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	7	

Summary	8	

Quantitative	traits	are	influenced	by	pathways	that	have	traditionally	been	defined	through	9	

genes	that	have	a	large	loss-	or	gain-of-function	effect.	However,	in	theory,	a	large	number	of	10	

small	effect-size	genes	could	cumulative	play	a	substantial	role	in	pathway	function,	potentially	11	

by	acting	as	“modifiers”	that	tune	the	levels	of	large	effect	size	pathway	components.	To	12	

understand	the	role	of	these	small	effect-size	genes,	we	used	a	quantitative	assay	to	determine	13	

the	number,	strength,	and	identity	of	all	non-essential	genes	that	affect	two	galactose-14	

responsive	(GAL)	traits,	in	addition	to	re-analyzing	two	previously	screened	quantitative	traits.	15	

Over	a	quarter	of	assayed	genes	have	a	detectable	effect;	approximately	two	thirds	of	the	16	

quantitative	trait	variation	comes	from	small	effect-size	genes.	The	functions	of	small	effect-size	17	

genes	are	partially	overlapping	between	traits	and	are	enriched	in	core	cellular	processes.	This	18	
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implies	that	genetic	variation	in	one	process	has	the	potential	to	influence	behavior	or	disease	19	

in	seemingly	unconnected	processes.	20	

	21	

Highlights	22	

• Four	yeast	quantitative	traits	are	affected	by	thousands	of	small	effect-size	genes.	23	

• Small	effect-size	genes	are	enriched	in	core	cellular	processes	24	

• The	effects	of	these	genes	are	quantitative	trait-specific.	25	

	26	

Introduction	27	

What	are	all	the	genes	that	are	involved	in	a	trait?	Classically,	the	pathways	that	contribute	to	a	28	

trait,	like	those	involved	in	signaling	or	development,	were	defined	by	genetic	screens	that	29	

identified	genes	with	loss-	or	gain-of-function	phenotypes	(Nüsslein-Volhard	and	Wieschaus,	30	

1980).	As	screens	became	more	quantitative,	many	alleles	of	both	small	and	large	effects	size	31	

where	identified	(Ehrenreich	et	al.,	2010;	Friedman	and	Perrimon,	2006).But,	the	methods	to	32	

validate	and	then	determine	the	molecular	function	have	remained	laborious.	Hence,	research	33	

has	typically	focused	on	genes	on	characterizing	genes	with	large	effect	size.	This	has	lead	to	a	34	

potential	bias	that	these	large	effect	size	genes	dominate	the	behavior	and	variability	in	a	35	

pathway.	An	alternative	view	is	that	cumulatively,	the	mainly	overlooked	small	effect	size	genes	36	
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significantly	shape	pathway	function	and	population-level	trait	variation,	and	hence	the	genetic	37	

architecture	of	a	pathway	is	distributed	not	centralized	(Figure	1).	Until	recently,	it	wasn’t	38	

possible	to	easily	and	comprehensively	identify	genes	implicated	in	quantitative	traits,	making	it	39	

difficult	to	distinguish	between	these	two	hypotheses	concerning	the	architecture	of	most	40	

pathways.	41	

The	genetic	architecture	of	quantitative	traits	has	taken	on	increased	importance	as	it	has	42	

become	clear	that	many	human	traits,	such	as	body	mass	index	and	traits	that	underlie	43	

heritable	human	disease,	are	also	quantitative.	Numerous	human	traits	and	disease	have	been	44	

studied	using	genome-wide	association	studies	(GWAS)	to	uncover	the	loci	containing	causative	45	

variants	that	are	responsible	for	the	genetic	component	of	these	traits	(Hindorff	et	al.,	2009).	If	46	

the	genetic	architecture	of	the	underlying	pathway	were	centralized,	one	would	expect	GWAS	47	

would	yield	a	small	number	of	large	effect-size	genes	typically	of	related	function;	if	the	genetic	48	

architecture	of	a	quantitative	trait	were	distributed,	one	would	expect	GWAS	would	yield	a	49	

large	number	of	small	effect-size	genes	of	often	seemingly	unrelated	function.	In	some	diseases,	50	

e.g.	age-related	macular	degeneration	(AMD),	GWAS	indeed	identified	several	common	alleles	51	

of	large	effect	size	that	explain	about	half	of	the	disease	risk	to	siblings	of	affected	individuals	52	

(Maller	et	al.,	2006).	This	would	support	the	view	of	centralized	signaling	pathways.	But,	in	53	

many	cases,	GWAS	has	yielded	many	small	effect-size	variants	with	low	odd	ratios	(Hindorff	et	54	

al.,	2009),	and	additionally	many	identified	loci	have	not	included	genes	with	an	obvious	55	

connection	to	disease	(Cooper	and	Shendure,	2011;	Edwards	et	al.,	2013).	These	results	are	56	

consistent	with	the	hypothesis	that	the	gene	architecture	of	some	pathways	underlying	human	57	
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traits	is	distributed.	Direct	experiments	to	separate	between	these	two	hypotheses	can	help	58	

frame	our	expectation	for	the	results	from	these	association	studies.	59	

Model	organisms	should	be	a	powerful	set	of	tools	for	defining	the	architecture	of	quantitative	60	

traits.	Several	studies	in	yeast	(Bloom	et	al.,	2013;	Ehrenreich	et	al.,	2010)	show	that	linkage	61	

analysis	has	the	potential	to	identify	most	of	the	causative	loci	needed	to	explain	trait	variation	62	

between	two	natural	yeast	isolates.	But	these	studies,	like	human	GWAS,	are	limited	by	63	

recombination	block	size	and	sample	size,	and	hence	are	not	ideal	for	identifying	causative	64	

genes	or	the	exact	number	and	identity	of	small	effect-size	loci.	As	an	alternative	approach,	65	

deletion	libraries	have	been	used	to	assess	the	role	of	every	yeast	gene.	These	studies	have	66	

been	transformative	for	defining	the	function	of	unknown	genes	(Botstein	and	Fink,	2011)	and	67	

for	showing	that	many	processes	in	yeast	are	genetically	interconnected	(Costanzo	et	al.,	2010;	68	

2016).	While	informative,	the	assays	that	are	typically	performed,	e.g.	colony	size	assay,	are	not	69	

quantitative	enough	to	accurately	determine	the	effect	size	of	every	mutant.	Hence	whether	70	

this	interconnectedness	has	a	significant	role	in	pathway	function	is	still	unclear.	71	

In	this	work,	we	quantified	the	effect	sizes	of	all	non-essential	yeast	genes	on	several	traits.	72	

