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Anterior cingulate cortex represents action-state predictions and causally 1 

mediates model-based reinforcement learning in a two-step decision task. 2 
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Summary: 20 

The anterior cingulate cortex (ACC) is implicated in learning the value of actions, but it remains poorly 21 

understood whether and how it contributes to model-based mechanisms that use action-state 22 

predictions and afford behavioural flexibility.  To isolate these mechanisms, we developed a multi-23 

step decision task for mice in which both action-state transition probabilities and reward probabilities 24 

changed over time.  Calcium imaging revealed ramps of choice-selective neuronal activity, followed 25 

by an evolving representation of the state reached and trial outcome, with different neuronal 26 

populations representing reward in different states.  ACC neurons represented the current action-27 

state transition structure, whether state transitions were expected or surprising, and the predicted 28 

state given chosen action.  Optogenetic inhibition of ACC blocked the influence of action-state 29 
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transitions on subsequent choice, without affecting the influence of rewards. These data support a 30 

role for ACC in model-based reinforcement learning, specifically in using action-state transitions to 31 

guide subsequent choice.  32 

Highlights: 33 

• A novel two-step task disambiguates model-based and model-free RL in mice. 34 

• ACC represents all trial events, reward representation is contextualised by state.  35 

• ACC represents action-state transition structure, predicted states, and surprise. 36 

• Inhibiting ACC impedes action-state transitions from influencing subsequent choice. 37 

Introduction: 38 

The anterior cingulate cortex (ACC) is a critical contributor to reward guided decision making 39 

(Rushworth and Behrens, 2008; Heilbronner and Hayden, 2016).   ACC neurons encode diverse 40 

decision variables (Cai and Padoa-Schioppa, 2012; Ito et al., 2003; Matsumoto et al., 2003; Sul et al., 41 

2010), and the structure has been particularly associated with action reinforcement (Hadland et al., 42 

2003; Kennerley et al., 2006; Rudebeck et al., 2008).  However, instrumental learning about the value 43 

of actions is not a unitary phenomenon, but rather is thought to be mediated by partly parallel control 44 

systems, model-based and model-free, that use different computational principles to evaluate choices 45 

(Balleine and Dickinson, 1998; Daw et al., 2005; Dolan and Dayan, 2013). Despite suggestive evidence 46 

of ACC’s involvement in model-based reinforcement (Daw et al., 2011; Cai and Padoa-Schioppa, 2012; 47 

Karlsson et al., 2012; O’Reilly et al., 2013; Doll et al., 2015; Huang et al., 2020),  studies designed to  48 

specifically test this are lacking. 49 

To investigate the ACC’s role, we need a clear articulation of these parallel systems and a paradigm 50 

that allows their contributions to be distinguished. The former stems from the venerable dissociation 51 

between habitual and goal-directed control (Balleine and Dickinson, 1998; Daw et al., 2005). Well-52 

practiced actions in familiar environments are controlled by a habitual system, thought to employ 53 

model-free reinforcement learning (RL) (Sutton and Barto, 1998).  This uses reward prediction errors 54 

to cache preferences between actions. However, when the environment or motivational state 55 

changes, model-free preferences can become out of date, and actions are instead controlled by a goal-56 

directed system believed to utilise model-based RL (Sutton and Barto, 1998).  This learns a predictive 57 

model of the consequences of actions, i.e. the states and rewards they immediately lead to, and 58 

evaluates options by simulating or otherwise estimating their resulting long-run values.  This dual 59 

controller approach is beneficial because model-free and model-based RL have complementary 60 

strengths, the former allowing quick and computationally cheap decision making at the cost of slower 61 
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adaptation to changes in the environment, the latter flexible and efficient use of new information at 62 

the cost of computational effort and decision speed.  63 

For a paradigm that might distinguish between these systems, we started with the recent class of 64 

multi-step decision tasks (Daw et al., 2011; Simon and Daw, 2011; Huys et al., 2012).  Canonically, on 65 

each trial, subjects traverse states in a decision tree to reach rewards, often with ongoing changes in 66 

the state transition and/or reward probabilities to force continuous learning and surface differences 67 

between flexible and inflexible decision-making processes. The so-called two-step task (Daw et al., 68 

2011) is perhaps the most popular, with variants used to probe mechanisms of model-based RL (Daw 69 

et al., 2011; Wunderlich et al., 2012; Smittenaar et al., 2013; Doll et al., 2015) and arbitration between 70 

controllers (Keramati et al., 2011; Lee et al., 2014; Doll et al., 2016), and to identify behavioural 71 

differences in psychiatric disorders (Sebold et al., 2014; Voon et al., 2015; Gillan et al., 2016).  Versions 72 

of the two-step task for rats (Miller et al., 2017; Dezfouli and Balleine, 2017; Hasz and Redish, 2018; 73 

Groman et al., 2019) and monkeys (Miranda et al., 2019) have recently been developed. 74 

However, we have shown that with the sort of extensive experience on two-step tasks necessary for 75 

investigations with animals, subjects can, in principle, acquire a sophisticated, memory-based, 76 

representation of a latent state of the environment which confounds model-free and model-based 77 

planning (Akam et al., 2015).   This would limit our ability to determine the ACC’s specific contributions.   78 

Here, we report a novel murine two-step task designed to avoid this confound, and apply the task to 79 

probe the involvement of ACC in model-based and model-free control. The new task induces 80 

unsignalled structural changes in the decision-tree that complicate the use of latent state based 81 

strategies, whilst still permitting conventional model-based planning. We show that mice readily learn 82 

this task and show behaviour consistent with a mixture of model-based and model-free RL.  83 

Calcium imaging of ACC neurons whilst animals performed the task revealed that different populations 84 

participated across the different stages of each trial, representing all trial events, but with a stronger 85 

representation of states reached in the decision tree than rewards obtained, and different neurons 86 

representing reward in different states.  Additionally, the ACC represented a set of variables required 87 

for model-based RL, including the current configuration of the action-state transition probabilities 88 

(i.e., the probabilities of transitions in the decision tree), the actual predicted state given chosen 89 

action, and whether observed state transitions were expected or surprising given current knowledge 90 

of the tree.  Consistent with this, single-trial optogenetic inhibition of ACC selectively disrupted the 91 

influence of action-state transitions on subsequent choice, while sparing the influence of rewards. 92 

Accordingly, the strength of the effect of ACC inhibition for each individual subject was closely 93 

correlated with the degree to which that subject used model-based RL to solve the task. 94 
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Figure 1.  Two-step task with transition probability reversals A) Diagram of apparatus and trial events.  
B) State diagram of task.  Reward and transition probabilities are indicated for one of the six possible 
block types.  C) Block structure, left side shows the three possible states of the reward probabilities, right 
side shows the two possible states of the transition probabilities. D) Example session: Top panel - 
Exponential moving average (tau = 8 trials) of choices. Horizontal grey bars show blocks, with correct 
choice (top, bottom or neutral) indicated by y position of bars.  Middle panel – reward probabilities in 
left-active (red) and right-active (blue) states.  Bottom panel – Transition probabilities linking first-step 
actions (top, bottom pokes) to second step states (left/right active). E) Choice probability trajectories 
around reversals.  Pale blue line – average trajectory, dark blue line – exponential fit, shaded area – 
cross-subject standard deviation. Left panel - reversals in reward probability, right panel – reversals in 
transition probabilities. F) Second step reaction times following common and rare transitions - i.e. the 
time between the first step choice and side poke entry. *** indicates P < 0.001  Error bars show cross-
subject SEM.   
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Results: 95 

A novel two-step task with transition probability reversals 96 

As in the original two-step task (Daw et al., 2011), our task consisted of a choice between two ‘first-97 

step’ actions which led probabilistically to one of two ‘second-step’ states where reward could be 98 

obtained.  Unlike the original task, in each second-step state there was a single action rather than a 99 

choice between two actions.  In the original task, the stochasticity of state transitions and reward 100 

probabilities causes both model-based and model-free control to obtain rewards at a rate negligibly 101 

different from random choice at the first-step (Akam et al., 2015; Kool et al., 2016).  To promote task 102 

engagement, we increased the contrast between good and bad options by using a block-based reward 103 

probability distribution rather than the random walks used in the original, and increased the 104 

probability of common relative to rare state transitions.  The final and most significant structural 105 

change was the introduction of reversals in the transition probabilities mapping the first-step actions 106 

to the second-step states.  This was done to prevent habit like strategies consisting of mappings from 107 

the second-step state where rewards have recently been obtained to specific actions at the first step 108 

(Akam et al., 2015).  In supplementary results we directly compare versions of the task with fixed and 109 

changing action-state transition probabilities (Figure S1); subject’s behaviour was radically different in 110 

each, suggesting that they recruit different behavioural strategies. 111 

We implemented the task using a set of four nose-poke ports: top and bottom ports in the centre, 112 

flanked by left and right ports (Figure 1A).  Each trial started with the central ports lighting up, 113 

requiring a choice between top and bottom ports.  The choice of a central port led probabilistically to 114 

a ‘left-active’ or ‘right-active’ state, in which respectively the left or right port was illuminated.  The 115 

subject then poked the illuminated left or right side port to gain a probabilistic water reward (Figure 116 

1A,B).  A 1 second inter-trial interval started when the subject exited the side port.   117 

Both the transition probabilities linking the first-step actions to the second-step states, and the reward 118 

probabilities in each second-step state, changed in blocks.   There were three possible states of the 119 

reward probabilities for the left/right ports: respectively good/bad, neutral/neutral and bad/good 120 

(Figure 1C), where good/neutral/bad reward probabilities were 0.8/0.4/0.2.  There were two possible 121 

states of the transition probabilities: top→ left / bottom→ right and top→ right / bottom→ left  122 

(Figure 1C), where e.g. top→ right indicates the top port commonly (0.8 of trials) lead to the right port 123 

and rarely (0.2 of trials) to the left port (Figure 1C).  At block transitions, the reward and/or transition 124 

probabilities changed (see figure S2 for block transition structure).  Reversals in which first-step action 125 

(top or bottom) had higher reward probability could therefore occur due to reversals in either the 126 

reward or transition probabilities.   Block transitions were triggered when an exponential moving 127 
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average (tau = 8 trials) of the proportion of correct choices reached a threshold of 0.75, with a delay 128 

of 20 trials between threshold crossing and the reversal occurring to allow an unbiased assessment of 129 

performance at the end of blocks.  This resulted in block lengths of 63.6 ± 31.7 (mean ± SD) trials. 130 

Subjects learned the task in 3 weeks with minimal shaping and performed an average of 576 ± 174 131 

(mean ± SD) trials per day thereafter.  Our behavioural dataset used data from day 22 of training 132 

onward (n=17 mice,  400 sessions).  Subjects tracked which first-step action had higher reward 133 

probability (Figure 1D,E), choosing the correct option at the end of non-neutral blocks with probability 134 

0.68 ± 0.03 (mean ± SD).  Choice probabilities adapted faster following reversals in the action-state 135 

transition probabilities (exponential fit tau = 17.6 trials), compared with reversals in the reward 136 

probabilities (tau = 22.7 trials, P = 0.009, bootstrap test, Figure 1E).  Reaction times to enter the second 137 

step port were faster following common than rare transitions (P = 2.8 x 10-8, paired t-test) (Figure 1F). 138 

 Disambiguating model-based and model-free strategies in the two-step task with transition 139 

probability reversals 140 

To dissociate the contribution of model-based and model-free RL to subjects’ behaviour we looked at 141 

the granular structure of how events on each trial affected subsequent choices.  The simplest such 142 

analysis examines the so-called stay probabilities of repeating the first-step choice for the four 143 

possible combinations of transition (common or rare) and outcome (rewarded or not) (Figure 2A,B). 144 

We quantified how the state transition, trial outcome, and their interaction predicted stay probability 145 

using a logistic regression analysis, with additional predictors to capture choice bias and correct for 146 

cross trial correlations which can otherwise can give a misleading picture of how trial events influence 147 

subsequent choice (Akam et al., 2015).  Positive loading on the outcome predictor indicated that 148 

receiving reward was reinforcing (i.e. predicted staying) (P < 0.001, bootstrap test).   Positive loading 149 

on the transition predictor indicated that experiencing common transitions was also reinforcing (P < 150 

0.001).  Loading on the transition-outcome interaction predictor was not significantly different from 151 

zero (P = 0.79).  152 

The absence of a transition-outcome interaction has been used in the original two-step task (Daw 153 

2011) to suggest that behaviour is model-free.  However, we have shown (Akam et al. 2015) that this 154 

depends on the subjects not learning the transition probabilities from the experienced transitions.  155 

Such fixedness is reasonable for the original task, where transition probabilities are fixed and known 156 

to be so by the human subjects, but not for the task described here. Our analysis (Akam et al. 2015) 157 

suggests that when model-learning is included, loading in the logistic regression analysis for a model-158 

based strategy decreases for the interaction predictor and increases for the outcome and transition 159 

predictors. 160 
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Figure 2. Stay probability and logistic regression analyses.  A-C) Mouse behaviour. A) Stay probability analysis 
showing the fraction of trials the subject repeated the same choice following each combination of trial 
outcome (rewarded (1) or not (0)) and transition (common (C) or rare (R)).  Error bars show cross-subject SEM.  
B) Logistic regression model fit predicting choice as a function of the previous trial’s events. Predictor loadings 
plotted are; outcome (repeat choices following rewards), transition (repeat choices following common 
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To understand the implications of this for our task better, we simulated the behaviour of a model-161 

based and a model-free RL agent, with the parameters of both fit to the behavioural data, and ran the 162 

logistic regression analysis on data simulated from both models (Figure 2D-I). The RL agents used in 163 

these simulations included forgetting about actions not taken and states not visited, as RL model 164 

comparison indicated this greatly improved fits to mouse behaviour (see below & supplementary 165 

results).  Data simulated from a model-free agent showed a large loading on the outcome predictor 166 

