𝑒  767 

In addition to testing for a significant main effect of the stimulation we tested for significant 768 

stimulation by group interaction.  We first evaluated the true distance between the effect sizes for 769 

the two groups as: 770 

∆𝑡𝑟𝑢𝑒= |(𝝁𝒔
𝐽𝐴𝑊𝑆 − 𝝁𝒏

𝐽𝐴𝑊𝑆 
) − (𝝁𝒔

𝐺𝐹𝑃 − 𝝁𝒏
𝐺𝐹𝑃 )| 771 

The approximate distribution of this distance under the null hypothesis that there was no difference 772 

between the groups was evaluated by creating an ensemble of permuted datasets in which we 773 

randomly assigned subjects to the JAWS and GFP groups and the interaction P value was calculated 774 

as above. 775 

For reinforcement learning models, the model cannot be fitted separately to stimulated and non-776 

stimulated trials because of the serial dependence of decision variables from trial to trial.  We 777 

therefore created RL models where all or a subset of the model parameters took separate values on 778 

stimulated and non-stimulated trials, such that if the base model had n parameters the resulting 779 

model had 2n parameters.  To test for significant differences between parameters on stimulated and 780 

non-stimulated trials, the model was fit to give a set of population level parameters 𝜽 = {𝝁, 𝜮}, of 781 

which a subset 𝝁𝒔, 𝜮𝒔 were active on stimulation trials and their counterparts 𝝁𝒏, 𝜮𝒏 were active on 782 

non-stimulation trials.  As before the distances between the stimulated and non-stimulated 783 

parameter values were calculated as ∆𝑡𝑟𝑢𝑒= |𝝁𝒔−𝝁𝒏| and permutation testing otherwise proceeded 784 

as described above for the regression models. 785 
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 The following procedure was used to minimise problems with local minima when these high 786 

parameter count RL models were fitted to stimulation data.  We first fitted a version of the model in 787 

which the parameters were the same for stimulated and non-stimulated trials.   This fit was repeated 788 

16 times with randomised initial values for the population level prior means.  The fit with the best 789 

likelihood across repeats was used to initialise the population level prior distribution for the full 790 

model in which parameters were free to take different values on stimulated and non-stimulated 791 

trials, such the stim and non-stim parameters started the fitting procedure with the same values.  792 

For permutation testing the same initial fit was used for the true and permuted datasets.  To ensure 793 

that permutation test results were not dependent on the specific initial fit found, the whole 794 

procedure was repeated 20 times and the mean P value across the 20 repeats was taken. 795 

Permutation tests were run on the Oxford Advanced Research Computing (ARC) facility. 796 

Bootstrap test for reversal analysis: 797 

The speed of behavioural adaptation to reversals in the transition and reward probabilities was 798 

evaluated by fitting exponentials to the average choice probability trajectories following each type of 799 

reversal (Figure 1E).  To test whether adaptation following reversals in transition probabilities was 800 

significantly faster than that following reversals in reward probabilities, we constructed a bootstrap 801 

confidence interval for the difference ∆𝜏= 𝜏𝑅 − 𝜏𝑇 , where 𝜏𝑅  and  𝜏𝑇  are respectively the 802 

exponential time constants following reversals in the reward and transition probabilities.  The 803 

bootstrap confidence interval was evaluated by creating an ensemble of L resampled datasets by 804 

drawing subjects with replacement from the set of subjects that comprised the baseline dataset.  805 

The bootstrap P-value was then evaluated as: 806 

𝑷 =
1

𝐿
∑ 𝒙𝑖

𝐿

𝑖=1

 807 

where 𝒙𝑖 = 1  for ∆𝜏< 0 ,   𝒙𝑖 = 0  for ∆𝜏≥ 0. 808 

Logistic regressions of simulated data: 809 

To evaluate the logistic regression loadings expected for a model-based and model-free agent on the 810 

task (Figure 2B), we first fitted each agent type to our baseline behavioural dataset using the 811 

hierarchical framework outlined above.  The agents used were a model-free agent with eligibility 812 

traces and value forgetting, and a model-based agent with value and transition probability 813 

forgetting.  We then simulated data (4000 sessions each of 500 trials) from each agent, drawing 814 