Instead	of	identifying	existing	genetic	variation	in	natural	populations,	we	used	a	yeast	deletion	73	

library	to	measure	with	high	precision	the	magnitude	of	effect	of	all	non-essential	genes	on	a	74	

quantitative	trait,	which	we	refer	to	as	gene	effect	size.	By	its	design,	this	approach	identifies	all	75	

the	genes	whose	loss-of-function	has	the	potential	to	influence	a	trait,	and	the	effect	size	76	

distribution	of	these	genes.	We	found	that	all	four	traits	we	analyzed	have	an	exponential	77	

distribution	of	effect	sizes.	The	consequence	of	these	results	is	that	cumulatively,	small	effect-78	
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size	can	significantly	contribute	to	pathway	function.	Gene	Ontology(GO)	analysis	and	79	

additional	experiments	showed	that	many	of	these	small	effect-size	mutations	are	involved	in	80	

core	cellular	processes	and	affect	quantitative	traits	in	a	trait-specific,	not	generic,	manner.	In	81	

natural	populations,	phenotypic	variation	is	influenced	by	the	actual	existing	variants;	this	82	

natural	variation	is	more	complex	than	our	deletion	library.	We	showed	through	simulation	that	83	

our	analysis	based	on	deletion	mutants,	given	modest	assumptions,	yields	an	effect	size	84	

distribution	that	is	close	to	the	distribution	that	would	be	observed	for	other	sources	of	genetic	85	

variation.	86	

Results	87	

A	large	fraction	of	genes	can	influence	multiple	biological	processes	88	

A	large	number	of	screens	have	been	performed	with	the	yeast	deletion	library	(Giaever	and	89	

Nislow,	2014).	These	screens	could	potentially	serve	as	a	rich	source	of	data	for	determining	the	90	

effect	size	of	each	gene	on	many	traits.	Reanalyzing	this	data,	we	found	that,	due	to	91	

measurement	noise,	most	of	these	studies	do	not	have	the	power	to	determine	the	full	gene-92	

level	effect	size	distribution	(Supplemental	Information).	This	is	not	surprising	as	the	goal	of	93	

most	studies	was	to	identify	genes	of	large	effect	size	rather	than	attempting	to	identify	all	94	

genes	of	any	effect	size.	Therefore,	to	determine	the	number	of	genes	that	can	affect	a	95	

pathway,	we	created	a	reporter	library	with	which	we	could	quantitatively	measure	the	96	

response	of	cells	to	galactose	(GAL).	We	systematically	constructed	a	library	of	strains	deleted	97	

for	all	non-essential	yeast	genes	each	containing	a	YFP	reporter	driven	by	the	GAL1	promoter	98	

(GAL1pr-YFP).	We	then	assayed	the	bimodal	YFP	response	(Acar	et	al.,	2005;	Escalante-Chong	et	99	
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al.,	2015)	in	single	cells	growing	in	mixtures	of	glucose	and	galactose	by	flow	cytometry	(Figure	100	

2A-B).	Additionally,	to	supplement	the	analysis,	we	identified	and	re-analyzed	two	deletion	101	

studies	(Breslow	et	al.,	2008;	Jonikas	et	al.,	2009),	one	on	growth	rate	in	rich	medium	and	one	102	

on	the	unfolded	protein	response	(UPR),	that	had	a	signal-to-noise	ratio	that	was	sufficiently	103	

large	to	determine	the	effect	size	distribution.	104	

Principal	component	analysis	of	the	results	from	our	GAL	response	screen	highlighted	three	105	

distinct	traits	(Figure	S1).	These	traits,	corresponding	to:	1)	the	fraction	of	cells	that	are	induced	106	

above	background;	2)	the	induction	level	of	the	induced	('on')	peak;	and	3)	the	background	107	

level	of	the	uninduced	('off')	peak	(Figure	2C,	Supplemental	Information).	The	signal-to-noise	108	

ratio	of	the	first	two	metrics	was	sufficient	to	calculate	an	effect	size	distribution	for	a	large	109	

number	of	genes.	We	will	refer	to	these	two	separable	GAL	traits	as	the	"induced	fraction"	and	110	

the	"induction	level"	(Figure	2D).	111	

Each	of	the	four	traits	-	the	induced	fraction,	induction	level,	growth	rate,	and	UPR	-	considered	112	

in	isolation,	was	influenced	by	a	large	number	of	deletion	strains	(Figure	2E	and	F);	the	113	

distribution	of	mutant	effects	was	continuous.	Based	on	a	comparison	of	the	measured	effect	114	

sizes	and	the	measurement	noise	estimated	from	biological	replicates,	19%	(796	of	4201),	16%	115	

(735	of	4562),	16%	(689	of	4162),	and	20%	(849	of	4162)	of	non-essential	genes	screened,	at	a	116	

0.5%	false	discovery	rate,	affect	the	growth	rate	in	rich	media,	unfolded	protein	response,	117	

induced	fraction	in	GAL,	and	induction	level	in	GAL	respectively.	Together	the	two	GAL	traits	are	118	

composed	of	1104	unique	genes.	Interestingly,	if	we	used	a	single	composite	trait,	i.e.	mean	119	

expression,	to	quantify	the	GAL	response,	fewer	genes	(593	of	4162)	were	identified,	120	
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highlighting	the	utility	of	sub-classifying	higher-level	phenotypes	that	might	be	composed	of	121	

separable	traits	each	controlled	by	distinct	genetic	factors	(Supplemental	Information).	To	122	

obtain	a	more	accurate	estimate	of	how	many	genes	can	quantitatively	affect	each	of	the	traits,	123	

at	the	sacrifice	of	knowing	the	identity	of	the	genes,	we	determined	the	area	of	the	normalized	124	

effect	size	distribution	that	is	outside	the	normalized	measurement	noise	distribution	(Figure	125	

S2).	From	this,	we	estimate	that	the	fraction	of	genes	affecting	the	growth	rate	in	rich	media	is	126	

62%,	unfolded	protein	response	is	23%,	induced	fraction	in	GAL	is	28%,	and	induction	level	in	127	

GAL	is	34%	(Supplemental	Information).	Together	these	results	highlight	that	a	large	fraction	of	128	

the	protein-coding	genes	has	the	potential	to	quantitatively	affect	a	trait.		129	

As	a	final	method	to	determine	the	number	of	genes	that	influence	our	four	traits	we	130	

determined	whether	the	effect	size	distributions	could	be	explained	by	a	simply	analytical	131	

function.	To	minimize	the	effect	of	measurement	noise	on	measured	effect	sizes,	we	first	132	

focused	our	analysis	on	the	genes	whose	effect	size	was	significantly	different	from	133	

measurement	noise.	Interestingly,	we	found	that	the	effect	size	distribution	for	all	four	traits	134	

was	well	fit	by	an	exponential	distribution	(R2=0.91-0.96,	Figure	2E	an	F,	dotted	line).	When	135	

extrapolating	the	exponential	fit	into	the	measurement	noise,	it	predicts	that	27-33%	of	genes	136	

affect	each	of	our	four	traits,	similar	to	the	orthogonal	estimates	above.	Adding	measurement	137	

noise	to	the	exponential	distribution	(Figure	2E	and	F,	blue	line)	well	fit	the	full	measurement	138	

distribution	(R2=0.92-0.98).	Therefore,	a	parsimonious	explanation	of	our	data	is	that	the	effect	139	

size	distribution	of	a	quarter	to	half	of	genes	is	exponential.	Half	to	three	quarters	of	all	genes	140	

have	little	to	no	effect.		141	
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Small	effect-size	genes	can	influence	pathway	function	142	