(i.e. rewards were reinforcing), but little loading on the transition predictor or transition-outcome 167 

interaction predictors (Figure 2E).  By contrast, data simulated from the model-based agent showed a 168 

large loading on both outcome and transition predictors (i.e. both rewards and common transitions 169 

were reinforcing) (Figure 2H), and a  smaller loading on the interaction predictor.  Therefore, in our 170 

data the transition predictor loaded closer to the model-based strategy and the interaction predictor 171 

loaded closer to the model-free strategy. 172 

The above analysis only considers the influence of the most recent trial’s events on choice.  However, 173 

the slow time course of adaptation to reversals (Figure 1E) indicates that choices must be influenced 174 

by a longer trial history.  To better understand these long-lasting effects, we used a lagged regression 175 

analysis assessing how the current choice was influenced by past transitions, outcomes and their 176 

interaction (Figure 2C).   Predictors were coded such that a positive loading on e.g. the outcome 177 

predictor at lag 𝑥 indicates that reward on trial 𝑡 increased the probability of repeating the trial 𝑡 178 

choice at trial 𝑡 + 𝑥.  Past outcomes significantly influenced current choice up to lags of 7 trials, with 179 

a smoothly decreasing influence at larger lags.   Past state transitions influenced the current choice up 180 

to lags of 4 trials with, unexpectedly, a somewhat larger influence at lag 2 compared to lag 1.  Also 181 

unexpectedly, although the transition-outcome interaction on the previous trial did not significantly 182 

influence the current choice, the interaction at lag 2 and earlier did, with the strongest effect at lag 2. 183 

To understand how these patterns relate to RL strategy, we analysed the behaviour of model-based 184 

and model-free agents using the lagged regression (Figure 2F,I).   Both strategies showed a smoothly 185 

decreasing influence of trial outcome with increasing lag, similar to that observed in the data.  Both 186 

strategies showed a positive loading on the transition predictor across the trial history, but this was 187 

much stronger at recent trials for the model-based strategy, similar to that observed in the data, 188 

though with a more gradual decay with increasing lag.  Both strategies showed a positive loading on 189 

transitions) and transition-outcome interaction (repeat choices following rewarded common transition trials 
and non-rewarded rare transition trials). Error bars indicate 95% confidence intervals on the population mean, 
dots indicate maximum a posteriori (MAP) subject fits.  C) Lagged logistic regression model predicting choice 
as a function of events over the previous 12 trials.  Predictors are as in B.  D-F) As A-C but for data simulated 
from a model-free RL agent with forgetting and multi-trial perseveration.  G-I) As A-C but for data simulated 
from a model-based RL agent with forgetting and multi-trial perseveration.  Parameters for RL model 
simulations were obtained by fits of the RL models to the mouse behavioural data
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the transition outcome interaction predictor for earlier trials but diverged at recent trials, with the 190 

model-based strategy showing a small positive loading and the model-free a small negative loading.  191 

These data suggest that the strong influence of recent common/rare state transitions in the mouse 192 

behaviour is not consistent with a model-free strategy, however the mouse behaviour does not look 193 

like a simple mixture of model-based and model-free, suggesting the presence of additional features.   194 

To understand how behaviour diverged from these models, we performed an in-depth model 195 

comparison, detailed in supplementary results.  Here, we summarise the principal findings.  As with 196 

human behaviour on the original task, the best fitting model used a mixture of model-based and 197 

model-free control.  However, model comparison indicated additional features not typically used in 198 

models of two-step task behaviour: forgetting about values and state transitions for not-chosen 199 

actions, perseveration effects spanning multiple trials, and representation of actions both at the level 200 

of the choice they represent (e.g. top port) and the motor action they require (e.g. left port→top 201 

port).  These are discussed in detail in the supplementary results. Taken together, the additional 202 

features substantially improved fit quality (Δ iBIC = 11018) over the model which lacked them (Figure 203 

S3).  Data simulated from the best fitting RL model better matched mouse behaviour (Figure 2 J-L), 204 

with positive loading on the outcome and transition predictors and minimal loading on the interaction 205 

predictor (Figure 2J) at trial -1, but positive loading on the interaction predictor at trial -2 and earlier 206 

(Figure 2L). 207 

These data indicate that the novel task recruits both model-based and model-free reinforcement 208 

learning mechanisms, providing a tool for mechanistic investigation into more cognitive aspects of 209 

decision making in the mouse. 210 

ACC activity represents all trial events, emphasises choices and states, contextualises rewards 211 

To understand how ACC represented two-step task behaviour, we expressed GCaMP6f in ACC neurons 212 

under the CaMKII promotor (to target pyramidal neurons) and imaged calcium activity through a 213 

gradient refractive index (GRIN) lens using a miniature fluorescence microscope (n=4 mice, 21 214 

sessions, 2385 neurons) (Ghosh et al., 2011).  Constrained non-negative matrix factorisation for 215 

endoscope data (CNMF-E) (Zhou et al., 2018) was used to extract activity traces for individual neuron 216 

from the microscope video (Figure 3B).  All subsequent analyses used the deconvolved activity inferred 217 

by CNMF-E.  Activity was sparse, with an average event rate of 0.12Hz across the recorded population 218 

(Figure 3C).  We aligned activity to the same events across trials by time-warping  (see Methods) the 219 

interval between the first-step choice and second-step port entry (labelled ‘outcome’ in figures as this 220 

is when outcome information becomes available) to match the median interval.  Activity prior to 221 

choice and following outcome was not time-warped.  Different populations of neurons participated at  222 
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Figure 3. Two-step ACC calcium imaging.  A) Example GRIN lens placement in ACC.  B) Fluorescence signal 
from a neuronal ROI identified by CNMF-E (top panel – blue) and fitted trace (orange) due to the inferred 
deconvolved neuronal activity (bottom panel).  C)  Histogram showing the distribution of average event rates 
across the population of recorded neurons.  Events were defined as any video frame on which the inferred 
activity was non-zero.  D) Average trial aligned activity for all recorded neurons, sorted by the time of peak 
activity. No normalisation was applied to the activity. The grey bars under D, E, G between choice and 
outcome indicate the time period that was warped to align trials of different duration.  E) Regression analysis 
predicting activity on each trial from a set of predictors coding the choice (top or bottom), second step (left 
or right), outcome (rewarded or not) that occurred on each trial, and their interactions.  Lines show the 
population coefficient of partial determination (CPD) as a function of time relative to trial events.  Circles 
indicate where CPD is significantly higher than expected by chance, assessed by permutation test with 
Benjamini–Hochberg correction for comparison at multiple time points.  F) Representation of the second-step 
state before and after the trial outcome.  Points show second step predictor loadings for individual neurons 
at a time-point halfway between choice and outcome (x-axis) and a time-point 250ms after trial outcome (y-
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 different time-points across the trial (Figure 3D).  Many ACC neurons ramped up activity over the 223 

1000ms preceding the first step-choice, peaking at choice time and being largely silent following trial 224 

outcome. Other neurons were active in the period between choice and outcome, and yet others were 225 

active immediately following trial outcome.  226 

To identify how activity represented events on the current trial, we used a linear regression predicting 227 

the activity of each neuron at each time-point as a function of the choice (top or bottom), second-step 228 

state (left or right) and outcome (rewarded or not) that occurred on the trial, as well as the interactions 229 

between these events.  This and later analyses only included sessions where we had sufficient 230 

coverage of all trial types (n=3 mice, 11 sessions, 1314 neurons) , as in some imaging sessions with few 231 

blocks and trials there was no coverage of trial types that occur infrequently in those blocks.  We 232 

evaluated the population coefficient of partial determination, i.e. the fraction of variance across the 233 

population uniquely explained by each predictor, as a function of time relative to trial events (Figure 234 

3E). Representation of choice ramped up smoothly over the second preceding the choice, then 235 

decayed smoothly until approximately 500ms after trial outcome.   Representation of second-step 236 

state increased rapidly following the choice, peaked at second-step port entry, then decayed over the 237 

second following the outcome, and was the strongest represented trial event.   238 

As largely distinct populations of neurons were active before and after trial outcome (Figure 3D), we 239 

asked whether the representation of second-step state was different at these two time-points by 240 

plotting the second-step state regression weights for each neuron at a time-point mid-way between 241 

choice and outcome (which we term the pre-outcome representation of second step state) against 242 

the weighs 250ms after outcome (the post-outcome representation) (Figure 3F).  These pre- and post-243 

outcome representations were uncorrelated (R2 = 0.0033), and neurons that were strongly tuned at 244 

one time point typically had little selectivity at the other, indicating that although second-step state 245 

was strongly represented at both times, the representations were orthogonal and involved different 246 

populations of neurons.  To assess how these two representations evolved over time, we projected 247 

the regression weights for second-step state at each time-point onto the pre- and post- outcome 248 

second-step representations - i.e. onto the regression weights for second step state at these two 249 

timepoints (Figure 3G), using cross validation to give an unbiased time-course estimates.   The pre-250 

outcome representation of second step state peaked shortly before second-step port entry and 251 

axis).  G)  Time-course of pre- and post-outcome representations of second step state, obtained by projecting 
the second step predictor loadings at each time-point onto the pre- and post-outcome second step 
representations.   The red and blue triangles indicate the timepoints used to define the projection vectors.   
H) Representation of trial outcomes (reward or not) obtained at the left and right poke.  Points show predictor 
loadings for individual neurons 250ms after trial outcome in a regression analysis where outcomes at the left 
and right poke were coded by separate predictors.  
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decayed rapidly afterwards, while the post outcome representation peaked shortly after trial outcome 252 

and persisted for ~500ms.  253 

 Representation of the trial outcome ramped up following receipt of outcome information (Figure 3E), 254 

accompanied by an initially equally strong representation of the interaction between trial outcome 255 

and second-step state.  This interaction indicates that the representation of trial outcome depended 256 

strongly on the state in which the outcome was received.  To assess this in more detail we ran a version 257 

of the regression analysis with separate predictors for outcomes received at the left and right ports, 258 

and plotted the left and right outcome regression weights 250ms after outcome against each other 259 

(Figure 3H).  Representations of trial outcome obtained at the left and right port were orthogonal (R2 260 

= 0.0024), indicating that although ACC carried information about reward, reward representations 261 

were specific to the state where the reward was received. 262 

The evolving representation of trial events can be visualised by projecting the average neuronal 263 

activity for each trial type (defined by choice, second-step state and outcome) into the low 264 

dimensional space which captures the greatest variance between different trial types (see methods) 265 

(Figure 4).  The first 3 principal components (PCs) of this space were dominated by representation of 266 

choice and second-step state (Figure 4A,B), with different trial outcomes being most strongly 267 

 

Figure 4.  Population activity trajectories.  Projection of the average population activity for different trial 
types into the low dimensional space which captures the most variance between trial types.  Trial types were 
defined by the 8 combinations of choice, second-step and trial outcome.  Letters on the trajectories indicate 
the trajectory start (S - 1000ms before choice), the choice (C), outcome (O) and trajectory end (E – 1000ms 
after outcome).  A)  3D plot showing projections onto first 3 principal components.  B) Projection onto PCs 1 
and 2 which represent second-step and choice respectively.  C)  Projection onto PCs 4 and 5 which 
differentiate trial outcomes.
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differentiated in PCs 4 and 5 (Figure 4C).  Prior to the choice, trajectories diverged along an axis 268 

capturing choice selectivity (PC2). Following the choice, trajectories for different second-step states 269 

diverged first along one axis (PC3) then along a second axis (PC1), confirming that two orthogonal 270 

representations of second-step state occur in a sequence spanning the time period from choice 271 

through trial outcome. 272 

ACC represents model-based decision variables 273 

Model-based reinforcement learning uses predictions of the specific consequences of action, i.e. the 274 

states that actions lead to, to compute their values.  Therefore if ACC implements model-based 275 

computations on this task, we expect to see representation of the current state of the transition 276 

probabilities linking first-step actions second-step states, predictions of the second-step state that will 277 

be reached given the chosen action, and surprise signals if the state that is actually reached does not 278 

match these expectations.   279 

We therefore asked how ACC activity was affected by the changing transition probabilities mapping 280 

the first-step actions to second-step states, and reward probabilities in the second-step states.  Due 281 

to the limited number of blocks that subjects performed in imaging sessions, we performed separate 282 

regression analyses for sessions where we have sufficient coverage of the different states of the 283 

transition probabilities (Figure 5A, n=3 mice, 5 sessions, 589 neurons) and reward probabilities (Figure 284 

5B, n=3 mice, 10 sessions, 1152 neurons).  These analyses predicted neuronal activity as a function of 285 

events on the current trial, the state of the transition or reward probabilities respectively, and their 286 

interactions.   Though each analysis used only a subsets of imaging sessions, the representation of 287 

current trial events (Figure 5A,B top panels) was in both cases very similar to that for the full dataset 288 

(Figure 3E).  As both the transition and reward probabilities determine which first step action is 289 

correct, effects common to these two analyses could in principle be mediated by changes in first-step 290 

action values rather than the reward or transition probabilities themselves, but effects that are 291 

specific to one or other analysis cannot.   292 

Representation of the current state of the transition probabilities (Figure 5A: cyan), but not reward 293 

probabilities (Figure 5B: cyan), ramped up prior to choice and was sustained through trial outcome, 294 

though was only significant in the pre-choice period.  Representation of the predicted second-step 295 

state given the current choice (the interaction of the choice on the current trial with the state of the 296 

transition probabilities) also ramped up prior to choice (Figure 5A: grey), peaking around choice time.  297 