parameters for each session from the fitted population level distributions for that agent.  We 815 
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performed the logistic regression on the simulated data, again using the hierarchical framework as 816 

for the logistic regression analysis of experimental data.   817 

Simulating effects of single trial inhibition 818 

In Figure 5 – figure supplement 3 we simulated the effects of lesioning on ‘stimulation’ trials 819 

individual components of that RL model found to give the best fit to the baseline dataset.   This was 820 

done by setting the weighting parameter for the relevant component to zero on stimulation trials, 821 

removing its influence on choice on that trial.  The components lesioned and their respective 822 

weighting parameters were; choice-level model-free RL (𝐺𝑚𝑓), motor-level model-free RL (𝐺𝑚𝑜), 823 

model-based RL (𝐺𝑚𝑏), motor-level perseveration (𝑃𝑚).   For each lesion simulation, a simulated 824 

dataset (4000 sessions each of 500 trials) was generated using parameters for each session drawn 825 

from the population level distribution of the model fit to the baseline dataset.   The logistic 826 

regression analysis of the simulated data was performed as on the experimental data by fitting the 827 

regression model separately to choices made on stimulated and non-stimulated trials. 828 
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Figure supplements: 977 

 978 

Figure 1 - figure supplement 1.  JAWS inhibition of ACC neurons.  A) LED implant.  B) Implantation diagram, 979 
red dots indicate location of virus injections.  C) Inhibition of example cell, top panel – spike raster, bottom 980 
panel average firing rate.  D) Normalised firing rate for significantly inhibited cells (Kruskal-Wallis P < 0.05, 981 
67/249 cells), dark blue line – median, shaded area 25 – 75 percentile. 982 
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983 
Figure 1 – figure supplement 2.  Average JAWS expression.  Average JAWS-GFP fluorescence for all JAWS-GFP 984 
animals included in the study aligned onto reference atlas (Paxinos and Franklin, 2007).  Numbers indicate 985 
anterior-posterior position relative to bregma (mm). 986 
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987 
Figure 2 - figure supplement 1.  Comparison of original and new two-step task structures. A) State diagram of 988 
the original Daw two step task with example reward probability trajectories.  B) State diagram of the two-step 989 
task used in the current study with example reward probability and transition probability trajectories. 990 

Figure 2 - figure supplement 2.  Block transition probabilities.  Diagram of block transition probabilities for the 991 
two-step task used in the current study. 992 
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Figure 2  - figure supplement 3.  Body weight trajectory across training:  Mean (blue line) and standard-993 
deviation (shaded area) of subject’s body weight trajectory across days of training. 994 

995 
Figure 3 - figure supplement 1.  Full logistic regression model fit.  Fit of the logistic regression model to the 996 
baseline dataset showing loadings for all 7 parameters.  Bars indicate ±1 standard deviation of the population 997 
level distributions, dots indicate maximum a posteriori session fits.   Predictors: Bias high/low – tendency to 998 
choose the high poke, bias clockwise /counter-clockwise – tendency to choose high following left and low 999 
following right, Correct – tendency to choose the correct option, i.e. that option which commonly leads to 1000 
state with higher reward probability,  Stay – tendency to repeat choices irrespective of subsequent trial 1001 
events, Outcome – tendency to repeat choices following reward, Transition – tendency to repeat choices 1002 
following common transitions, Transition-outcome interaction – tendency to repeat choices following 1003 
rewarded common transition trials and non-rewarded rare transition trials.  1004 

 1005 
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 1006 

Figure 4 - figure supplement 1.  ACC inhibition stay probabilities Stay probability analysis for JAWS (A) and 1007 
GFP control (B) animals showing fraction of trials the subject repeated the same choice following each 1008 
combination of outcome (rewarded (1) or not (0)) and transition (common (C) or rare (R)).  Stay probabilities 1009 
were evaluated separately for trials with (red) and without (blue) light stimulation delivered from the trial 1010 
outcome to the subsequent choice.   Error bars show cross-subject SEM.  * indicates paired t-test P value < 1011 
0.05.  1012 