The	shape	of	the	determined	effect	size	distributions	implies	that	each	of	the	four	traits	is	143	

affected	by	genes	with	a	continuous	distribution	of	effect	sizes	ranging	from	a	small	number	of	144	

large	effect-size	genes	to	a	large	number	of	small	effect-size	genes.	It	has	been	questioned	145	

whether	even	such	a	large	number	of	small	effect-size	mutants	could	substantially	contribute	to	146	

the	functionality	of	a	pathway	(Crow,	2011).	The	answer	to	this	question	depends	on	the	exact	147	

shape	of	the	measured	effect	size	distribution	(e.g.	Figure	1C	II	versus	III).	We	therefore	148	

determined	the	number	of	genes	that	are	cumulatively	important	for	pathway	function.	To	do	149	

so,	we	devised	a	method	to	quantify	the	impact	of	each	gene,	which	is	similar	to	the	one	used	150	

to	quantify	allelic	contribution	to	narrow-sense	heritability	in	a	GWAS	(Lynch	and	Walsh,	1998).	151	

In	the	calculation,	we	first	assumed	a	population	of	cells	with	independent	and	randomly	152	

assorting	alleles.	We	assumed	only	two	possible	alleles	for	each	gene,	i.e.	deletion	or	wild-type	153	

(a	more	complex	model	will	be	considered	below).	We	then	calculated	each	gene’s	contribution	154	

to	the	trait	variation	in	the	population	as	2𝛽!𝑓 1− 𝑓 	(Lynch	and	Walsh,	1998),	where	β	is	the	155	

effect	size	and	f	is	the	allele	frequency,	assuming	that	each	allele	has	a	frequency	of	50%	and	no	156	

epistasis	(Figure	3A).	For	our	four	traits,	using	the	measured	effect	size	for	each	gene,	we	find	157	

that	257-352	genes	with	the	largest	effect	sizes,	representing	5.6-8.5%	of	screened	genes,	are	158	

needed	to	explain	80%	of	total	computed	variation	(Figure	3B	and	C,	and	Figure	S4).	If	human	159	

traits	behave	similarly	to	our	yeast	deletions,	we	would	estimate	that	the	number	of	genes	160	

required	to	explain	most	of	the	heritability	of	a	quantitative	trait	is	in	the	range	of	1200-1900	161	

genes.	Interestingly,	our	estimate	is	concordant	with	estimations	from	GWAS.	For	example,	the	162	
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current	estimate	for	human	height,	the	best	characterized	human	trait,	is	that	423	1Mb	loci	are	163	

involved.	Yet	this	explains	only	20%	of	the	heritability.	This	result	suggests	that	both	in	yeast	164	

and	humans,	some	pathways	and	traits	resemble	the	distributed	architecture	from	Figure	1C	III;	165	

i.e.	a	large	number	of	genes	of	slowly	diminishing	effect	size	contribute	to	pathway	function	166	

and	trait	variation.	167	

Given	their	individual	small	effect	size,	our	analysis	also	suggests	that	a	significant	portion	of	168	

the	genes	that	account	for	pathway	function	would	not	typically	be	considered	to	be	169	

contributing	to	each	trait.	Classical	genetic	screens	identified	only	a	fraction	of	the	genes	that	170	

have	the	potential	to	significantly	affect	each	of	the	two	GAL	traits.	A	compiled	list	of	the	50	171	

genes	previously	identified	as	affecting	the	GAL	pathway	(Supplemental	Information)	explained	172	

only	32.0%	and	11.7%	of	variation	in	the	induction	level	and	induced	fraction	traits	respectively.	173	

Similarly,	in	the	unfolded	protein	response,	genes	whose	products	localize	throughout	the	174	

secretory	pathway	(ER	and	Golgi)	explain	only	27.1%	of	variation,	further	suggesting	substantial	175	

roles	of	additional	genes/processes.	Hence,	much	of	the	variance	occurs	in	genes	we	term	non-176	

trait-specific,	i.e.	genes	that	are	not	typically	considered	to	be	physiologically	related	to	the	trait.	177	

This	is	consistent	with	previous	GWAS	that	identified	putative	causative	loci	that	in	some	cases	178	

contained	genes	that	were	obviously	trait-specific	but	in	other	cases	were	involved	in	general	179	

cellular	processes.	For	example,	human	height	is	affected	by	variants	in	genes	that	underlie	180	

skeletal	growth	defects	(trait-specific),	as	well	as	general	pathways	such	as	the	Hedgehog	181	

pathway	(non-trait-specific)	(Lango	Allen	et	al.,	2010).	Surprisingly,	our	analysis	suggests	that	182	

the	non-trait-specific	processes	can	have	a	larger	aggregate	effect	than	trait-specific	pathways.	183	
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A	potential	caveat	to	these	estimates	is	that	the	GAL	phenotypes	of	ten	mutants	are	either	fully	184	

induced	or	uninduced,	causing	the	effects	of	these	genes	to	be	underestimated.	These	ten	185	

genes	have	previously	described	influences	on	the	GAL	pathway.	GAL1,	GAL3,	GAL4,	GAL80,	186	

REG1,	and	SNF3	are	involved	in	either	glucose	or	galactose	signaling.	HSC82	and	STI1	interact	187	

with	the	HSP90	co-chaperone	that	has	been	shown	to	influence	the	GAL	pathway	(Gopinath	188	

2016).	SNF2	is	a	SWI/SNF	chromatin	remodeling	complex	that	was	previously	suggested	to	be	189	

involved	in	nucleosome	occupancy	on	GAL	promoter	(Bryant	et	al.,	2008).	GCN4,	is	a	general	190	

transcription	factor	that	responds	to	amino	acid	starvation.	We	believe	in	most	cases	this	191	

caveat	does	not	affect	our	results.	Because,	the	loss-of-function	effect	size	of	these	alleles	is	192	

effectively	infinite,	they	will	behave	as	Mendelian	not	quantitative	alleles.	Instead,	for	any	193	

quantitative	traits,	the	predominant	alleles	of	these	Mendelian	loss-of-function	genes	must	be	194	

hypomorphic	alleles.	Indeed,	when	we	assume	hypomorphic	allele	effect	sizes	for	these	genes	195	

by	randomly	sampling	from	the	tail	of	the	fitted	exponential	distribution,	we	only	observed	a	196	

modest	increase	in	total	trait	variation	(<	3%).	197	

Gene	deletions	in	core	cellular	processes	affect	quantitative	traits	198	

What	are	the	functions	of	these	‘pathway	modifiers’	we	identified?	Are	they	genes	that	have	199	

general	effects	on	all	traits	or	are	they	specific	to	one	or	a	subset	of	traits?	We	found	that	non-200	

trait-specific	processes	often	affect	more	than	one	trait.	All	pairs	of	traits	share	significantly	201	

more	genes	that	affect	their	behaviors	than	expected	(p	<	10-65,	one-tailed	hypergeometric	test).	202	