Though ACC represented the interaction of choice with the reward probabilities (Figure 5B: grey), the 298 

time course was different, with weak representation prior to choice and a peak shortly before trial 299 

outcome.   300 
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Once the second-step state was revealed, ACC represented whether the transition was common or 301 

rare - i.e. the interaction of the transition on the current trial with the state of the transition 302 

probabilities (Figure 5A: magenta).  There was no representation of the equivalent interaction of the 303 

transition on the current trial with the state of the reward probabilities (Figure 5B: magenta).  Finally, 304 

ACC represented the interaction of the second-step state reached on the current trial with both the 305 

transition and reward probabilities, with both representations ramping up after the second-step state 306 

was revealed and persisting till after trial outcome (Figure 5 A,B: yellow).  The interaction of second-307 

Figure 5. ACC represents model-based decision variables.  A)  Regression analysis predicting neuronal activity 
as a function of events on the current trial (top panel) and their interaction with the transition probabilities 
mapping the first-step choice to second-step states (bottom panel) for a subset of sessions with sufficient 
coverage of both states of the transition probabilities.  Predictors plotted in top panels are as in figure 3E.  
Predictors plotted in the bottom panel are; transition probabilities: which of the two possible states the 
transition probabilities are in (see Fig. 1C), common/rare transition: whether the transition on the current 
trial was common or rare, i.e. the interaction of the transition on the current trial (e.g. top→right) with the 
state of the transition probabilities, choice x trans. probs.: the choice on the current trial interacted with the 
state of the transition probabilities – i.e. the predicted second-step state given the current choice, sec. step x 
trans. probs.: the second-step state reached on the current trial interacted with the state of the transition 
probabilities, i.e. the action which commonly leads to the second step state reached. Predictors shown in top 
and bottom panels of A  were run as a single regression but plotted on separate axes for clarity.  The grey 
bars between choice and outcome indicate the time period that was warped to align trials of different length.  
B) Regression analysis predicting neuronal activity as a function of events on the current trial (top panel) and 
their interaction with the reward probabilities in the second-step states (bottom panel) for a subset of 
sessions with sufficient coverage of different states of the reward probabilities.   Predictors plotted in the 
bottom panel are; reward probabilities: which of the three possible states the transition probabilities are in 
(see Fig. 1C), transition x reward probs: Interaction of the transition on the current trial with the state of the 
reward probabilities. choice x reward probs.: the choice on the current trial interacted with the state of the 
reward probabilities, sec. step x trans. probs.: the second-step state reached on the current trial interacted 
with the state of the rewarded probabilities, i.e. the expected outcome (rewarded or not).  Predictors shown 
in top and bottom panels of B were run as a single regression but plotted on separate axes for clarity.   
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step state with the transition probabilities corresponds to the action which commonly leads to the 308 

second-step state reached, potentially providing a substrate for model-based credit assignment.   The 309 

interaction of second-step state with the reward probabilities corresponds to the predicted trial 310 

outcome (rewarded or not). 311 

These data indicate that ACC represented a set of decision variables required for model-based RL, 312 

including the current action-state transition structure, the predicted state given chosen action, and 313 

whether the observed state transition was expected or surprising. 314 

  Single-Trial Optogenetic Inhibition of Anterior Cingulate impairs model-based RL 315 

To test the causal role of ACC in two-step task behaviour we silenced ACC neurons on individual trials 316 

using JAWS (Chuong et al., 2014).  An AAV viral vector expressing JAWS-GFP under the CaMKII 317 

promotor was injected bilaterally into ACC of experimental animals (n = 11 mice, 192 sessions) (Figure 318 

S4), while GFP was expressed in control animals (n = 12 mice, 197 sessions).  A red LED was chronically 319 

implanted above the cortical surface (Figure 6A). Electrophysiology confirmed that red light (50mW, 320 

630nM) from the implanted LED robustly inhibited ACC neurons (Figure 6B, Kruskal-Wallis P < 0.05 for 321 

67/249 recorded cells).  ACC neurons were inhibited on a randomly selected 1/6 trials, with a minimum 322 

of two non-stimulated trials between each stimulation.  Light was delivered from the time when the 323 

subject entered the side port and received the trial outcome until the time of the subsequent choice 324 

(Figure 6C).   325 

ACC inhibition reduced the influence of the state transition (common or rare) on the subsequent 326 

choice (P = 0.007 Bonferroni corrected for comparison of 3 predictors, stimulation by group 327 

interaction P = 0.029, permutation test) (Figure 6D, S5A).  Stimulation did not affect how either the 328 

trial outcome (P = 0.94 uncorrected), nor the transition-outcome interaction (P = 0.90 uncorrected) 329 

influenced the subsequent choice.  In both experimental and control groups, light stimulation 330 

produced a bias towards the top poke, potentially reflecting an orienting response (bias predictor P < 331 

0.001 uncorrected).  Reaction times were not affected by light in either group (Paired t-test P > 0.36).   332 

The selective impairment of the influence of action-state transition on subsequent choice, while 333 

sparing the influence of the trial outcome, is consistent with disrupted model-based control, as the 334 

transition predictor most strongly differentiates these two strategies (Figure 2).  Consistent with this, 335 

the effect of inhibition on the transition predictor in each subject was strongly correlated with the 336 

strength of model-based influence on that subject’s choices (Figure 6E, R = -0.91, P = 0.0001),  as 337 

assessed by fitting the RL model to subject’s behaviour in the inhibition sessions using a single set of 338 

parameters for all trials.  Additional control analyses presented in supplementary results rule out an 339 

interpretation of the inhibition effect on the transition predictor in terms of motor level variables. 340 
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If ACC causally mediates model-based but not model-free RL, inhibiting ACC in a task where these 341 

strategies give similar recommendations should have little effect.  To test this, we performed the same 342 

ACC manipulation in a probabilistic reversal learning task, where model-based and model-free RL are 343 

expected to generate qualitatively similar behaviour (supplementary results, Figure S6).  ACC 344 

inhibition produced only a very subtle (but significant) reduction in the influence of the most recent 345 

outcome on the subsequent choice, suggesting that in this simpler task where model-based and 346 

model-free RL both recommend repeating rewarded choices, other regions could largely compensate 347 

for ACC inhibition. 348 

 

Figure 6.  Optogenetic inhibition of ACC in the two-step task. A) LED implant (left) and diagram showing 
implant mounted on head (right), red dots on diagram indicate location of virus injections.  B) Normalised 
firing rate for significantly inhibited cells over 5 second illumination, dark blue line – median, shaded area 25 
– 75 percentiles C) Timing of stimulation relative to trial events.  Stimulation was delivered from trial outcome 
to subsequent choice. D) Logistic regression analysis of ACC inhibition data showing loadings for the outcome, 
transition and transition-outcome interaction predictors for choices made on stimulated (red) and non-
stimulated (blue) trials. ** indicates Bonferoni corrected P<0.01 between stimulated and non-stimulated 
trials.   E) Correlation across subjects between the strength of model-based influence on choice (assessed 
using the RL model’s model-based weight parameter 𝐺𝑚𝑏) and the effect of optogenetic inhibition on the 
logistic regression model’s transition predictor.
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Discussion: 349 

We developed a novel two-step decision task for mice with reversals in the transition probabilities, 350 

designed to dissociate model-based and model free RL while rendering nugatory strategies based on 351 

latent-state inference.  A detailed characterisation of subjects’ behaviour indicated that using this task 352 

we could quantify the usage of model-based and model-free RL in each subject.  Calcium imaging 353 

indicated that different populations of ACC neurons represented each stage of the trial, with ramping 354 

choice selective activity followed by an evolving representation of the state reached and trial 355 

outcome.  Representation of trial outcome (rewarded or not) was weaker than that of the state where 356 

the outcome was obtained, and different populations of neurons represented trial outcome in 357 

different states.  ACC neurons represented a set of model-based decision variables, including the 358 

current action-state transition structure, the state predicted given the chosen action, and whether 359 

state transitions were expected or surprising.  Consistent with this, optogenetic inhibition of ACC on 360 

individual trials reduced the influence of action-state transitions on subsequent choice, without 361 

affecting the influence of rewards. The strength of this inhibition effect strongly correlated across 362 

subjects with their use of model-based RL.  These data demonstrate a role for ACC in model-based 363 

action selection. 364 

Our study is one of several recent adaptations of two-step tasks for animal models (Miller et al., 2017; 365 

Dezfouli and Balleine, 2017; Hasz and Redish, 2018; Groman et al., 2019).  Unlike these 366 

implementations, we introduced a major structural change to the task – reversals in the transition 367 

probabilities mapping first-step actions to second-step states.  We did this to prevent subjects solving 368 

the task by inferring the current state of the reward probabilities (i.e. where rewards have recently 369 

been obtained) and learning fixed habitual strategies conditioned on this latent state (e.g. rewards on 370 

the left → choose up).  We have previously shown that such strategies generate behaviour that looks 371 

very similar to model-based RL (Akam et al., 2015).  This is a particular concern in animal two-step 372 

tasks.  Human subjects are given detailed information about the structure of the task beforehand so 373 

they start with a largely correct model, then perform a limited number of trials with little contrast 374 

between good and bad options.  Animal subjects are typically extensively trained, with strong contrast 375 

between good and bad options - giving ample opportunity and incentive to learn alternative 376 

strategies.  In humans, extensive training renders apparently model-based behaviour resistant to a 377 

cognitive load manipulation (Economides et al., 2015) which normally disrupts model-based control 378 

(Otto et al., 2013), suggesting that it is possible to develop automatized strategies which closely 379 

resemble planning.  380 
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Introducing reversals in the transition probabilities breaks the long-term predictive relationship 381 

between where rewards are obtained and which first-step action has higher value.  This precludes a 382 

habit-like strategy that exploits this simple relationship, but should not confound a model-based 383 

strategy beyond requiring ongoing learning about the current state of the transition probabilities.   We 384 

compared behaviour on versions of the task with and without transition probability reversals, and 385 

found that this radically changed behaviour, both in terms of overall performance and the granular 386 

structure of learning.  This strongly suggests that subjects used different strategies on the different 387 

versions, and while not conclusive, is consistent with the idea that with fixed transition probabilities, 388 

subjects learn sophisticated habits operating over the task’s latent state space. Another potentially 389 

confounding internal state description in this case is the successor representation (Dayan, 1993), 390 

which characterises current states in terms of their likely future. Successor representations support 391 

rapid updating of values in the face of changes in the reward function (and so could solve the fixed 392 

transition probability version of the task), but not changes in state transition probabilities (and so 393 

could not solve the new task) (Russek et al., 2017).  Both of these strategies are of substantial interest 394 

in their own right, so understanding what underpins the behavioural differences between the task 395 

variants is a pressing question for future work.  396 

It has been argued that differences in reaction time at the second-step following common vs rare 397 

transitions are additional evidence for model-based RL (Miller et al., 2017).   However, in versions of 398 

the task where the actions required by different second-step states are consistent from trial to trial, 399 

reaction time differences may reflect preparatory activity at the level of the motor system, for 400 

example based on the strong correlation between the first-step choice and the action that will be 401 

required at the second-step.   Indeed, a recent study using a two-step task in humans has shown that 402 

motor responses can show sensitivity to task structure even when choices are model-free (Konovalov 403 

and Krajbich, 2020).  We therefore worry that second-step reaction times may not provide strong 404 

evidence that state prediction is used for model-based action evaluation. 405 

As a starting point for neurophysiological investigation, we focused on a region of medial frontal cortex 406 

on the boundary between anterior-cingulate regions 24a and 24b and mid-cingulate regions 24a’ and 407 

24b’ (Vogt and Paxinos, 2014).  Though it has not to our knowledge been studied in the context of 408 

distinguishing actions and habits, there are anatomical physiological and lesion-based reasons in 409 

rodents, monkeys and humans for considering this particular role for the structure.  First, neurons in 410 

rat (Sul et al., 2010) and monkey (Ito et al., 2003; Matsumoto et al., 2003; Kennerley et al., 2011; Cai 411 

and Padoa-Schioppa, 2012) ACC carry information about chosen actions, reward, action values and 412 

prediction errors during decision making tasks.  Where reward type (juice flavour) and size were varied 413 

independently (Cai and Padoa-Schioppa, 2012), a subset of ACC neurons encoded the chosen reward 414 
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type rather than the reward value, consistent with a role in learning action-state relationships.  In a 415 

probabilistic decision making task in which reward probabilities changed in blocks, neuronal 416 

representations in rat ACC underwent abrupt changes when subjects detected a possible block 417 

transition (Karlsson et al., 2012).  This suggests that the ACC may represent the block structure of the 418 

task, a form of world model used to guide action selection, albeit one based on learning about latent 419 

states of the world (Gershman and Niv, 2010; Akam et al., 2015), rather than the forward action-state 420 

transition model of classical model-based RL.   421 

Second, neuroimaging in the original two-step task has identified representation of model-based value 422 

in anterior- and mid-cingulate regions, suggesting this is an important node in the model-based 423 

controller (Daw et al., 2011; Doll et al., 2015; Huang et al., 2020).  Neuroimaging in a two-step task 424 

variant also found evidence for state prediction errors in dorsal ACC (Lockwood et al., 2019), 425 

consistent with our finding that ACC represented whether state transitions were common or rare.  426 