 1013 

1014 
Figure 4 - figure supplement 2.  ACC inhibition full logistic regression model fits.  Fit of the logistic regression 1015 
model to the JAWS ACC inhibition (A) and GFP controls (B) showing loadings for all 7 parameters.  Bars indicate 1016 
±1 standard deviation of the population level distributions, dots indicate maximum a posteriori session fits.    1017 
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1018 
Figure 4 - figure supplement 3.  ACC inhibition reaction times.  Reaction times for first-step choice on 1019 
stimulated and non-stimulated trials.  Reaction time is measured from the start of the ITI when the subject 1020 
exits the side poke at the end of the previous trial, until the next high or low poke.  The dashed line indicates 1021 
the end of the ITI at which point the high and low pokes become active. 1022 
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1023 
Figure 5 - figure supplement 1.  Baseline dataset BIC score model comparison.  A)  iBIC score comparison for 1024 
set of RL models on baseline behavioural dataset.  The set of models was constructed as described in 1025 
supplementary results by iteratively adding features to the RL model.  The grid below the plot indicates which 1026 
features were included in each model.  B)  iBIC score comparison on the baseline dataset for set of RL models 1027 
created by adding or removing a single feature at a time from the best fitting model.  The text below each bar 1028 
indicates what feature has been added or removed. Error-bars indicate the bootstrap 95% confidence interval 1029 
on the BIC score. 1030 
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1031 
Figure 5 - figure supplement 2.  Alternative RL model fits. Fit of Reinforcement learning models of different 1032 
levels of complexity.  Model complexity increases from A to D as features are added to the basic RL model.  For 1033 
each fit, bars indicate ±1 standard deviation of the population level distributions, dots indicate maximum a 1034 
posteriori session fits.  For each model the difference in iBIC score between this model and the best fitting 1035 
model is reported. 1036 
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Figure 5 - figure supplement 3.  Simulating effects of stimulation:  Simulation of the effects of lesioning 1037 
different components of the best fitting RL model on stimulation trials.  Model lesioning was implemented by 1038 
setting individual parameters to zero on stimulation trials.  Panels show logistic regression loadings for 1039 
stimulated and non-stimulated trials.  For each panel the title indicates which model-parameter was set to 1040 
zero on stimulation trials.   1041 

1042 
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Supplementary Material: 1043 

 1044 

Model comparison: 1045 

The starting point for our model comparison process was the RL agent used in the original Daw two-1046 

step task (Daw et al., 2011).  As the action-state transition probabilities in our task were not fixed, 1047 

we modified the model-based component of the agent to update its estimate of the transition 1048 

probabilities for the chosen action on each trial using an error driven learning rule.  As in the original 1049 

Daw agent we included a perseveration parameter which promoted repeating the previous choice.   1050 

Based on the evidence for response biases from the logistic regression, we additionally included in 1051 

the RL agent two parameters capturing a bias towards the high/low poke and the rotational bias 1052 

described in the results section.  We compared the goodness of fit of a pure model-free agent, a 1053 

pure model-based agent, and an agent which used a mixture of both strategies.  The mixture agent 1054 

provided a better fit to the data than either the pure model-free (Δ iBIC = 264, Figure3B) or pure 1055 

model-based agent (Δ iBIC = 888), and the mixture model fit suggested an approximately equal 1056 

contribution of model-based and model-free control (Figure 5 – figure supplement 2A).  As the task 1057 

is novel and hence we do not know what features may be present in the behaviour, we performed 1058 

an exploratory process of model comparison to better understand whether the RL model was 1059 

providing a good description of the behaviour.  This identified a number of additional features which 1060 

greatly improved fit quality when added to the model.   1061 

RL models typically assume that action values of options that are not chosen remain unchanged. 1062 

However, it has been reported that model-fits in some rodent decision making tasks are 1063 

substantially improved by including forgetting about the value of not chosen actions, typically 1064 

implemented as action value decay towards zero (Ito and Doya, 2009, 2015).  Including such action 1065 

value forgetting in the mixture agent produced a dramatic improvement in iBIC score for our data (Δ 1066 

iBIC = 7698).  Including forgetting about action-state transition probabilities, implemented as a decay 1067 

of transition probabilities for the not chosen action towards a uniform distribution, further improved 1068 

the goodness of fit (Δ iBIC = 643).  The mixture agent including value and transition probability 1069 

forgetting again showed approximately equal weighting of the model-based and model-free action 1070 

values in controlling behaviour (Figure 5 – figure supplement 2B).   When forgetting was included for 1071 

each agent the mixture agent provided a better fit to the data than either a pure model-free (Δ iBIC 1072 