While	only	2	genes	would	be	expected	by	chance,	113	genes	were	shared	by	all	traits	(Figure	203	

4A).	These	genes	also	overlap	significantly	with	"hub"	genes	identified	from	genetic	interaction	204	
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network	(between	140	and	257	out	of	380	hubs	genes	are	significant	for	each	of	the	four	traits,	205	

p	<	10-47,	hypergeometric	test)	(Costanzo	et	al.,	2010).	We	used	Gene	Ontology	to	ask	if	shared	206	

non-trait-specific	genes	were	enriched	for	specific	biological	processes.	Indeed,	many	processes	207	

were	enriched	(Table	S1),	including	translation	(GO:0006412),	regulation	of	metabolism	208	

(GO:0031323),	and	transcription	(GO:0006351).	Although	this	has	not	previously	been	209	

extensively	characterized,	it	is	not	surprising	that	these	traits	might	be	altered	by	perturbations	210	

in	some	core	cellular	processes.	211	

The	identification	of	these	core	cellular	processes	as	having	potential	to	explain	a	significant	212	

amount	of	trait	variation	could	be	fundamental	or	trivial.	It	could	reflect	an	architecture	where	213	

many	biological	traits	integrate	many	external	and	internal	factors	as	inputs	(e.g.	the	GAL	214	

pathway	responding	not	just	to	galactose	but	glucose,	redox	status,	ribosome	capacity,	ER	215	

capacity,	etc.).	Alternatively,	as	the	expression	of	a	large	fraction	of	yeast	genes	is	affected	by	216	

growth	rate	control	(Keren	et	al.,	2013;	Regenberg	et	al.,	2006;	Slavov	and	Botstein,	2011),	a	217	

trivial	explanation	could	be	that	the	effect	on	the	UPR	and	GAL	traits	is	solely	an	indirect	effect	218	

of	a	growth	rate	defect	(Figure	S4).	Our	data	do	not	support	growth	rate	as	the	sole	factor	219	

explaining	our	results.	Between	40%	and	60%	of	gene	deletions	affect	our	GAL	and	UPR	traits	220	

without	affecting	growth	and	vice	versa	(Table	S2).	Furthermore,	for	genes	that	affect	both	221	

growth	rate	and	any	of	the	other	traits,	there	is	no	correlation	in	effect	size	between	the	two	222	

effects	(R2<0.02,	S	Figure	7B-D).	These	observations	argue	against	the	idea	that	defects	in	223	

growth	are	the	main	reason	that	non-trait-specific	genes	affect	the	behavior	of	traits.	The	224	

involvement	of	many	non-trait-specific	genes	instead	suggests	that	many	signaling	pathways	225	
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integrate	a	much	larger	set	of	cellular	inputs	than	the	single	input	for	which	the	pathways	are	226	

named.	227	

Perturbation	of	core	cellular	processes	can	have	trait-specific	effects	228	

Consistent	with	the	idea	that	traits	integrate	a	number	of	inputs	in	a	trait-specific	manner,	we	229	

find	that	biological	processes	often	affect	more	than	one	trait,	but	importantly	not	all	traits.	230	

Using	a	spatial	clustering	algorithm	in	the	four-trait	space	(Figure	4B-C),	we	found	an	231	

enrichment	in	core	cellular	components	(Table	S3),	such	as	ribosomal	genes	(GO:0002181),	232	

mitochondrial	genes	(GO:0005743),	mannosyltransferases	(GO:0000030),	genes	that	affect	233	

histone	exchange	(GO:0000812)	or	proteasome	assembly	(GO:0043248),	and	genes	involved	in	234	

peptidyl-diphthamide	synthesis	(GO:0017183).	Each	of	these	sets	of	genes	had	a	separable	235	

direction	in	this	4-dimensional	space	suggesting	each	process	is	responding	distinctly	to	the	236	

mutations	(Figure	4D).	For	example,	the	89	genes	involved	in	cytoplasmic	translation	237	

(GO:0002181)	were	enriched	in	3	out	of	4	quantitative	traits,	namely	the	unfolded	protein	238	

response,	growth	rate	in	rich	media,	and	GAL	induction	level,	but	not	GAL	induced	fraction	(40,	239	

21,	37	and	3	genes	respectively	out	of	the	top	300	genes).	Conversely,	mitochondrial	inner	240	

membrane	genes	(GO:0005743)	are	enriched	in	the	GAL	induced	fraction	but	not	growth	rate,	241	

unfolded	protein	response,	nor	GAL	induction	level	(21	versus	3,	1,	and	4	respectively	out	of	the	242	

top	300	genes).	243	

Furthermore,	the	same	core	processes	can	have	distinct	effects	on	different	traits.	For	example,	244	

at	first	glance,	one	might	expect	mutations	in	ribosomal	genes	to	affect	the	level	of	induction	of	245	

a	pathway	(e.g.,	by	altering	the	expression	level	of	all	genes)	but	not	the	fraction	of	cells	246	
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induced.	Indeed,	this	is	the	case	for	the	GAL	response.	But,	when	we	examined	the	effect	of	the	247	

same	mutants	on	a	phosphate	responsive	(PHO)	promoter,	PHO84pr,	we	obtained	a	different	248	

result	(Figure	5).	The	PHO84	promoter	responds	to	phosphate	limitation	in	a	bimodal	manner	249	

and	can	therefore	be	characterized	in	the	same	way	as	we	characterize	the	GAL	response.	The	250	

effects	of	ribosomal	mutants	on	the	induction	level	of	PHO84pr-YFP	are	significantly	less	than	251	

for	GAL1pr-YFP	(Figure	5B	versus	C;	Figure	5E	and	Figure	S5,	p=3x10-10,	two-tailed	t-test).	252	

Instead,	ribosomal	mutants	affect	the	PHO	induced	fraction	and	the	level	of	expression	of	the	253	

uninduced	cells	(Figure	5C	and	examples	in	Figure	5D).	In	support	that	these	results	are	a	direct	254	

consequence	of	perturbation	of	ribosomal	function,	cycloheximide,	a	small	molecule	inhibitor	255	

of	the	ribosome,	phenocopies	the	results	of	ribosomal	gene	deletions	on	both	the	GAL	and	PHO	256	

pathways	(Figure	5B-D).	While	this	result	at	first	may	seem	counter-intuitive,	these	results	257	

could	be	explained	if	ribosomal	proteins	differentially	impacted	the	expression	level	of	positive	258	

versus	negative	regulators	of	a	trait.	In	total,	this	suggests	that	variation	in	genes	involved	in	259	

core	cellular	processes	could	have	both	generic	and	pathway	specific	effects.	260	