Relatedly, neuroimaging in a saccade task in which subjects constructed and updated a model of the 427 

location of target appearance found ACC activation when subjects updated an internal model of where 428 

saccade targets were likely to appear, (O’Reilly et al., 2013).    429 

Third, ACC lesions in macaques produce deficits in tasks which require learning of action-outcome 430 

relationships (Hadland et al., 2003; Kennerley et al., 2006; Rudebeck et al., 2008), though the designs 431 

do not identify whether it is representation of the value or other dimensions of the outcome which 432 

were disrupted.   Lesions of rodent ACC produce selective deficits in cost benefit decision making 433 

where subjects must weigh up effort against reward size  (Walton et al., 2003; Rudebeck et al., 2006); 434 

however, again, the associative structures concerned are not clear.  435 

Finally, the ACC provides a massive innervation to the posterior dorsomedial striatum (Oh et al., 2014; 436 

Hintiryan et al., 2016), a region necessary for learning and expression of goal directed action as 437 

assessed by outcome devaluation (Yin et al., 2005a, 2005b; Hilario et al., 2012). 438 

Our study specifically tests the hypothesized role of ACC suggested by this body of work, by showing 439 

that ACC neurons represent variables critical for model-based RL, and that ACC activity is necessary 440 

for using action-state transitions to guide subsequent choice.  More broadly, our study shows that it 441 

is possible to fashion sophisticated multi-step decision tasks that mice can acquire quickly and 442 

effectively, bringing to bear modern genetic tools to dissect mechanisms of model-based decision 443 

making. 444 

 445 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 23, 2020. ; https://doi.org/10.1101/126292doi: bioRxiv preprint 

https://doi.org/10.1101/126292


20 
 

Acknowledgements: 446 

We thank Zach Mainen, Joe Patton, Mark Walton, Tim Behrens, Nathaniel Daw, Kevin Miller and Bruno 447 

Miranda for discussions about the work.  The authors acknowledge the use of the Champalimaud 448 

Scientific and Technological Platforms and the University of Oxford Advanced Research Computing 449 

(ARC) facility (http://dx.doi.org/10.5281/zenodo.22558). 450 

Author contributions: 451 

Conceptualization: T.A., P.D., R.M.C., Investigation: T.A., I.R.V., I.M., X.Z., M.P., R.O., Data curation: 452 

T.A., I.M., M.P., R.O., Formal analysis: TA, Writing – original draft: T.A., Writing - review and editing  453 

T.A., P.D., R.M.C, Funding Acquisition: T.A., R.M.C, Supervision: P.D., R.M.C. 454 

Funding: 455 

TA was funded by the Wellcome Trust (WT096193AIA).  RC was funded by the National Institute of 456 

Health (5U19NS104649) and ERC CoG (617142).  PD was funded by the Gatsby Charitable Foundation, 457 

the Max Planck Society and the Humboldt Foundation.  M.P., I.R.V. and I.M. were funded by the 458 

Fundação para a Ciência e Tecnologia (SFRH/BD/52222/2013, PD/BD/105950/2014, SFRH/BD/51715459 

/2011). 460 

Competing interests: 461 

The authors have no competing interests to report. 462 

463 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 23, 2020. ; https://doi.org/10.1101/126292doi: bioRxiv preprint 

http://dx.doi.org/10.5281/zenodo.22558
https://doi.org/10.1101/126292


21 
 

References: 464 

Akaishi, R., Umeda, K., Nagase, A., and Sakai, K. (2014). Autonomous Mechanism of Internal Choice 465 
Estimate Underlies Decision Inertia. Neuron 81, 195–206. 466 

Akam, T., Costa, R., and Dayan, P. (2015). Simple Plans or Sophisticated Habits? State, Transition and 467 
Learning Interactions in the Two-Step Task. PLoS Comput Biol 11, e1004648. 468 

Balleine, B.W., and Dickinson, A. (1998). Goal-directed instrumental action: contingency and incentive 469 
learning and their cortical substrates. Neuropharmacology 37, 407–419. 470 

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful 471 
approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300. 472 

Cai, X., and Padoa-Schioppa, C. (2012). Neuronal encoding of subjective value in dorsal and ventral 473 
anterior cingulate cortex. J. Neurosci. 32, 3791–3808. 474 

Chuong, A.S., Miri, M.L., Busskamp, V., Matthews, G.A.C., Acker, L.C., Sørensen, A.T., Young, A., 475 
Klapoetke, N.C., Henninger, M.A., Kodandaramaiah, S.B., et al. (2014). Noninvasive optical inhibition 476 
with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129. 477 

Daw, N.D., Niv, Y., and Dayan, P. (2005). Uncertainty-based competition between prefrontal and 478 
dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–1711. 479 

Daw, N.D., Gershman, S.J., Seymour, B., Dayan, P., and Dolan, R.J. (2011). Model-based influences on 480 
humans’ choices and striatal prediction errors. Neuron 69, 1204–1215. 481 

Dezfouli, A., and Balleine, B.W. (2017). Learning the structure of the world: The adaptive nature of 482 
state-space and action representations in multi-stage decision-making. BioRxiv 211664. 483 

Dolan, R.J., and Dayan, P. (2013). Goals and Habits in the Brain. Neuron 80, 312–325. 484 

Doll, B.B., Duncan, K.D., Simon, D.A., Shohamy, D., and Daw, N.D. (2015). Model-based choices involve 485 
prospective neural activity. Nat. Neurosci. 18, 767–772. 486 

Doll, B.B., Bath, K.G., Daw, N.D., and Frank, M.J. (2016). Variability in Dopamine Genes Dissociates 487 
Model-Based and Model-Free Reinforcement Learning. J. Neurosci. 36, 1211–1222. 488 

Economides, M., Kurth-Nelson, Z., Lübbert, A., Guitart-Masip, M., and Dolan, R.J. (2015). Model-Based 489 
Reasoning in Humans Becomes Automatic with Training. PLoS Comput Biol 11, e1004463. 490 

Gershman, S.J., and Niv, Y. (2010). Learning latent structure: carving nature at its joints. Curr. Opin. 491 
Neurobiol. 20, 251–256. 492 

Ghosh, K.K., Burns, L.D., Cocker, E.D., Nimmerjahn, A., Ziv, Y., Gamal, A.E., and Schnitzer, M.J. (2011). 493 
Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878. 494 

Gillan, C.M., Kosinski, M., Whelan, R., Phelps, E.A., and Daw, N.D. (2016). Characterizing a psychiatric 495 
symptom dimension related to deficits in goal-directed control. ELife 5, e11305. 496 

Gold, J.I., Law, C.-T., Connolly, P., and Bennur, S. (2008). The Relative Influences of Priors and Sensory 497 
Evidence on an Oculomotor Decision Variable During Perceptual Learning. J. Neurophysiol. 100, 2653–498 
2668. 499 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 23, 2020. ; https://doi.org/10.1101/126292doi: bioRxiv preprint 

https://doi.org/10.1101/126292


22 
 

Groman, S.M., Massi, B., Mathias, S.R., Curry, D.W., Lee, D., and Taylor, J.R. (2019). Neurochemical 500 
and Behavioral Dissections of Decision-Making in a Rodent Multistage Task. J. Neurosci. 39, 295–306. 501 

Hadland, K.A., Rushworth, M.F.S., Gaffan, D., and Passingham, R.E. (2003). The Anterior Cingulate and 502 
Reward-Guided Selection of Actions. J. Neurophysiol. 89, 1161–1164. 503 

Hasz, B.M., and Redish, A.D. (2018). Deliberation and Procedural Automation on a Two-Step Task for 504 
Rats. Front. Integr. Neurosci. 12. 505 

Heilbronner, S.R., and Hayden, B.Y. (2016). Dorsal Anterior Cingulate Cortex: A Bottom-Up View. Annu. 506 
Rev. Neurosci. 39, 149–170. 507 

Hilario, M., Holloway, T., Jin, X., and Costa, R.M. (2012). Different dorsal striatum circuits mediate 508 
action discrimination and action generalization. Eur. J. Neurosci. 35, 1105–1114. 509 

Hintiryan, H., Foster, N.N., Bowman, I., Bay, M., Song, M.Y., Gou, L., Yamashita, S., Bienkowski, M.S., 510 
Zingg, B., Zhu, M., et al. (2016). The mouse cortico-striatal projectome. Nat. Neurosci. 511 

Huang, Y., Yaple, Z.A., and Yu, R. (2020). Goal-oriented and habitual decisions: Neural signatures of 512 
model-based and model-free learning. NeuroImage 215, 116834. 513 

Huys, Q.J.M., Cools, R., Gölzer, M., Friedel, E., Heinz, A., Dolan, R.J., and Dayan, P. (2011). Disentangling 514 
the Roles of Approach, Activation and Valence in Instrumental and Pavlovian Responding. PLoS 515 
Comput Biol 7, e1002028. 516 

Huys, Q.J.M., Eshel, N., O’Nions, E., Sheridan, L., Dayan, P., and Roiser, J.P. (2012). Bonsai trees in your 517 
head: how the Pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Comput. 518 
Biol. 8, e1002410. 519 

Ito, M., and Doya, K. (2009). Validation of decision-making models and analysis of decision variables 520 
in the rat basal ganglia. J. Neurosci. 29, 9861–9874. 521 

Ito, M., and Doya, K. (2015). Distinct Neural Representation in the Dorsolateral, Dorsomedial, and 522 
Ventral Parts of the Striatum during Fixed- and Free-Choice Tasks. J. Neurosci. 35, 3499–3514. 523 

Ito, S., Stuphorn, V., Brown, J.W., and Schall, J.D. (2003). Performance Monitoring by the Anterior 524 
Cingulate Cortex During Saccade Countermanding. Science 302, 120–122. 525 

Karlsson, M.P., Tervo, D.G., and Karpova, A.Y. (2012). Network resets in medial prefrontal cortex mark 526 
the onset of behavioral uncertainty. Science 338, 135–139. 527 

Kennerley, S.W., Walton, M.E., Behrens, T.E.J., Buckley, M.J., and Rushworth, M.F.S. (2006). Optimal 528 
decision making and the anterior cingulate cortex. Nat Neurosci 9, 940–947. 529 

Kennerley, S.W., Behrens, T.E., and Wallis, J.D. (2011). Double dissociation of value computations in 530 
orbitofrontal and anterior cingulate neurons. Nat. Neurosci. 14, 1581–1589. 531 

Keramati, M., Dezfouli, A., and Piray, P. (2011). Speed/accuracy trade-off between the habitual and 532 
the goal-directed processes. PLoS Comput. Biol. 7, e1002055. 533 

Konovalov, A., and Krajbich, I. (2020). Mouse tracking reveals structure knowledge in the absence of 534 
model-based choice. Nat. Commun. 11, 1–9. 535 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 23, 2020. ; https://doi.org/10.1101/126292doi: bioRxiv preprint 

https://doi.org/10.1101/126292


23 
 

Kool, W., Cushman, F.A., and Gershman, S.J. (2016). When Does Model-Based Control Pay Off? PLOS 536 
Comput Biol 12, e1005090. 537 

Lee, S.W., Shimojo, S., and O’Doherty, J.P. (2014). Neural Computations Underlying Arbitration 538 
between Model-Based and Model-free Learning. Neuron 81, 687–699. 539 

Lockwood, P., Klein-Flugge, M., Abdurahman, A., and Crockett, M. (2019). Neural signatures of model-540 
free learning when avoiding harm to self and other. BioRxiv 718106. 541 

Matsumoto, K., Suzuki, W., and Tanaka, K. (2003). Neuronal correlates of goal-based motor selection 542 
in the prefrontal cortex. Science 301, 229–232. 543 

Miller, K.J., Botvinick, M.M., and Brody, C.D. (2017). Dorsal hippocampus contributes to model-based 544 
planning. Nat. Neurosci. 20, 1269–1276. 545 

Miller, K.J., Shenhav, A., and Ludvig, E.A. (2019). Habits without values. Psychol. Rev. 292–311. 546 

Miranda, B., Malalasekera, W.M.N., Behrens, T.E., Dayan, P., and Kennerley, S.W. (2019). Combined 547 
model-free and model-sensitive reinforcement learning in non-human primates. BioRxiv 836007. 548 

Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L., Henry, A.M., 549 
et al. (2014). A mesoscale connectome of the mouse brain. Nature 508, 207–214. 550 

O’Reilly, J.X., Schüffelgen, U., Cuell, S.F., Behrens, T.E., Mars, R.B., and Rushworth, M.F. (2013). 551 
Dissociable effects of surprise and model update in parietal and anterior cingulate cortex. Proc. Natl. 552 
Acad. Sci. 110, E3660–E3669. 553 

Otto, A.R., Gershman, S.J., Markman, A.B., and Daw, N.D. (2013). The Curse of Planning Dissecting 554 
Multiple Reinforcement-Learning Systems by Taxing the Central Executive. Psychol. Sci. 24, 751–761. 555 

Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M., and Harris, K.D. (2016). Kilosort: realtime spike-556 
sorting for extracellular electrophysiology with hundreds of channels. BioRxiv 061481. 557 

Paxinos, G., and Franklin, K.B. (2007). The mouse brain in stereotaxic coordinates -3rd Edition 558 
(Academic Press). 559 

Rudebeck, P.H., Walton, M.E., Smyth, A.N., Bannerman, D.M., and Rushworth, M.F.S. (2006). Separate 560 
neural pathways process different decision costs. Nat. Neurosci. 9, 1161–1168. 561 

Rudebeck, P.H., Behrens, T.E., Kennerley, S.W., Baxter, M.G., Buckley, M.J., Walton, M.E., and 562 
Rushworth, M.F.S. (2008). Frontal Cortex Subregions Play Distinct Roles in Choices between Actions 563 
and Stimuli. J. Neurosci. 28, 13775–13785. 564 