= 612) or pure model-based (Δ iBIC = 3066) agent. 1073 

Forgetting decreases the value of not chosen relative to chosen options, and therefore promotes 1074 

perseveration of choice.  It is therefore possible that if subjects are in fact strongly perseverative, 1075 

this could be mistakenly identified as forgetting in the RL fit.  Though the model included a 1076 
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perseveration parameter for repeating the previous choice, several studies have reported 1077 

perseveration effects spanning multiple trials, even in tasks where decisions optimally should be 1078 

treated as independent (Gold et al., 2008; Akaishi et al., 2014).  We therefore tested whether 1079 

goodness of fit was improved by an exponential choice kernel through which prior choices directly 1080 

influenced the current choice with exponentially decreasing weight at increasing lag (Figure 5 – 1081 

figure supplement 2C).  This is equivalent to the decision inertia model of Akaishi et al. (2014) in 1082 

which choice is influenced by a variable they term the choice estimate CE, an average of previous 1083 

choices updated following each decision using the error driven learning rule 𝐶𝐸𝑛+1 = 𝐶𝐸𝑛 +1084 

 𝛼 (𝐶𝑛 −  𝐶𝐸𝑛), where  𝐶𝑛 is the choice on trial 𝑛 and α is a learning rate.  The addition of this 1085 

exponential choice kernel dramatically improved fit quality when added to the mixture agent 1086 

without forgetting (Δ iBIC = 7133).  However even with the exponential choice kernel included, value 1087 

forgetting substantially improved goodness of fit (Δ iBIC = 2071), and transition probability forgetting 1088 

further increased goodness of fit (Δ iBIC = 194).   These results indicate that forgetting about values 1089 

and transitions for not chosen options is a genuine feature of the behaviour and not an artefact due 1090 

to a tendency to perseverate.  They further indicate that subjects do in fact show a strong tendency 1091 

to perseverate over multiple trials, which is not captured even by forgetting RL models, presumably 1092 

because it is independent of the recent reinforcement history.  Forgetting may be a heuristic used in 1093 

dynamic environments where evidence becomes less reliable with the passage of time due to state 1094 

of the world changing.  Alternatively, forgetting may occur due to limitations of the learning systems 1095 

involved, perhaps due to differences between the rapidly changing reward statistics in the task and 1096 

those typical of natural environments. 1097 

 The choice kernel assumes that perseveration occurs at the level of the decision between the high 1098 

and low pokes, however it is also possible that the perseverative tendency is at the lower level of 1099 

motor actions.  In the current task, a given choice (high or low) entails a different motor action 1100 

depending on which side (left or right) the previous trial ended on.  We therefore considered a 1101 

model with perseveration at the motor level such that the choice on a given trial only increased the 1102 

probability of repeating that same motor action in future, e.g. a choice taken by moving from the left 1103 

to high poke only increased the probability of choosing high in future following trials which ended on 1104 

the left side (Figure 5 – figure supplement 2D).  Motor perseveration was modelled by maintaining 1105 

separate moving averages of choices following trials that ended on the left and right, updated using 1106 

the error driven learning rule described above, which each influenced choices following trials ending 1107 

on their respective sides.  Replacing the exponential choice kernel with this motor perseveration 1108 

substantially improved fit quality (Δ iBIC = 1004).   However, including perseveration both at the 1109 

level of choice, (high vs low, independent of motor action), and at the motor level, further improved 1110 
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fit quality (Δ iBIC = 499), indicating that subjects exhibit perseverative tendencies at both the choice 1111 

and motor level that are not predicted by the RL component of the model.  These data support the 1112 

existence of mechanisms which reinforce selected behaviours in a reward-independent fashion, i.e. 1113 

simply choosing to execute a behaviour increases the chance that behaviour will be executed in 1114 

future.  This is consistent with previous reports from perceptual (Gold et al., 2008; Akaishi et al., 1115 

2014) and reward-guided decision making tasks (Miller et al., 2016a), and we think is a parsimonious 1116 

explanation for our results.  Such perseveration is somewhat puzzling from a normative perspective 1117 

but may be a signature of a mechanism for automatizing behaviour by reinforcing chosen actions.  1118 