Extension	to	other	sources	of	genetic	variation	through	simulation	261	

We	next	wished	to	determine	to	what	extent	our	results	generalize	to	genetic	variation	beyond	262	

the	complete	loss-of-function	variants	we	experimentally	measured.	Genetic	variation	in	263	

natural	population	is	more	complex	genetically	than	the	deletion	library	we	analyzed.	To	264	

generalize	our	results	to	account	for	a	broader	range	of	genetic	variation,	we	developed	a	265	

model	where	we	accounted	for	1)	other	types	of	alleles,	i.e.	hypermorphs	and	neomorphs	as	266	

originally	proposed	by	Muller	(Muller,	1932),	2)	variable	number	of	alleles	per	gene,	and	3)	267	
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variable	allele	frequencies	in	the	population	(Figure	6).	While	the	actual	molecular	cause	of	the	268	

variation	can	come	from	many	sources,	e.g.	single	nucleotide	polymorphisms	(SNPs),	copy	269	

number	variation,	and	indels,	for	the	purpose	of	understanding	the	genetic	architecture,	it	is	270	

only	important	to	understand	the	effect	of	the	genetic	change	on	the	trait,	and	hence	for	271	

simplicity	we	will	refer	to	all	genetic	variants	as	SNPs.	Additionally,	we	assumed	all	SNPs	272	

contribute	linearly	to	the	trait	with	no	epistasis.	This	assumption	is	based	on	the	fact	that	a	273	

linear	model	using	all	SNPs	genotyped	in	human	height	GWAS	can	explain	a	large	fraction	of	274	

height	heritability	(Yang	et	al.,	2015;	2010).	275	

To	instantiate	the	model	(Figure	6)	a	series	of	functional	forms	and	constants	were	assumed	for	276	

each	of	the	potential	variables.	The	number	of	SNPs	that	affect	a	given	gene	was	chosen	from	a	277	

Poisson	distribution	to	reflect	variable	number	of	alleles	observed	in	human	genome	278	

(Sachidanandam	et	al.,	2001).	The	effect	size	of	hypomorphic	SNP	was	modeled	by	multiplying	a	279	

beta	distributed	random	variable	by	the	actual	measured	effect	size	of	each	affected	gene.	In	280	

this	way,	the	maximum	effect	size	was	the	complete	loss-of-function	and	the	minimum	effect	281	

size	was	zero.	A	beta	distribution	was	chosen	to	allow	modeling	of	a	wide	range	of	different	282	

shaped	distributions	(Figure	6).	To	simulate	neomorphic	(gain-of-function)	SNPs,	we	randomly	283	

selected	a	fraction	SNPs,	and	reassigned	their	effect	sizes	with	the	effect	size	of	randomly	284	

chosen	SNPs.	Lastly,	the	allele	frequency	for	each	SNP	was	chosen	from	a	beta	distribution.	285	

In	each	simulation,	we	calculated	the	explained	trait	variation	for	each	SNP,	and	then	summed	286	

up	all	the	SNPs	for	a	single	gene	to	obtain	the	explained	variation	for	each	gene.	We	then	varied	287	

the	parameters	in	each	of	the	distributions	of	the	variables	introduced	above.	Specifically,	we	288	
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used	Latin	hypercube	sampling	to	scan	the	parameter	space	of	the	distributions	(blue	dots,	289	

Figure	6),	and	then	compared	the	number	of	genes	that	explain	80%	of	trait	variation	obtained	290	

from	this	model	and	our	experimental	results	(Figure	3).	The	results	from	our	simulation	show	291	

variation	in	the	fraction	of	neomorphs	dominates	variation	in	the	model.	However,	as	long	as	292	

this	fraction	is	below	5%,	the	results	of	the	simulation	do	not	vary	from	the	experimental	293	

results	by	more	than	17%.	Neomorphic	alleles	are	typically	assumed	to	be	rare.	In	order	to	294	

determine	the	potential	impact	of	the	other	parameters	in	our	model,	we	fixed	gain-of-function	295	

rate	to	be	5%.	Resampling	the	other	five	parameters,	we	found	that	the	average	number	of	296	

SNPs	per	gene	is	the	second	largest	source	of	variation	in	our	model.	However,	as	long	as	on	297	

average	5	SNPs	exist	per	gene	in	the	population,	the	effect	is	negligible	(orange	samples	in	298	

Figure	6B).	Large-scale	sequencing	efforts	have	now	identified	~20	million	genetic	variants	in	299	

humans	(Sherry	et	al.,	2001).	Even	if	99%	of	these	variants	were	neutral,	there	would	still	be	300	

enough	SNPs	per	gene	on	average	to	support	our	conclusions.	From	this,	we	determined	that	301	

our	estimate	of	number	of	genes	that	influence	a	trait	from	our	knockout	data	is	largely	302	

insensitive	to	the	parameters	of	our	model,	and	quantitative	analysis	of	complete	loss-of-303	

function	alleles	should	be	informative	even	for	the	analysis	of	less	severe	and	of	rare	alleles.	304	

Discussion	305	

In	this	work	we	sought	to	determine	all	the	genes	that	can	influence	a	pathway	underlying	a	306	

quantitative	trait.	Depending	on	the	number	of	genes	and	the	magnitude	of	the	effect,	307	

pathways	could	in	principle	have	a	centralized	or	distributed	architecture	(Figure	1).	To	address	308	

this	question	we	determined	the	effect	size	distribution	of	deletion	mutants	for	four	309	
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quantitative	traits	in	yeast.	We	did	this	by	measuring	the	response	to	galactose	at	the	single-cell	310	

level	for	each	deletion	strain	from	the	yeast	library	and	by	reanalyzing	two	additional	311	

quantitative	screens	that	measure	competitive	growth	rates	(Breslow	et	al.,	2008)	and	the	312	

unfolded	protein	response	(UPR)	(Jonikas	et	al.,	2009)	in	the	deletion	library.	We	found	that	in	313	

all	four	cases,	the	distribution	of	effect	sizes	is	such	where	a	quarter	to	half	of	the	genes	follow	314	

an	exponential	distribution,	with	the	rest	of	the	genes	having	a	negligible	effect	size	(Figure	2).	315	

Based	on	a	simple	model	to	calculate	heritability,	we	found	this	result	implies	that	a	large	316	

number	of	genes	(5-9%	of	all	genes)	would	be	needed	to	cumulatively	explain	at	least	80%	of	317	

trait	variation	(Figure	3).	Our	results	imply	that	there	is	a	significantly	larger	subset	of	genes	318	

that	affect	each	trait	than	previously	appreciated,	but	that	individually	their	effect	is	difficult	to	319	

detect	by	less	quantitative	experimental	methods.	The	results	provide	evidence	for	pathways	320	

having	a	distributed,	rather	than	centralized,	genetic	architecture.	321	

A	distributed	pathway	architecture	suggests	that	many	genes	that	are	not	typically	considered	322	

part	of	a	pathway,	such	as	the	GAL	pathway,	could	still	play	an	important	role	in	pathway	323	

function.	We	found	that	these	“pathway	modifiers”	were	enriched	in	several	core	cellular	324	

processes	(Figure	4).	Given	the	pleiotropic	nature	of	these	processes,	it	is	not	surprising	that	325	

these	genes	can	influence	multiple	traits.	Unexpectedly,	however,	we	found	that	a	mutant	in	a	326	

core	cellular	process	can	have	trait-specific	consequences;	e.g.	a	ribosomal	mutant	affects	the	327	

induction	level	in	the	GAL	response,	but	the	induced	fraction	in	the	PHO	response	(Figure	5).	328	