Rushworth, M.F.S., and Behrens, T.E.J. (2008). Choice, uncertainty and value in prefrontal and 565 
cingulate cortex. Nat. Neurosci. 11, 389–397. 566 

Russek, E.M., Momennejad, I., Botvinick, M.M., Gershman, S.J., and Daw, N.D. (2017). Predictive 567 
representations can link model-based reinforcement learning to model-free mechanisms. PLOS 568 
Comput. Biol. 13, e1005768. 569 

Sebold, M., Deserno, L., Nebe, S., Schad, D.J., Garbusow, M., Hägele, C., Keller, J., Jünger, E., Kathmann, 570 
N., Smolka, M., et al. (2014). Model-Based and Model-Free Decisions in Alcohol Dependence. 571 
Neuropsychobiology 70, 122–131. 572 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 23, 2020. ; https://doi.org/10.1101/126292doi: bioRxiv preprint 

https://doi.org/10.1101/126292


24 
 

Shahar, N., Moran, R., Hauser, T.U., Kievit, R.A., McNamee, D., Moutoussis, M., Consortium, N., and 573 
Dolan, R.J. (2019). Credit assignment to state-independent task representations and its relationship 574 
with model-based decision making. Proc. Natl. Acad. Sci. 116, 15871–15876. 575 

Simon, D.A., and Daw, N.D. (2011). Neural Correlates of Forward Planning in a Spatial Decision Task in 576 
Humans. J. Neurosci. 31, 5526–5539. 577 

Smittenaar, P., FitzGerald, T.H.B., Romei, V., Wright, N.D., and Dolan, R.J. (2013). Disruption of 578 
Dorsolateral Prefrontal Cortex Decreases Model-Based in Favor of Model-free Control in Humans. 579 
Neuron. 580 

Sul, J.H., Kim, H., Huh, N., Lee, D., and Jung, M.W. (2010). Distinct roles of rodent orbitofrontal and 581 
medial prefrontal cortex in decision making. Neuron 66, 449–460. 582 

Sutton, R.S., and Barto, A.G. (1998). Reinforcement learning: An introduction (The MIT press). 583 

Thorndike, E.L. (1911). Animal intelligence: Experimental studies. 584 

Vogt, B.A., and Paxinos, G. (2014). Cytoarchitecture of mouse and rat cingulate cortex with human 585 
homologies. Brain Struct. Funct. 219, 185–192. 586 

Voon, V., Derbyshire, K., Rück, C., Irvine, M.A., Worbe, Y., Enander, J., Schreiber, L.R.N., Gillan, C., 587 
Fineberg, N.A., Sahakian, B.J., et al. (2015). Disorders of compulsivity: a common bias towards learning 588 
habits. Mol. Psychiatry 20, 345–352. 589 

Walton, M.E., Bannerman, D.M., Alterescu, K., and Rushworth, M.F.S. (2003). Functional specialization 590 
within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. J. 591 
Neurosci. 23, 6475. 592 

Wunderlich, K., Smittenaar, P., and Dolan, R.J. (2012). Dopamine Enhances Model-Based over Model-593 
Free Choice Behavior. Neuron 75, 418–424. 594 

Yin, H.H., Knowlton, B.J., and Balleine, B.W. (2005a). Blockade of NMDA receptors in the dorsomedial 595 
striatum prevents action–outcome learning in instrumental conditioning. Eur. J. Neurosci. 22, 505–596 
512. 597 

Yin, H.H., Ostlund, S.B., Knowlton, B.J., and Balleine, B.W. (2005b). The role of the dorsomedial 598 
striatum in instrumental conditioning. Eur. J. Neurosci. 22, 513–523. 599 

Zhou, P., Resendez, S.L., Rodriguez-Romaguera, J., Jimenez, J.C., Neufeld, S.Q., Giovannucci, A., 600 
Friedrich, J., Pnevmatikakis, E.A., Stuber, G.D., Hen, R., et al. (2018). Efficient and accurate extraction 601 
of in vivo calcium signals from microendoscopic video data. ELife 7, e28728. 602 

  603 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 23, 2020. ; https://doi.org/10.1101/126292doi: bioRxiv preprint 

https://doi.org/10.1101/126292


25 
 

Methods: 604 

Experimental model and subject details: 605 

All procedures were reviewed and performed in accordance with the Champalimaud Centre for the 606 

Unknown Ethics Committee guidelines.  65 male C57BL mice aged between 2 – 3 months at the start 607 

of experiments were used in the study.   Animals were housed under a 12 hours light/dark cycle with 608 

experiments performed during the light cycle.   17 subjects were used in the two-step task baseline 609 

behaviour dataset.  4 subjects were used in the ACC imaging.  2 subjects were used for 610 

electrophysiology controls for the optogenetics. 14 subjects (8 JAWS, 6 GFP controls) were used for 611 

the two-step task ACC manipulation only.  14 subjects (8 JAWS, 6 GFP controls) were used for the 612 

probabilistic reversal learning task ACC manipulation only.  14 subjects (8 JAWS, 6 GFP controls) were 613 

first trained and tested on the two-step ACC manipulation, then retrained for a week on the 614 

probabilistic reversal learning task and tested on the ACC manipulation in this task.   7 JAWS-GFP 615 

animals were excluded from the study due to poor or mis-located JAWS expression.  In the group that 616 

was tested on both tasks, 1 Jaws and 2 control animals were lost from the study before optogenetic 617 

manipulation on the probabilistic reversal learning task due to failure of the LED implants.  The 618 

resulting group sizes for the optogenetic manipulation experiments were as reported in the results 619 

section. 620 

Method details: 621 

Behaviour: 622 

Mice were placed on water restriction 48 hours before the first behavioural training session, and given 623 

1 hour ad libitum access to water in their home cage 24 hours before the first training session.  Mice 624 

received 1 training session per day of duration 1.5 – 2 hours, and were trained 6 days per week with 625 

1 hour ad libitum water access in their home cage on their day off.   During behavioural training mice 626 

had access to dry chow in the testing apparatus as we found this increased the number of trials 627 

performed and amount of water consumed.  On days when mice were trained they typically received 628 

all their water in the task (typically 0.5-1.25ml), but additional water was provided as required to 629 

maintain a body weight >85% of their pre-restriction weight.  Under this protocol, bodyweight typically 630 

dropped to ~90% of pre-restriction level in the first week of training, then gradually increased over 631 

weeks to reach a steady state of ~95-105% pre-restriction body weight. 632 

Behavioural experiments were performed in 14 custom made 12x12cm operant chambers using 633 

pyControl (http://pycontrol.readthedocs.io/), a behavioural experiment control system built around 634 

the Micropython microcontroller.  635 
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Two-step task 636 

The apparatus, trial structure and block structure of the two-step task are described in the results 637 

section.  Block transitions were triggered based on subject’s behaviour, occurring 20 trials after an 638 

exponential moving average (tau = 8 trials) of subject’s choices crossed a 75% correct threshold.  The 639 

20 trial delay between the threshold crossing and block transition allowed subjects performance at 640 

the end of blocks to be assessed without selection bias due to the block transition rule.  In neutral 641 

blocks where there was no correct choice, block transitions occurred with 0.1 probability on each trial 642 

after the 40th, giving a mean neutral block length of 50 trials.  Subjects started each session with the 643 

reward and transition probabilities in the same state that the previous session finished on.  644 

Subjects encountered the full trial structure from the first day of training.  The only task parameters 645 

that were changed over the course of training were the reward and state transition probabilities and 646 

the reward sizes.  These were changed to gradually increase task difficulty over days of training, with 647 

this typical trajectory of parameter changes shown in table 1. 648 

 Probabilistic reversal learning task 649 

Mice were trained to initiate each trial in a central nose-poke port which was flanked by left and right 650 

poke ports.  Trial initiation caused the left and right pokes to light up and subjects then chose between 651 

them for the chance of obtaining a water reward.  Reward probabilities changed in blocks, with three 652 

block types; left good (left=0.75/right=0.25), neutral (0.5/0.5) and right good (0.25/0.75).  Block 653 

transitions from non-neutral blocks were triggered 10 trials after an exponential moving average (tau 654 

= 8 trials) crossed a 75% correct threshold.   Block transitions from neutral blocks occurred with 655 

probability 0.1 on each trial after the 15th of the block to give an average neutral block length of 25 656 

trials. 657 

Table 1:  Two-step task parameter changes over training 

Session number Reward size (ul) Transition probabilities 
(common / rare) 

Reward probabilities 
(good / bad side) 

1 10 0.9 / 0.1 First 40 trials all rewarded, 
subsequently 0.9 / 0.1 

2 - 4 10 0.9 / 0.1 0.9 / 0.1 

5 - 6 6.5 0.9 / 0.1 0.9 / 0.1 

7 - 8 4 0.9 / 0.1 0.9 / 0.1 

9 - 12 4 0.8 / 0.2 0.9 / 0.1 

13+ 4 0.8 / 0.2 0.8 / 0.2 
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Optogenetic Inhibition 658 

Experimental animals were injected bilaterally with AAV5-CamKII-Jaws-KGC-GFP-ER2 (UNC vector 659 

core, titre: 5.9 x 1012) using 16 injections each of 50nL (total 800nL) spread across 4 injection tracks (2 660 

per hemisphere) at coordinates: AP: 0, 0.5, ML: ±0.4, DV: -1, -1.2, -1.4, -1.6mm relative to dura.  661 

Control animals were injected with AAV5-CaMKII-GFP (UNC vector core, titre: 2.9 x 1012) at the same 662 

coordinates.  Injections were performed at a rate of 4.6nL/5 seconds, using a Nanojet II (Drummond 663 

Scientific) with bevelled glass micropipettes of tip diameter 50-100um.  A circular craniotomy of 664 

diameter 1.8mm was centred on AP: 0.25, ML: 0, and a high power red led (Cree XLamp XP-E2) was 665 

positioned above the craniotomy touching the dura.  The LED was mounted on a custom designed 666 

insulated metal substrate PCB (Figure 6A).  The LEDs were powered using a custom designed constant 667 

current LED driver.  Light stimulation (50mW, 630nM) was delivered on stimulation trials from when 668 

the subject entered the side poke until the subsequent choice, up to a maximum of 6 seconds.  669 

Stimulation was delivered on a randomly selected 17% of trials, with a minimum of 2 non-stimulated 670 

trials between each stimulation trial followed by a 0.25 probability of stimulation on each subsequent 671 

trial.  At the end of behavioural experiments, animals were sacrificed and perfused with 672 

paraformaldehyde (4%).  The brains were sectioned in 50um coronal slices and the location of viral 673 

expression was characterised with fluorescence microscopy (Figure S4).   674 

Two animals were injected unilaterally with the JAWS-GFP virus using the coordinates described above 675 

and implanted with the LED implant and a movable bundle of 16 tungsten micro-wires of 23μm 676 

diameter (Innovative-Neurophysiology) to record unit activity.  After 4 weeks of recovery, recording 677 

sessions were performed at 24 hour intervals and the electrode bundle was advanced by 50 um after 678 

each session, covering a depth range of 300 – 1300um from dura over the course of recordings.  During 679 

recording sessions mice were free to move inside a sound attenuating chamber.  Light pulses (50mW 680 

power, 5 second duration) were delivered at random intervals with a mean inter-stimulus interval of 681 

30 seconds.  Neural activity was acquired using a Plexon recording system running Omniplex v. 1.11.3. 682 

The signals were digitally recorded at 40000 Hz and subsequently band-pass filtered between 200 Hz 683 

and 3000 Hz. Following filtering, spikes were detected using an amplitude threshold set at twice the 684 

standard deviation of the bandpass filtered signal.  Initial sorting was performed automatically using 685 

Kilosort (Pachitariu et al., 2016).  The results were refined via manual sorting based on waveform 686 

characteristics, PCA and inter-spike interval histogram. Clusters were classified as single units if well 687 

separated from noise and other units and the spike rate in the 2ms following each spike was less than 688 

1% of the average spike rate. 689 
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ACC imaging 690 

Mice were anaesthetized with a mix of 1-1.5% isofluorane and oxygen (1 l.min-1), while body 691 

temperature was monitored and maintained at 33°C using a temperature controller (ATC1000, World 692 

Precision Instruments). Unilateral injection of 300 nl of AAV5.αCaMKII.GCaMP6f.WPRE.SV40 (titer: 693 

2.43×1013, Penn Vector Core) into the right Anterior Cingulate Cortex (AP: +1.0 mm; ML: +0.45mm; 694 

DV: -1.4mm) was performed using a Nanojet II Injector (Drummond Scientific, USA) at a rate of 4.6 nl 695 

per pulse, every 5 s. Injection pipette was left in place 20 min post-injection before removal. 25 696 

minutes after injection, a 1mm diameter circular craniotomy was centered at coordinates (AP: +1.0 697 

mm; ML: +0.55mm) and a 1mm GRIN lens (Inscopix) was implanted above the injection site at a depth 698 

of -1.2 mm ventral to the surface, and secured to the skull using cyanoacrylate (Loctite) and black 699 

dental cement (Ortho-Jet, Lang Dental USA). One 1/16-inch stainless-steel screw (Antrin miniatures) 700 

was attached to the skull to secure the cement cap that fixed the lens to the skull.  Mice were then 701 

given an i.p. injection of buprenorfin (Bupaq, 0.1 mg.kg-1) and allowed to recover from anaesthesia in 702 

a heating mat before returning to home cage. 703 

Three to four weeks after surgery, mice were anaesthetized and placed in the stereotactic frame, 704 

where a miniaturized fluorescence microscope (Inscopix) attached to a magnetic baseplate (Inscopix) 705 

were lowered to the top of the implanted GRIN lens, until a sharp image of anatomical landmarks 706 