Thorndike proposed such a ‘law of exercise’ (1911) and the idea has recently been revisited by Miller 1119 

et al. (2016a) who suggest that habit formation occurs through outcome-independent reinforcement 1120 

of chosen actions.  This framework views habit formation as a supervised learning process in which 1121 

behaviour generated by value sensitive systems, i.e. model-free and model-based RL, is used to train 1122 

value-independent learning systems.  Such a mechanism could account for the perseveration 1123 

observed in our data assuming it operated both on actions represented at the level of the choice 1124 

they represent and the level of motor actions.  An alternative mechanism which could give rise to 1125 

perseveration would be subjects sampling an option multiple times between choices, which may be 1126 

adaptive if the decision process is costly in time or effort.  However, this explanation does not 1127 

account for the observation in our data that perseveration occurred at the level both of choices and 1128 

of motor actions, with different timescales for each (see respective learning rates, Figure 5).   1129 

Evidence that perseveration occurred both at the level of choice and motor action raises the 1130 

question of whether reward driven learning also occurs at both levels of representation.  This might 1131 

be expected from the architecture of parallel cortical-basal ganglia loops, with circuits linking 1132 

somatosensory and motor cortices to dorsolateral striatum learning values over low level motor 1133 

representations, and circuits linking higher level cortical regions to medial and ventral striatum 1134 

learning values over more abstract state and action representations.  We therefore tested an agent 1135 

in which model-free action values were learned in parallel for actions represented both in terms of 1136 

choice (high/low) and motor action (e.g. lefthigh).  This improved goodness of fit (Δ iBIC = 117) 1137 

and the resulting model fit indicated that motor-level model-free values had a somewhat stronger 1138 

influence on behaviour than the choice level model-free values (Figure 3a).   With the perseveration 1139 

kernels and motor level representations included in each model, the mixture agent again provided a 1140 

better fit to the data than either a pure model-free (Δ iBIC = 127) or pure model-based (Δ iBIC = 227) 1141 

agent.  We tested a number of other modifications to the model including separate learning rates at 1142 

the first and second step, but did not find further improvements in fit quality (Figure 5 – figure 1143 

supplement 1A).  Finally, as adding features to the model may make other features which previously 1144 
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improved the fit unnecessary, we tested whether removing any individual component from the 1145 

model improved fit quality but again did not find further improvements (Figure 5 – figure 1146 

supplement 1B). 1147 

Lesioning Full RL model 1148 

The simulations presented in Figure 3b indicated that data simulated from a model-based RL agent 1149 

showed loading on the transition and outcome predictors while data simulated from a model-free RL 1150 

agent showed loading only on outcome.  This suggests that reduced influence of model-based and 1151 

increased influence of model-free RL could produce the observed effect of ACC inhibition.  However, 1152 

the full RL model arrived at in the model comparison process included additional features not 1153 

included in those simulations which may complicate the relationship between behavioural strategy 1154 

and regression loadings.  Specifically, we were concerned that perseveration or model-free RL for 1155 

actions represented at the motor level (i.e. as a movement from left to high poke, rather than as a 1156 

choice of the high poke irrespective of where the movement started) could produce loading on the 1157 

transition predictor. This is because the state transition determines which second-step state the 1158 

subject ends up in, and hence which motor action they must take to make a given choice on the next 1159 

trial.  We therefore performed a set of simulations where we set the influence on choice of different 1160 

components of the model to zero on stimulation trials, which we term lesioning a model component 1161 

(Figure 5 – figure supplement 3).  This confirmed that consistent with Figure 2B, lesioning the choice-1162 

level model-free system selectively reduced loading on the outcome predictor, while lesioning the 1163 

model-based system reduced loading on outcome and transition, and to a lesser extent on the 1164 

interaction predictor.  However, lesioning the motor-level model free system (which learned model-1165 

free action values for individual motor actions such as lefthigh), also reduced loading on the 1166 

outcome and transition predictors, while lesioning motor-level perseveration reduced loading only 1167 

on the transition predictor.  These simulations suggest that the reinforcing effect of experiencing a 1168 

common transition is mediated in part by the use of model-based RL but also in part by 1169 

perseveration and model-free RL occurring at the level of motor actions. 1170 
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