This	implies	that,	instead	of	making	cells	‘sick’,	biological	processes	underlying	quantitative	329	

traits	are	likely	affected	by	a	large	number	of	inputs	that	have	the	potential	to	act	in	a	trait-330	

specific	manner.	331	
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Previous	work	had	found	that	yeast	traits	were	affected	by	fewer	genes	than	we	report	here.	332	

Work	by	Bloom	et	al.	used	linkage	analysis	to	identify	quantitative	loci	underlying	46	yeast	traits,	333	

and	found	a	median	of	12	loci	affected	each	trait	(Bloom	et	al.,	2013).	While	it	is	possible	that	334	

our	four	traits	happen	to	be	more	complex	than	the	traits	that	were	analyzed	by	Bloom	et	al.,	335	

we	believe	the	differences	result	from	the	applied	methods.	If	either	the	two	yeast	strains	used	336	

in	the	linkage	analysis	of	Bloom	et	al.	are	more	related	than	two	random	isolates	in	a	natural	337	

population	or	if	the	traits	analyzed	were	under	strong	selection,	this	would	lead	to	an	338	

underestimation	of	the	number	of	genes.	Because	we	are	using	a	deletion	library,	we	avoid	the	339	

confounding	effect	of	selection	and	the	biases	due	to	the	limited	number	of	alleles	between	340	

two	natural	isolates.	We	therefore	believe	that	the	discrepancy	between	the	results	of	these	341	

two	works	is	at	least	in	part	due	to	the	applied	methods,	in	particular	selection	on	growth	rates.	342	

Mendelian	vs.	quantitative	trait	343	

A	distributed	genetic	architecture,	as	observed	in	this	study,	has	implication	for	patterns	of	344	

genetic	inheritance.	Different	individuals	can	have	different	numbers	of	alleles	and	the	effect	345	

size	of	the	strongest	alleles	can	be	different.	Therefore,	the	expectation	should	be	that	the	346	

same	trait,	when	examined	in	a	pairwise	manner	between	many	individuals,	should	exhibit	a	347	

range	of	segregation	patterns	from	Mendelian	to	quantitative	depending	on	the	number	and	348	

strength	of	the	alleles.	Indeed,	this	exactly	what	was	recently	observed	for	multiple	traits	in	349	

crosses	between	yeast	strains	(Hou	et	al.,	2016).	Furthermore,	one	should	expect	a	smaller	350	

number	of	genes	that	contribute	to	a	quantitative	trait	will	have	rare	alleles	that	make	the	trait	351	

behave	as	a	Mendelian	trait.	Indeed,	this	has	also	been	found	that	many	quantitative	loci	352	
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associated	with	normal	human	height	variation	contain	genes	underlying	syndromes	353	

characterized	by	abnormal	skeletal	growth	(Lango	Allen	et	al.,	2010).	354	

Application	to	human	genetics	355	

Our	results	suggest	that	the	number	of	genes	that	can	influence	a	trait,	when	extrapolated	to	356	

humans,	is	~	1500.	However,	our	results	were	focused	on	a	single-celled	microbe	that	has	a	357	

more	compact	genome	with	a	smaller	number	of	protein-coding	genes	than	metazoan	358	

genomes.	To	what	extent	might	our	observations	generalize	to	human	genetic	variation,	given	359	

the	differences	in	genome	architecture	and	complexity?	Do	human	traits,	especially	ones	360	

involved	in	important	human	disease,	also	have	such	a	distributed	underlying	genetic	361	

architecture?	One	way	to	assess	whether	the	genetic	architecture	of	yeast	and	human	traits	is	362	

different	is	to	compare	the	number	of	genes	and	their	corresponding	effect	size	distribution.	363	

While	a	small	number	of	human	diseases	or	traits	can	be	explained	by	a	small	number	of	364	

causative	genes,	e.g.	three	genes	explain	50%	of	the	genetic	risk	in	macular	degeneration	365	

(Maller	et	al.,	2006),	many	traits	are	poorly	explained	by	a	small	number	of	genes.	For	example,	366	

a	GWAS	on	human	height	found	that	423	loci	explained	less	than	20%	of	total	heritability	367	

(Wood	et	al.,	2014).	Similarly,	163	loci	only	explain	14%	of	heritability	in	Crohn’s	disease	(Jostins	368	

et	al.,	2012),	and	100	loci,	excluding	major	histocompatibility	complex,	explain	less	than	6%	of	369	

heritability	in	rheumatoid	arthritis	(Okada	et	al.,	2014).	Since	the	explained	fraction	of	370	

heritability	is	far	less	than	100%	in	all	these	studies,	it	is	difficult	to	accurately	estimate	the	371	

number	of	loci	required	to	explain	a	majority	of	heritability	in	a	human	trait,	but	a	reasonable	372	
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estimate	would	be	in	the	thousands.	This	suggests	that	the	fraction	of	genes	involved	in	a	373	

quantitative	trait	is	similar	in	yeast	and	humans.	374	

While	the	effect	size	distribution	of	human	traits	is	poorly	defined	it	is	consistent	with	our	375	

results.	Park	et	al.	devised	a	method	to	determine	the	effect	size	distribution	by	taking	into	376	

account	all	identified	alleles	and	the	power	to	have	detected	these	alleles.	From	this	they	377	

concluded	that	the	effect	size	distribution	alleles	affecting	human	traits	are	monotonically	378	

increasing	(Park	et	al.,	2010).	The	range	of	possible	distribution	discussed	in	that	work	is	379	

consistent	with	an	exponential	distribution.	While	there	is	no	good	human	data	exists	on	the	380	

distribution	of	small	effect	size	alleles,	gene	essentiality	can	be	used	as	a	rough	comparison	of	381	

the	relative	distribution	of	strong	effect	size	allele	between	yeast	and	humans.	Further	382	

supporting	the	similarity	in	effect	size	distributions,	the	number	of	essential	genes	in	yeast	and	383	

humans	is	similar.	In	total	we	believe	this	supports	the	idea	that	while	the	human	genome	is	384	

more	complex	than	yeast,	differences	in	genetic	architecture	are	likely	subtle	and	quantitative	385	

not	large	and	qualitative.	386	

Implication	of	a	distributed	genetic	architecture	on	human	disease	387	

High-throughput	genetic	interaction	maps	have	suggested	that	cellular	processes	are	deeply	388	

interconnected	(Costanzo	et	al.,	2016;	2010).	But,	it	was	not	determined	whether	these	389	

connections	were	strong	enough	to	be	physiologically	relevant.	Our	results	demonstrate	that	390	

cumulatively	many	genes	of	small	effect	size	can	make	significant	contributions	to	quantitative	391	

traits.	Importantly,	the	effect	sizes	of	these	variants	are	not	infinitesimal,	and	therefore	we	392	

believe	that	increased	power	in	GWAS	would	likely	capture	a	significant	portion	of	the	missing	393	
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heritability.	This	conclusion	is	consistent	with	work	from	Yang	et	al.,	which	has	shown	that	394	

human	genetic	variants	tagged	in	GWAS	on	body	mass	index	is	capturing	the	vast	majority	of	395	

heritability	even	if	it	is	underpowered	to	identify	the	causative	loci	(Yang	et	al.,	2015).	Of	course,	396	

increased	power	alone	will	not	help	identify	which	SNPs	within	a	locus	is	causative.	397	