(blood vessels) and putative neurons appeared in the focal plane. Baseplate was then cemented to 707 

the original head cap, allowing to fix the set focal plane for imaging.  708 

For image acquisition during task behaviour, mice were briefly anaesthetized using a mixture of 709 

isofluorane (0.5-1%) and oxygen (1 l.min-1) and the miniaturized microscope was attached and 710 

secured to the baseplate. This was followed by a 20-30 min period of recovery in the home cage before 711 

imaging experiments. Image acquisition (nVistaHD, Inscopix) was done at 10 Hz, with LED power set 712 

to 10-30% (0.1-0.3 mW) with a gain of 3. Image acquisition parameters were set to the same values 713 

between sessions for each mouse.   714 

Quantification and statistical analysis: 715 

All analysis of behavioural data was performed in Python 3. 716 
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Logistic regression 717 

Binary predictors used in logistic regressions are shown in table 2.  The two-step task previous trial 718 

logistic regression (Figure 2B) used all predictors in table 1.  The two-step task lagged logistic 719 

regression used predictors Choice, Outcome, Transition and Transition-outcome interaction at lags 1, 720 

2, 3-4, 5-8, 8-12 (where lag 3-4 etc. means the sum of the individual trial predictors over the specified 721 

range of lags) and predictors Bias: top/bottom, and Bias:clockwise/counter-clockwise.   The Correct 722 

predictors was included in the previous trial regression to prevent correlations across trials from 723 

causing spurious loading on the Transition-outcome interaction predictor (see Akam et. al. 2015 for 724 

discussion).  It was not included in the lagged regression as here the effect of earlier trials is accounted 725 

for by the lagged predictors. For the two-step task regressions, the first 20 trials after each reversal in 726 

the transition probabilities was exclude for the analysis as it is ambiguous which transitions are 727 

common and rare at this point.  This resulted in ~9% of trials being excluded. 728 

The logistic regression analysis for the probabilistic reversal learning task (Figure S6D) used predictors 729 

Choice, and Outcome at lags 1, 2, 3. 730 

Table 2: Predictors used in two-step task logistic regression 

Name Effect 

Bias: top/bottom Choose top-poke 

Bias:clockwise 

/counter-clockwise 

Choose top if previous trial ended at left poke, bottom if at right 

Choice Repeat choice 

Correct Repeat correct choice 

Outcome Repeat rewarded choice 

Transition Repeat choice followed by common transition 

Transition-outcome 

interaction 

Repeat choice followed by rewarded common and non-rewarded rare 

transitions 
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Reinforcement learning models: 731 

RL model variables and parameters are listed in table 3. 732 

Choice and state values were updated as: 733 

𝑄𝑚𝑓(𝑐)  ⃪   (1 − 𝛼𝑄)𝑄𝑚𝑓(c) +  𝛼𝑄  ( 𝜆𝑟 + (1 −  𝜆)𝑉(𝑠)) 734 

𝑉(s)  ⃪    (1 − 𝛼𝑄)V(s) +  𝛼𝑄𝑟 735 

Table 3: RL model variables and parameters 

Model variables 

𝑟 reward (0 or 1) 

𝑐 choice taken at first step (top or bottom poke) 

𝑐′ choice not taken at first step (top or bottom poke) 

𝑠 Second-step state (left-active or right-active) 

𝑠′ State not reached at second step (left-active or right-active) 

𝑄𝑚𝑓(𝑐) Model-free action value for choice 𝑐 

𝑄𝑚𝑜(𝑐,  𝑠𝑡−1) Motor-level model-free action value for choice 𝑐 following second-step state  𝑠𝑡−1 

𝑄𝑚𝑏(𝑐) Model-based value of choice 𝑐 

𝑉(𝑠) Value of state 𝑠 

𝑃(𝑠|𝑐) Estimated transition probability of reaching state s after choice 𝑐 

𝑐̅ Choice history 

�̅�( 𝑠𝑡−1) Motor action history, i.e. choice history following second-step state  𝑠𝑡−1 

Model parameters 

𝛼𝑄 Value learning rate 

𝑓𝑄 Value forgetting rate 

𝜆 Eligibility trace parameter 

𝛼𝑇 Transition learning rate 

𝑓𝑇 Transition forgetting rate 

𝛼𝑐  Learning rate for choice perseveration 

𝛼𝑚 Learning rate for motor-level perseveration 

𝐺𝑚𝑓  Model-free action value weight 

𝐺𝑚𝑜  Motor-level model free action value weight 

𝐺𝑚𝑏  Model-based action value weight 

𝐵𝑐  Choice bias (top/bottom) 

𝐵𝑟  Rotational bias (clockwise/counter-clockwise) 

𝑃𝑐  Choice perseveration strength 

𝑃𝑚 Motor-level perseveration strength 
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In models that included value forgetting this was implemented as: 736 

𝑄𝑚𝑓(𝑐′) ⃪(1 − 𝑓𝑄)𝑄𝑚𝑓(c′)  737 

𝑉(𝑠′) ⃪(1 − 𝑓𝑄)V(s′) 738 

Action-state transition probabilities used by the model-based system were updated as: 739 

𝑃(𝑠|c)   ⃪ (1 − 𝛼𝑇)𝑃(s|c) + 𝛼𝑇 740 

𝑃(s′|𝑐)  ⃪ (1 − 𝛼𝑇)𝑃(s′|c) 741 

In models that included transition probability forgetting this was implemented as: 742 

𝑃(𝑠|c′)  ⃪  (1 − 𝑓𝑇)𝑃(s|c′)  +  0.5𝑓𝑇 743 

𝑃(𝑠′|c′)  ⃪  (1 − 𝑓𝑇)𝑃(s′|c′)  +  0.5𝑓𝑇 744 

At the start of each trial, model-based first step action values were calculated as: 745 

 𝑄𝑚𝑏(c) = ∑ 𝑃(𝑠|𝑐)𝑉(𝑠) 𝑠  746 

Models that included model-free values for first step motor actions (e.g. left→top), updated these as: 747 

𝑄𝑚𝑜(𝑐,  𝑠𝑡−1)  ⃪   (1 − 𝛼𝑄)𝑄𝑚𝑜(𝑐,  𝑠𝑡−1) +  𝛼𝑄  ( 𝜆𝑟 + (1 −  𝜆)𝑉(𝑠)) 748 

Motor level model-free value forgetting was implemented as: 749 

𝑄𝑚𝑜(𝑚′) ⃪(1 − 𝑓𝑄)𝑄𝑚𝑜(𝑚′) 750 

Where 𝑚′ are all motor actions not taken. 751 

Choice perseveration was modelled using a choice history variable 𝑐̅.   In models using single trial 752 

perseveration this was: 753 

𝑐̅ =  𝑐𝑡−1 − 0.5 754 

where  𝑐𝑡−1 = 1 if previous choice is top and 0 if previous choice is bottom. 755 

In models using multi-trial perseveration 𝑐̅ was an exponential moving average of recent choices, 756 

updated as: 757 

𝑐̅  ⃪  (1 − 𝛼𝑐)𝑐̅  + 𝛼𝑐(𝑐 − 0.5)      758 

where 𝑐 = 1 if choice is top and 𝑐 = 0 if choice is bottom. 759 

In models which used motor-level perseveration this was modelled using variables 760 

�̅�( 𝑠𝑡−1) which were exponential moving averages of choices following trials ending in state  𝑠𝑡−1 , 761 

updated as: 762 

�̅�( 𝑠𝑡−1) ⃪  (1 − 𝛼𝑚)�̅�( 𝑠𝑡−1)  +  𝛼𝑚(𝑐 − 0.5)   763 
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Net action values were given by a weighted sum of model-free, motor-level model-free and model-764 

based action values, biases and perseveration.  765 

𝑄𝑛𝑒𝑡(𝑐) = 𝐺𝑚𝑓𝑄𝑚𝑓(c) + 𝐺𝑚𝑜𝑄𝑚𝑜(𝑐,  𝑠𝑡−1) + 𝐺𝑚𝑏𝑄𝑚𝑏(c) + 𝑋(𝑐) 766 

Where  𝐺𝑚𝑓 , 𝐺𝑚𝑜  and 𝐺𝑚𝑏  are weights controlling the influence of respectively the model-free, 767 

motor-level model-free and model-based action values, and 𝑋(𝑐) is biases and perseveration where: 768 

𝑋(𝑡𝑜𝑝) = 𝐵𝑐 + 𝐵𝑟( 𝑠𝑡−1 − 0.5) + 𝑃𝑐�̅� + 𝑃𝑚�̅� 769 

𝑋(𝑏𝑜𝑡𝑡𝑜𝑚) = 0 770 

where  𝑠𝑡−1 = 1 if previous second step state is left and 0 if right. 771 

Net action values determined choice probabilities via the softmax decision rule: 772 

𝑃(𝑐) =  
𝑒𝑄𝑛𝑒𝑡(𝑐)

∑ 𝑒𝑄𝑛𝑒𝑡(𝑐)
𝑐

 773 

Hierarchical modelling: 774 

Both the logistic regression analyses and reinforcement learning model fitting used a Bayesian 775 

hierarchical modelling framework (Huys et al., 2011),  in which parameter vectors 𝒉𝑖 for individual 776 

sessions were assumed to be drawn from Gaussian distributions at the population level with means 777 

and variance 𝜽 = {𝝁, 𝜮} .  The population level prior distributions were set to their maximum 778 

likelihood estimate: 779 

𝜽𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜽{𝑝(𝐷|𝜽) = 𝑎𝑟𝑔𝑚𝑎𝑥𝜽{∏ ∫ 𝑑 𝒉𝑖  𝑝(𝐷𝑖|𝒉𝑖)𝑝(𝒉𝑖|𝜽)

𝑁

𝑖

} 780 

Optimisation was performed using the Expectation-Maximisation algorithm with a Laplace 781 

approximation for the E-step at the k-th iteration given by: 782 

𝑝(𝒉𝑖
𝑘|𝐷𝑖) = 𝑁(𝒎𝑖

𝑘 , 𝑽𝑖
𝑘) 783 

𝒎𝑖
𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥𝒉{𝑝(𝐷𝑖|𝒉)𝑝(𝒉|𝜽𝑘−1)} 784 

Where 𝑁(𝒎𝑖
𝑘 , 𝑽𝑖

𝑘) is a normal distribution with mean 𝒎𝑖
𝑘 given by the maximum a posteriori value of 785 

the session parameter vector 𝒉𝑖  given the population level means and variance 𝜽𝑘−1 , and the 786 

covariance 𝑽𝑖
𝑘 given by the inverse Hessian of the likelihood around 𝒎𝑖

𝑘.  For simplicity we assumed 787 

that the population level covariance 𝜮 had zero off-diagonal terms.  For the k-th M-step of the EM 788 

algorithm the population level prior distribution parameters 𝜽 = {𝝁, 𝜮} are updated as: 789 

𝝁𝑘 =
1

𝑁
∑ 𝒎𝑖

𝑘

𝑁

𝑖=1

 790 
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𝜮 =
1

𝑁
∑ [(𝒎𝑖

𝑘)
𝟐

+ 𝑽𝑖
𝑘]

𝑁

𝑖=1

− (𝝁𝑘)
2

 791 

Parameters were transformed before inference to enforce constraints (0 <  { 𝐺𝑚𝑓 , 𝐺𝑚𝑜, 𝐺𝑚𝑏}, 0 <792 

 { 𝛼𝑄 , 𝑓𝑄, 𝜆, 𝛼𝑇 , 𝑓𝑇 , 𝛼𝑐 , 𝛼𝑚} < 1). 793 

Model comparison:  794 

To compare the goodness of fit for models with different numbers of parameters we used the 795 

integrated Bayes Information Criterion (iBIC) score.  The iBIC score is related to the model log 796 

likelihood 𝑝(𝐷|𝑀) as: 797 

log 𝑝(𝐷|𝑀) = ∫ 𝑑𝜽  𝑝(𝐷|𝜽)𝑝(𝜽|𝑀) 798 

       ≈ −
1

2
𝑖𝐵𝐼𝐶 = log 𝑝(𝐷| 𝜽𝑀𝐿) −

1

2
|𝑀|log |D| 799 

Where |M| is the number of fitted parameters of the prior, |D| is the number of data points (total 800 

choices made by all subjects) and iBIC is the integrated BIC score.  The log data likelihood given 801 

maximum likelihood parameters for the prior log 𝑝(𝐷| 𝜽𝑀𝐿)  is calculated by integrating out the 802 

individual session parameters: 803 

log 𝑝(𝐷| 𝜽𝑀𝐿) = ∑ 𝑙𝑜𝑔 ∫ 𝑑𝒉  𝑝(𝐷𝑖|𝒉)𝑝(𝒉|

𝑁

𝑖

𝜽𝑀𝐿) ≈ ∑ 𝑙𝑜𝑔
1

𝐾
∑ 𝑝(𝐷𝑖|𝒉𝑗)

𝐾

𝑗=1

𝑁

𝑖

 804 

Where the integral is approximated as the average over K samples drawn from the prior 𝑝(𝒉|𝜽𝑀𝐿).  805 