Given	that	so	many	genes	can	affect	a	trait,	a	second	expectation	is	that	causative	small	effect	398	

size	loci	should	be	shared	between	many	but	not	all	traits.	Indeed,	correlation	among	genetic	399	

variants	has	been	observed	in	a	recent	study	using	24	human	traits	(Bulik-Sullivan	et	al.,	2015).	400	

Interpreting	these	results	has	been	challenging	as	these	genetic	correlations	could	arise	from	401	

either	a	direct	causative	link	between	the	two	diseases	or	shared	genetic	factors.	Our	results	402	

suggest	that	these	correlations	can	result	from	shared	genetic	factors	that	are	enriched	in	core	403	

cellular	processes.	This	means	that	there	could	be	power	in	searching	for	processes	that	are	404	

significantly	enriched	between	diseases	that	wouldn't	typically	be	thought	of	as	related.	Finally,	405	

the	spectrum	of	defects	seen	in	some	complex	diseases	could	arise	from	the	specific	406	

combination	of	small	effect	alleles	in	each	individual.	407	

In	summary,	our	work	provides	a	system-level	perspective	into	the	architecture	of	a	408	

quantitative	trait.	In	contrast	to	most	other	works	that	focused	on	existing	genetic	variants,	our	409	

work	quantitatively	determined	the	contribution	of	loss-of-function	alleles.	With	further	410	

development	of	gene	editing	technologies	and	disease	models,	it	will	be	interesting	to	test	411	

these	conclusions	in	more	complex	systems.	412	

	413	
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	687	
	688	

Figure	Legend	689	

Figure	1.	Genes	outside	of	the	canonical	signaling	pathways	have	the	potential	to	690	

substantially	influence	pathway	function	691	

(A)	A	canonical	pathway	(red	circles)	can	be	modified	by	anywhere	from	a	small	number	to	692	

large	number	of	currently	unidentified	genes	(green	circles).	(B)	Regardless	of	the	number	693	

of	modifiers,	the	modifiers	could	range	from	having	a	weak	to	strong	effect	on	the	pathway	694	

(represented	by	arrow	thickness).	(C)	If	the	number	of	modifiers	is	small	(I)	or	if	the	effect	695	

size	of	the	modifiers	is	small	(II)	the	genetic	architecture	of	the	pathway	will	be	centralized,	696	

i.e.	a	small	number	of	genes	will	control	the	function	of	and	variation	in	the	pathway.	If	the	697	
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number	of	modifiers	is	large	and	the	effect	size	of	the	modifiers	is	sufficiently	large	(III)	the	698	

genetic	architecture	will	be	distributed;	i.e.	a	large	number	of	genes	will	control	the	699	

function	of	and	variation	in	the	pathway.	700	

Figure	2.	Quantitative	genetic	screen	determines	that	a	large	number	of	genes	701	

quantitatively	affects	the	yeast	galactose	response	702	

(A)	Galactose	(Gal)	activates	while	glucose	(Glu)	inhibits	transcription	from	a	GAL1	703	

promoter	YFP	fusion.	B)	A	mCherry	expressing	mutant	strain	(red)	was	co-culture	with	a	704	

wild-type	reference	strain	(black);	both	strain	contained	the	reporter	construct	from	A.	705	

Each	well	contained	a	distinct	deletion	mutant.	(C)	We	defined	two	metrics	to	characterize	706	

the	bimodal	response	of	the	GAL	pathway.	We	defined	the	induced	fraction	(yellow	area	707	

versus	total	area	under	the	curve)	as	the	percent	of	cells	whose	YFP	expression	level	was	708	

above	a	threshold	(black	dotted	line).	We	also	defined	the	induction	level	as	the	mean	YFP	709	

expression	of	all	induced	cells	(green	dotted	line).	(D)	Mutant	effect	sizes	for	the	induction	710	

level	(D,	left)	and	for	induced	fraction	(D,	right)	are	defined	as	the	relative	change	in	each	711	

metric	between	mutant	(red)	and	the	co-cultured	wild-type	reference	strain	(black).	(E-F)	712	

Effect	size	distribution	for	two	GAL	traits.	Effect	sizes	of	all	mutants	were	binned	and	713	

plotted	as	a	histogram	(black	bars).	Mutant	that	passed	a	0.5%	false	discovery	rate	cut-off	714	

were	well	fit	with	an	exponential	distribution	using	maximum	likelihood	estimation	715	

(dashed	black	line,	R2	0.96	for	each,	see	Method).	The	full	distribution	is	parsimonious	with	716	

a	convolution	of	experimental	noise	and	an	exponential	distribution	(blue	line	is	the	717	

average	distribution	of	100,000	simulations,	R2=0.92-0.98;	gray	shading	is	one	standard	718	

deviation	around	the	mean).	719	
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Figure	3.	Pathway	modifiers	can	significantly	contribute	to	heritability	720	

(A)	Methods	to	estimate	the	heritability	explained	by	a	set	of	deletion	mutants.	Genes	were	721	

sorted	based	on	their	effect	size	when	deleted.	The	heritability	was	calculated	as	the	sum	of	722	

the	squares	of	the	effect	sizes	for	the	top	n	genes	compared	to	all	genes.	The	heritability	723	

(right)	for	the	top	100	(red),	200	(blue),	and	300	(green)	mutant	strains	(left)	is	shown.	(B-724	

C)	The	contribution	to	explained	heritability,	as	calculated	in	A,	from	GAL	genes	(red)	or	all	725	

genes	(black)	for	induction	level	(B)	and	induced	fraction	(C).	726	

Figure	4.	Core	cellular	processes	affect	quantitative	traits	727	

(A)	Venn	diagram	showing	the	overlap	between	genes	that	significantly	affect	each	of	our	728	

four	quantitative	traits.	Effect	size	for	the	unfolded	protein	response	and	growth	rate	in	729	

rich	media	was	determined	by	reanalyzing	data	from	Jonikas	et	al.	and	Breslow	et	al.	730	

(Breslow	et	al.,	2008;	Jonikas	et	al.,	2009).	Only	genes	that	were	assayed	for	all	four	traits	731	

are	included	in	the	Venn	diagram.	(B)	Identification	of	gene	ontologies	(GOs)	that	are	732	

significantly	clustered	in	the	4-D	trait	space.	For	each	GO	the	mean	circular	variance	in	the	733	

4-D	trait	space	was	determined	(Methods)	and	plotted	against	the	corresponding	number	734	

of	genes	in	that	GO	(orange	dots	are	significant,	gray	dots	are	not).	To	determine	the	1%	735	

false	discovery	rate	(FDR	<	1%,	black	line),	gene	names	were	permuted	(10000	bootstraps)	736	

before	calculating	the	circular	variance.	GOs	displayed	in	C	and	D	are	shown	as	squares.	(C)	737	