Bootstrap 95% confidence intervals were estimated for the iBIC scores by resampling from the 806 

population of samples drawn from the prior. 807 

Permutation testing: 808 

Permutation testing was used to assess the significance of differences in model fits between 809 

stimulated and non-stimulated trials.  The regression model was fit separately to stimulated and non-810 

stimulated trials to give two sets of population level parameters 𝜽𝒔 = {𝝁𝒔, 𝜮𝒔} and 𝜽𝒏 = {𝝁𝒏, 𝜮𝒏}, 811 

where 𝜽𝒔  are the parameters for the stimulated trials and 𝜽𝒏  are the parameters for the non-812 

stimulated trials.  The difference between the population level means for the stimulated and non-813 

stimulated conditions were calculated as:  814 

∆𝝁𝑡𝑟𝑢𝑒 = 𝝁𝒔−𝝁𝒏 815 

An ensemble of 𝑁 = 5000 permuted datasets was then created by shuffling the labels on trials such 816 

that trials were randomly assigned to the ‘stimulated’ and ‘non-stimulated’ conditions.  The model 817 

was fit separately to the stimulated and non-stimulated trials for each permuted dataset and the 818 
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difference between population level means in the stimulated and non-stimulated conditions was 819 

calculated for each permuted dataset 𝑖 as: 820 

∆𝝁𝑝𝑒𝑟𝑚
𝑖 = 𝝁𝒔

𝒊 − 𝝁𝒏
𝑖  821 

The distribution of ∆𝝁𝑝𝑒𝑟𝑚 over the population of permuted datasets approximates the distribution 822 

under the null hypothesis that stimulation does not affect the model parameters.  The P-values for 823 

the observed distances ∆𝝁𝑡𝑟𝑢𝑒 are then given by: 824 

𝑷 = 2 min (
𝐌

𝑁
, 1 −  

𝐌

𝑁
)  825 

Where 𝐌 is the number of permutations for which ∆𝝁𝑝𝑒𝑟𝑚
𝑖 > ∆𝝁𝑡𝑟𝑢𝑒. 826 

In addition to testing for a significant main effect of the stimulation we tested for significant 827 

stimulation by group interaction.  We first evaluated the true difference between the effect sizes for 828 

the two groups as: 829 

∆𝑡𝑟𝑢𝑒= (𝝁𝒔
𝐽𝐴𝑊𝑆 − 𝝁𝒏

𝐽𝐴𝑊𝑆 
) − (𝝁𝒔

𝐺𝐹𝑃 − 𝝁𝒏
𝐺𝐹𝑃 ) 830 

The approximate distribution of this difference under the null hypothesis that there was no difference 831 

between the groups was evaluated by creating an ensemble of permuted datasets in which we 832 

randomly assigned subjects to the JAWS and GFP groups and the interaction P value was calculated as 833 

above.   834 

Permutation testing was also used to assess significance differences in logistic regression model fits 835 

to the behaviour of subjects run on the task variants with and without reversals in the transition 836 

probability reversals, with permuted datasets generated by permuting subjects between the two 837 

groups. 838 

Bootstrap tests: 839 

To test whether logistic regression predictor loadings were significantly different from zero, bootstrap 840 

confidence intervals on the population means 𝝁 were evaluated by generating a set of 𝑁 = 5000  841 

resampled datasets by sampling subjects with replacement.  P values for predictor loading significantly 842 

different from zero were calculated as: 843 

𝑷 = 2 min (
𝐌

𝑁
, 1 −  

𝐌

𝑁
)  844 

Where 𝐌 is the number of resampled datasets for which  𝝁>0. 845 
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Analysis of simulated data: 846 

For analyses of data simulated from different RL agent types (Figure 2), we first fitted each agent to 847 

our baseline behavioural dataset using the hierarchical framework outlined above.  The agents used 848 

were a model-free agent with eligibility traces and value forgetting (Figure 2D-F), and a model-based 849 

agent with value and transition probability forgetting (Figure 2G-I) and the best fitting RL model 850 

described in supplementary results (Figure 2J-L).  We then simulated data (4000 sessions each of 500 851 

trials) from each agent, drawing parameters for each session from the fitted population level 852 

distributions for that agent.  We performed the logistic regression on the simulated data, using the 853 

same hierarchical framework as for the experimental data.   854 

Calcium imaging analysis: 855 

Pre-processing 856 

All imaging videos were pre-processed and motion corrected using custom MATLAB code, using the 857 

Mosaic API (Inscopix). Videos were spatially down sampled 4x4 and motion corrected using a 15 to 858 

20-point specific reference area drawn for each animal (blood vessel pattern). Black pixel borders 859 

inserted during motion correction were then removed by cropping the corrected videos.  860 

To extract calcium signals from putative single neurons, we used the MATLAB implementation of the 861 

Constrained non-negative matrix factorization – extended algorithm (CNMF-E) (Zhou et al., 2018). 862 

Putative single units were isolated from the processed imaging videos and subsequently inspected 863 

manually for quality assessment of both spatial masks and calcium time series. Isolated putative units 864 

not matching spatial masks or temporal features of neurons were discarded and not used in following 865 

analyses.   All analyses used the deconvolved activity inferred by CNMF-E.  For the regression and 866 

trajectory analyses the deconvolved activity was log2 transformed.  Activity was aligned across trials 867 

by warping the time period between the choice and second-step port entry to match the median trial 868 

timings, activity prior to choice and after second-step port entry was not warped.  Following time 869 

warping, activity was up-sampled to 20Hz and Gaussian smoothed with 50ms standard deviation.  870 

Example activity before and after alignment and smoothing are shown in figure S7. 871 

Regression analysis of neuronal activity 872 

The regression analysis in figure 3E-H used binary predictors coding the choice (top or bottom), 873 

second-step state (right or left) and trial outcome (rewarded or not), as well as the two-way 874 

interactions of these predictors (e.g. choice x second-step).  To assess whether coefficients of partial 875 

determination were significantly different from that expected by chance, we generated an ensemble 876 

of 5000 permuted datasets by circularly shifting the predictors relative to the neural activity by a 877 

random number of trials drawn independently for each session from the range [0, N] where N is the 878 
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number of trials in the session.  This permutation preserves the autocorrelation across trials in both 879 

the neural activity and the predictors but randomises the relationship between them.  We calculated 880 

P values for each predictor at each time point as the fraction of permutations for which the permuted 881 

datasets had a larger CPD than the true dataset.  P values for each predictor were corrected for 882 

multiple comparison across time-points using the Benjamini–Hochberg procedure (Benjamini and 883 

Hochberg, 1995).   884 

In figure 3G we evaluated the time course for two orthogonal representations of second-step state 885 

which  occurred pre- and post- trial outcome.  We defined unit projection vectors from the regression 886 

weights for second-step state at a time point mid-way between choice and outcome and 250ms after 887 

outcome.  We then projected the regression weights for second-step state at each time point onto 888 

these two vectors to obtain time-courses for each representation.  To avoid selection bias distorting 889 

the time-courses, we divided the data into odd and even trials and used the odd trials to define 890 

projection vectors that weights from the even trials were projected onto, and vice versa.  891 

In Figure 5A we used an additional binary predictor coding the state of the transition probabilities 892 

(top→ right / bottom→ left vs top→ left / bottom→ right), binary predictors coding the interaction of 893 

the transition probabilities with the choice and second step, and the transition on the current trial 894 

coded clockwise (e.g. top→right) vs counter-clockwise – i.e. whether the transition was common or 895 

rare.  In figure 5B we used a predictor which coded the state of the reward probabilities as -0.5, 0, 0.5 896 

for the left-good, neutral  and right-good states respectively, as well as the interactions of this 897 

predictor with the choice, second-step and transition on the current trial.  As the subjects knowledge 898 

of the transition/reward probabilities is ambiguous in the period following block transitions where 899 

they change, these predictors were coded 0 in the 20 trials following such changes, and  ±0.5 at other 900 

times.  These analyses included only sessions where we had at least 40 trials in at least two different 901 

states of the transition (Figure 5A) or reward (Figure 5B) probabilities. 902 

Neuronal trajectory analysis 903 

The activity trajectories in figure 4 were obtained by projecting the average population activity for 904 

each trial type into the low dimensional space that captured most variance between trial types, where 905 

trial type was defined by the 8 possible combinations of choice, second-step and outcome.  To find 906 

this space, we calculated the average activity for each neuron for each trial type.   We then averaged 907 

these across trial types to evaluate the component of activity that was not selective to different trial 908 

types. We subtracted the non-selective activity for each neuron from that neurons average activity for 909 

each individual trial type, and concatenated across trial types to generate a data matrix of shape [n 910 

neurons, n trial types * n time point] representing how activity for each neuron deviated from its cross-911 
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trial-type average in each trial type.  We performed PCA on this matrix to find the space that captured 912 

the most cross-trial-type variance and then projected the average population activity trajectory for 913 

each trial type into this space to generate figure 4.  914 
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Supplementary figures: 915 

 916 

Figure S1 Behaviour without transition probability reversals.  Comparison of behaviour a version of the two-917 
step task with transition probability reversals (left panels – reproduced from figures 1 and 2 for ease of 918 
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comparison) and without transition probability reversals (right panel).  The tasks were identical apart from the 919 
presence/absence of transition probability reversals.  A) Choice probability trajectories around reward 920 
probability reversals.  Pale blue line – average trajectory, dark blue line – exponential fit, shaded area – cross-921 
subject standard deviation. B) Stay probability analysis showing the fraction of trials the subject repeated the 922 
same choice following each combination of trial outcome (rewarded (1) or not (0)) and transition (common (C) 923 
or rare (R)).  Error bars show cross-subject SEM.   C) Logistic regression model fit predicting choice as a 924 
function of the previous trial’s events. Predictor loadings plotted are; outcome (repeat choices following 925 
rewards), transition (repeat choices following common transitions) and transition-outcome interaction (repeat 926 
choices following rewarded common transition trials and non-rewarded rare transition trials). Error bars 927 
indicate 95% confidence intervals on the population mean, dots indicate maximum a posteriori (MAP) subject 928 
fits.  D) Lagged logistic regression model predicting choice as a function of events over the previous 12 trials.  929 
Predictors are as in C, predictor loading at lag 𝑥 indicates the influence of events at trial 𝑡 on choice at trial 𝑡 +930 
𝑥.   931 

 932 

 933 

 934 

 935 

 936 

Figure S2.  Block transition probabilities.  Diagram of block transition probabilities for the two-step task. 937 
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 938 

Figure S3 Baseline dataset BIC score model comparison.  A)  iBIC score comparison for set of RL models on 939 
baseline behavioural dataset.  The set of models was constructed as described in supplementary results by 940 
iteratively adding features to the RL model.  The grid below the plot indicates which features were included in 941 
each model.  B)  iBIC score comparison on the baseline dataset for set of RL models created by adding or 942 
removing a single feature at a time from the best fitting model.  The text below each bar indicates what feature 943 
has been added or removed. Error-bars indicate the bootstrap 95% confidence interval on the BIC score.  C) 944 
Parameter values for best fitting RL model. Bars indicate 95% confidence intervals on the population mean, dots 945 
indicate maximum a posteriori (MAP) subject fits.   946 
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 947 

Figure S4.  JAWS expression.  Average JAWS-GFP fluorescence for all JAWS-GFP animals included in the study 948 
aligned onto reference atlas (Paxinos and Franklin, 2007).  Numbers indicate anterior-posterior position relative 949 
to bregma (mm). 950 

 951 

 952 
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 953 

Figure S5.  Optogenetic silencing of ACC in two-step task.  A)  Stay probabilities analysis on stimulated (red) and 954 
non-stimulated (blue) trials in JAWS (top panel) and GFP (bottom panel).  B) Regression analysis including 955 
additional predictor same motor action – repeat choices if this requires the same motor action (e.g. left→top).  956 
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 957 

Figure S6.  Optogenetic silencing of ACC in probabilistic reversal learning task.  A) Diagram of apparatus and 958 
trial events.  B)  Example session, black line shows exponential moving average (tau = 8 trials) of choices, grey 959 
bars indicate reward probability blocks with y position of bar indicating whether left or right side has high reward 960 
probability or a neutral block. C) Choice probability trajectories around reversal in reward probabilities: Pale blue 961 
line – average trajectory, dark blue line – exponential fit, shaded area – cross-subject standard deviation.  D) 962 
Logistic regression analysis showing predictor loadings for stimulated (red) and non-stimulated (blue) trials, for 963 
the ACC JAWS (left panel) and GFP controls (right panel).  Bars indicate 95% confidence intervals on the 964 
population mean, dots indicate maximum a posteriori (MAP) subject fits.  * indicates significant difference 965 
(Bonferroni corrected P < 0.05) between stimulated and non-stimulated trials. 966 

 967 
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 968 

Figure S7.  Calcium imaging alignment, up-sampling and smoothing.  A) Alignment of imaging data on a trial 969 
where the interval between choice and second-step port entry was longer than the median interval.  Left panel 970 
shows the true and aligned times of microscope frames plotted against each other.  Right top panel shows the 971 
activity of 5 neurons before alignment. Vertical dashed lines show the times of choice and second-step port 972 
entry. Right bottom panel shows the activity of the same 5 neurons after alignment, up-sampling and smoothing. 973 
Grey shaded regions indicate the interval between choice and second-step port entry that is time-warped B) As 974 
for A but for a trial where the interval between choice and second-step port entry was shorter than the median 975 
interval.  976 
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Supplementary Results: 977 

Comparison of task variants with and without transition probability reversals. 978 

We introduced reversals in the transition probability mapping the first-step actions to the second-step 979 

states, because without them, extensively trained animals could in principle learn strategies that look 980 

like model-based RL but in fact rely on latent state inference rather than planning (Akam et al., 2015).  981 

We therefore asked what impact dynamically changing transition probabilities had on behaviour by 982 

running a version of the task where the transition probabilities linking the first step actions to second-983 

step states were fixed (n=10 mice, 240 sessions analysed from day 22+ of training).  Subjects were 984 

much better at tracking which option was best, choosing the correct option at the end of blocks on 985 

0.83 ± 0.04 (mean + SD) of trials, and adapting to reversals with a time constant of 6.5 trials (P < 0.001 986 

for difference between tasks on both measures, permutation test) (Figure S3A).  Note that fixing the 987 

transition probabilities does not change the contrast between good and bad choices in terms of their 988 

reward probabilities. The granular structure of behaviour was also different (Figure S3 B-D), with a 989 

very strong influence of the transition-outcome interaction on the subsequent choice (P < 0.001, 990 

bootstrap test), a strong influence of the state transition (P < 0.001), but no direct influence of the 991 

trial outcome (P = 0.42) (between task differences at trial -1: P < 0.001 for stronger loading on 992 

transition and transition-outcome interaction predictor, P = 0.031 for weaker loading on outcome, 993 

permutation test).   994 

These data show that in the fixed task, where subjects can, in principle, learn habit-like mappings from 995 

where rewards have recently been obtained to the correct first-step action (e.g. rewards on the left 996 

→ choose up), overall performance was higher and behaviour showed a strong transition-outcome 997 

interaction, which can be generated by model-based RL or such latent state inference based strategies 998 

(Akam et al., 2015).   The striking differences between behaviour on the fixed task and the version 999 

with transition reversals suggest that subjects do indeed solve them using different strategies.  As our 1000 

aim is to address neural mechanisms of model-based planning, for our investigation of ACC we 1001 

focussed on the version of the task with changing transition probabilities designed to resist latent 1002 

state strategies. 1003 

Model comparison: 1004 

The starting point for our model comparison was the RL agent used in the Daw two-step task (Daw et 1005 

al., 2011).  As the action-state transition probabilities in our task were not fixed, we modified the 1006 

model-based component of the agent to update its estimate of the transition probabilities for the 1007 

chosen action on each trial using an error driven learning rule.  As in the original Daw agent we 1008 

included a perseveration parameter which promoted repeating the previous choice.   1009 
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We observed that some subjects appeared to have a bias to move either clockwise or counter-1010 

clockwise around the set of pokes (e.g. left→top, right→bottom).  Including this predictor in the 1011 

logistic regression model substantially improved the models integrated Bayes Information Criterion (Δ 1012 

iBIC = 2639).  Subjects may have developed these biases because it is the simplest fixed response 1013 

pattern that was not penalised by the block transition rule (as block transitions were triggered based 1014 

behaviour, a bias for the top or bottom port resulted in that port spending more the time as the bad 1015 

option).  Based on the evidence for this ‘rotational’ bias in the logistic regression, we included it in the 1016 

RL models in addition to a standard choice bias. 1017 

We compared the goodness of fit of a pure model-free agent, a pure model-based agent, and an agent 1018 

which used a mixture of both strategies.  The mixture agent provided a better fit to the data than 1019 

either the pure model-free (Δ iBIC = 264, Figure S2A) or pure model-based agent (Δ iBIC = 888), and 1020 

the mixture model fit suggested an approximately equal contribution of model-based and model-free 1021 

control.  However, as the task is novel and hence we do not know what features may be present in 1022 

the behaviour, we performed an exploratory process of model comparison to test whether adding 1023 

additional features better captured the behaviour.  This identified a number of features which greatly 1024 

improved fit quality.   1025 

RL models typically assume that values of actions that are not chosen remain unchanged. However, it 1026 

has been reported that model-fits in some rodent decision making tasks are substantially improved 1027 

by including forgetting about the value of not chosen actions, typically implemented as action value 1028 

decay towards zero (Ito and Doya, 2009, 2015).  Including such action value forgetting in the mixture 1029 

agent produced a dramatic improvement in iBIC score for our data (Δ iBIC = 7698).  Including forgetting 1030 

about action-state transition probabilities, implemented as a decay of transition probabilities for the 1031 

not chosen action towards a uniform distribution, further improved the goodness of fit (Δ iBIC = 643).  1032 

The mixture agent including value and transition probability forgetting again showed approximately 1033 

equal weighting of the model-based and model-free action values in controlling behaviour.   When 1034 

forgetting was included for each agent the mixture agent provided a better fit to the data than either 1035 

a pure model-free (Δ iBIC = 612) or pure model-based (Δ iBIC = 3066) agent. 1036 

Forgetting decreases the value of not chosen relative to chosen options, and therefore promotes 1037 

choice perseveration.  It is therefore possible that if subjects are in fact strongly perseverative, this 1038 

could be mistakenly identified as forgetting.  Though the model included a perseveration parameter 1039 

for repeating the previous choice, several studies have reported perseveration effects spanning 1040 

multiple trials, even in tasks where decisions optimally should be treated as independent (Gold et al., 1041 

2008; Akaishi et al., 2014).  We therefore tested whether goodness of fit was improved by an 1042 

exponential choice kernel through which prior choices directly influenced the current choice with 1043 
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exponentially decreasing weight at increasing lag.  This is equivalent to the decision inertia model of 1044 

Akaishi et al. (2014).  The addition of this exponential choice kernel dramatically improved fit quality 1045 

when added to the mixture agent without forgetting (Δ iBIC = 7133).  However even with the 1046 

exponential choice kernel included, value forgetting substantially improved goodness of fit (Δ iBIC = 1047 

2071), and transition probability forgetting further increased goodness of fit (Δ iBIC = 194).   These 1048 

results indicate that forgetting about values and transitions for not chosen options is a genuine feature 1049 

of the behaviour and not an artefact due to perseveration.  They further indicate that subjects do in 1050 

fact show a strong tendency to perseverate over multiple trials, which is not captured even by 1051 

forgetting RL models, presumably because it is independent of the recent reinforcement history.  1052 

Forgetting may be a heuristic used in dynamic environments where evidence becomes less reliable 1053 

with the passage of time due to state of the world changing.  Alternatively, forgetting may occur due 1054 

to limitations of the learning systems involved, perhaps due to discrepancy between the rapidly 1055 

changing reward statistics in the task and those typical of natural environments. 1056 

 The choice kernel assumes that perseveration occurs at the level of the decision between the top and 1057 

bottom pokes.  However, in the current task, a given choice (top or bottom) entails a different motor 1058 

action depending on which side (left or right) the previous trial ended on.  We therefore considered a 1059 

model with perseveration at the motor level such that the choice on a given trial only increased the 1060 

probability of repeating the same motor action in future, e.g. a choice taken by moving from the left 1061 

to top poke only increased the probability of choosing top in future following trials which ended on 1062 

the left side.  Motor perseveration was modelled by maintaining separate moving averages of choices 1063 

following trials that ended on the left and right, which each influenced choices following trials ending 1064 

on their respective sides.  Replacing the exponential choice kernel with this motor level perseveration 1065 

substantially improved fit quality (Δ iBIC = 1004).   However, including perseveration both at the level 1066 

of choice, (top vs bottom, independent of motor action), and at the motor level, further improved fit 1067 

quality (Δ iBIC = 499), indicating that subjects have perseverative tendencies at both choice and motor 1068 

levels that are not predicted by the RL component of the model.  These data support the existence of 1069 

mechanisms which reinforce selected behaviours in a reward-independent fashion, i.e. simply 1070 

choosing to execute a behaviour increases the chance that behaviour will be executed in future.  This 1071 

is consistent with previous reports from perceptual (Gold et al., 2008; Akaishi et al., 2014) and reward-1072 

guided decision making tasks (Miller et al., 2019), and we think is a parsimonious explanation for our 1073 

results.  Such perseveration may be a signature of a mechanism for automatizing behaviour by 1074 

reinforcing chosen actions.  Thorndike proposed such a ‘law of exercise’ (1911) and the idea has 1075 

recently been revisited by Miller et al. (Miller et al., 2019) who suggest that habit formation occurs 1076 

through outcome-independent reinforcement of chosen actions.  This framework views habit 1077 
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formation as a supervised learning process in which behaviour generated by value sensitive systems, 1078 

i.e. model-free and model-based RL, is used to train value-independent learning systems.  Such a 1079 

mechanism could account for multi-trial perseveration effects observed in our data.  An alternative 1080 

mechanism which could generate perseveration would be subjects sampling an option multiple times 1081 

between choices, which may be adaptive if the decision process is costly in time or effort.  However, 1082 

this does not account for the observation in our data that perseveration occurred at the level both of 1083 

choices and of motor actions, with different timescales for each (see respective learning rates, Figure 1084 

S2 C).   1085 

Evidence that perseveration occurred both at the level of choice and motor action raises the question 1086 

of whether reward driven learning also occurs at both levels of representation.  This might be expected 1087 

from the architecture of parallel cortical-basal ganglia loops, with circuits linking somatosensory and 1088 

motor cortices to dorsolateral striatum learning values over low level motor representations, and 1089 

circuits linking higher level cortical regions to medial and ventral striatum learning values over more 1090 

abstract state and action representations.  Indeed, human two-step task behaviour shows evidence 1091 

of model-free value accruing to low level sensory-motor features (Shahar et al., 2019).  We therefore 1092 

tested an agent in which model-free action values were learned in parallel for actions represented 1093 

both in terms of choice (top/bottom) and motor action (e.g. left→top).  This improved goodness of fit 1094 

(Δ iBIC = 117) and the resulting model fit indicated that motor-level model-free values had a somewhat 1095 

stronger influence on behaviour than the choice level model-free values.   With multi-trial 1096 

perseveration kernels and motor level effects included in each model, the mixture agent again 1097 

provided a better fit to the data than either a pure model-free (Δ iBIC = 127) or pure model-based (Δ 1098 

iBIC = 227) agent. 1099 

  We tested a number of other modifications to the model including separate learning rates at the first 1100 

and second step, but did not find further improvements in fit quality (Figure S2B).  Finally, as adding 1101 

features to the model may make other features which previously improved the fit unnecessary, we 1102 

tested whether removing any individual component from the model improved fit quality but again did 1103 

not find further improvements (Figure S2B). 1104 

Motor effects do not explain ACC inhibition effect on transition predictor. 1105 

Evidence for perseveration and model-free RL at the motor level raises a possible alternative 1106 

interpretation of why ACC inhibition reduced the influence of common vs rare state transitions on 1107 

choices.  This is because the state transition determines which second-step state the subject ends up 1108 

in, and hence the motor action required to repeat the choice on the next trial.  To test whether motor-1109 

level factors can account for the ACC inhibition effect, we analysed the ACC inhibition data using a 1110 
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logistic regression analysis including an additional predictor which coded a tendency to repeat choices 1111 

when this required the same motor action as the previous trial (Figure S5B).  Although same motor 1112 

action significantly predicted repeating choice (P < 0.0001, bootstrap test), ACC inhibition had no 1113 

effect on the same motor action predictor (P = 0.94 uncorrected), and the effect of ACC inhibition on 1114 

the  common/rare transition predictor remained significant (Bonferoni corrected P = 0.0032, stim-by-1115 

group interaction P = 0.032).   We also tested whether the observed correlation between the ACC 1116 

inhibition effect on the transition predictor and subjects use of model-based RL (Figure 6E) was 1117 

specific, by using a multiple linear regression to predict the strength of opto effect across subjects 1118 

using a set of parameters from the RL model:  model-based weight (𝐺𝑚𝑏), model-free weight (𝐺𝑚𝑓), 1119 

motor model-free weight (𝐺𝑚𝑜), and  motor-perseveration (𝑃𝑚).   Model-based weight predicted the 1120 

strength of opto effect on the transition predictor (P = 0.03), but none of the other parameters did (P 1121 

> 0.45).   Together these results argue that the effect of ACC inhibition on sensitivity to action-state 1122 

transitions is mediated by disrupted model-based RL and not motor level factors. 1123 

ACC inhibition in a probabilistic reversal leaning task: 1124 

We assessed the effects of the same ACC manipulation used in the two-step task on a probabilistic 1125 

reversal learning task (n = 10 JAWS mice, 202 sessions,  10 GFP mice, 202 sessions).  In this task both 1126 

model-free and model-based RL are expected to generate qualitatively similar influence of trial events 1127 

on subsequent choice, i.e. rewarded choices will be reinforced, though there may be quantitative 1128 

differences if the model-based system is able to learn the block structure and infer block transitions 1129 

rather than relying on TD value updates. 1130 

Subjects initiated trials in a central port, then chose left or right for a probabilistic reward (Figure S6A).  1131 

Mice tracked the correct option (Figure S6 B,C), choosing correctly at the ends of blocks with 1132 

probability 0.80 ± 0.04 (mean ± SD), and adapting to reversals with a time constant of 3.57 trials 1133 

(exponential fit tau).   Parameters for optogenetic silencing were matched as closely as possible to 1134 

those used in the two-step task, with the same viral vector, injection sites and stimulation parameters. 1135 

Stimulation was delivered from when subjects poked in the side port and received the trial outcome 1136 

until the subsequent choice.  1137 

We assessed the effect of ACC silencing using a logistic regression analysis with previous choices and 1138 

outcomes as predictors (Figure S6 D).  Previous choices predicted the current choice with decreasing 1139 

influence at increasing lag.  Rewards predicted repeating the rewarded choice, with decreasing 1140 

influence at increasing lag.  ACC inhibition subtly reduced the influence of the most recent outcome 1141 

(permutation test P = 0.024 Bonferroni corrected for 6 predictors, stimulation-by-group interaction P 1142 

= 0.014).  These data suggest that while ACC did participate in this simple reward guided decision task, 1143 
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its contribution could largely be compensated for by other regions, consistent with model-based and 1144 

model-free control both recommending repeating rewarded choices. 1145 
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