The	average	effect	size	vector	for	each	significant	GO	in	B	projected	into	the	3-D	induced	738	

fraction-induction	level-UPR	response	space.	(D)	Examples	of	GO	with	distinct	spatial	739	

clustering.	The	effect	of	gene	deletion	on	the	unfolded	protein	response	vs.	GAL	induction	740	

level	(top)	and	on	the	GAL	induced	fraction	vs.	GAL	induction	level	(bottom)	was	plotted	741	
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for	all	genes	from	five	different	significant	GOs	from	B	(GO	genes	in	color,	all	other	genes	in	742	

gray).	(Inset)	Average	mutant	vector	of	GO.	743	

Figure	5.	Effects	of	protein	synthesis	perturbation	on	the	phosphate	response	(PHO)	744	

are	distinct	from	the	effects	on	the	galactose	response	(GAL)	745	

(A)	Schematic	of	experiment	to	quantify	the	effects	of	perturbing	protein	synthesis	on	the	746	

PHO	response.	A	PHO84pr-YFP	reporter	was	used	to	quantify	PHO	pathway	activation	in	747	

single	cells.	Protein	synthesis	was	perturbed	by	either	(I)	knocking	out	genes	involved	in	748	

protein	synthesis	or	(II)	treating	our	wild-type	strain	with	a	titration	of	cycloheximide.	(B-749	

D)	The	effects	of	perturbing	protein	synthesis	are	different	between	the	GAL	and	PHO	750	

response.	Perturbation	phenotypes	were	quantified	by:	1)	induced	fraction,	2)	induction	751	

level	and	3)	for	the	PHO	response,	basal	expression	level.	A	set	of	95	strains	each	deleted	752	

for	a	gene	involved	protein	synthesis	(black	dots)	was	assayed	(GAL	in	B;	PHO	in	C	and	D).	753	

Cycloheximide	(chx),	a	protein	synthesis	inhibitor,	was	added	at	11	different	754	

concentrations	to	a	wild-type	strain	(green	dots;	green	arrow	denotes	direction	of	755	

increasing	chx	concentration).	Cycloheximide	has	a	dose-dependent	affect	on	both	the	GAL	756	

and	PHO	response	that	phenocopies	the	effect	of	protein	synthesis	mutants.	(E)	The	757	

expression	distribution	for	two	representative	mutants,	rpl16a∆	and	rpl35b∆	in	(red	dots	in	758	

B-D).	The	GAL1pr-YFP	(top)	and	PHO84pr-YFP	(bottom)	distributions	of	rpl16a∆	and	759	

rpl35b∆	mutants	are	shown	(red),	together	with	the	co-cultured	wild-type	strain	(black).	760	

The	induction	level	metric	is	denoted	(dashed	line).	The	induction	level	is	not	change	in	761	

PHO	(bottom)	while	it	is	in	GAL	(top).	762	
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Figure	6	Effect	size	distribution	estimated	from	gene	deletions	is	informative	for	763	

more	complex	genetic	scenarios	764	

(A)	In	figure	3,	heritability	versus	gene	number	was	estimated	assuming	an	allele	765	

frequency	of	0.5,	exactly	1	SNP	per	gene,	and	the	effect	size	distribution	measured	in	figure	766	

2.	To	simulate	more	complex	biological	scenarios,	we	sampled	allele	frequency	from	a	Beta	767	

distribution,	Beta(fa,	fb);	number	of	SNPs	from	a	Poisson	distribution,	Poisson(λ);	simulated	768	

hypomorphs	by	convolving	the	measured	effect	size	distribution	for	amorphs	with	a	Beta	769	

distribution,	Beta(Sa,	Sb);	and	neomorphs	by	randomly	sampling	from	the	hypomorph	770	

effect	size	distribution.	The	frequency	of	hypomorphs	versus	neomorphs	was	a	constant,	g,	771	

for	each	simulation.	The	extremes	and	middle	of	the	range	of	each	distribution	are	shown	772	

(red,	blue,	and	green)	(B)	Comparison	of	the	number	of	genes	required	to	explain	80%	of	773	

the	heritability	in	the	experimental	and	simulated	data.	Simulate	data	was	generated	by	774	

Latin	hypercube	sampling	of	the	six	parameters	(1000	iterations;	blue	dots).	The	fraction	of	775	

neomorphs	(g)	had	the	largest	affect	on	the	model.	To	examine	the	effect	of	the	rest	of	776	

parameters,	g	was	set	to	5%	(vertical	red	dashed	line),	and	Latin	hypercube	sampling	was	777	

used	was	used	to	scan	the	remaining	five	parameter	space	1000	times	(red	dots).		778	

	779	

Methods	780	

Re-analysis	of	quantitative	screening	that	used	the	yeast	deletion	collection.	Genome-wide	781	

screens	that	used	the	yeast	deletion	collection	(reviewed	in	Giaever	2014)	were	re-analyzed.	782	

After	downloading	available	effect	size	measurements	for	individual	mutants,	the	measurement	783	
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error	of	each	assay	in	Table	S4	was	determined	as	the	standard	deviation	of	the	differences	of	784	

replicate	measurements	for	identical	strains	(see	Supplemental	Information	for	details).	The	785	

effect	sizes	were	compared	to	measurement	noise	distribution,	~N	(0,	measurement	noise),	to	786	

assign	p-values	for	mutants.	False	discovery	rates	(FDR)	were	used	to	correct	for	the	multiple	787	

hypothesis	test	problem.	Significant	mutants	were	defined	as	ones	with	FDR	less	than	0.5%.		788	

Plasmid	and	strain	construction.	We	constructed	a	plasmid	containing	the	GAL1	promoter	789	

driving	YFP	with	a	Zeocin	resistance	marker	all	flanked	by	regions	that	are	homologous	to	the	790	

HO	locus	(A65V).	This	plasmid	was	digested	with	Not1	and	transformed	into	the	parental	SGA	791	

strain	(B56Y,	MATx	ura3∆	leu2∆	his3∆	met15∆	can1∆::ste2pr-spHIS5	lyp1∆::Ste3pr-LEU2	LYS2+	792	

cyh2)(Tong	and	Boone,	2006)	to	construct	a	base	strain	(D62Y),	which	was	used	to	create	both	793	

query	and	reference	strains	used	in	the	GAL	screen.	Query	strains	(library	SLL14)	were	794	

constructed	using	the	SGA	techniques(Tong	and	Boone,	2006)	on	the	deletion	collection	and	795	

base	strain	D62Y.	A	reference	strain	(F59Y)	was	constructed	by	a	second	transformation	with	a	796	

TDH3pr-mCherry	construct.	The	PHO84	promoter	driving	YFP	reporter	(E40B)	was	constructed	797	

using	similar	method	by	using	PHO84pr	PCR-ed	from	FY4	(using	primer	798	

CGTACGCTGCAGGTCGACGGATCCCGTTTTTTTACCGTTTAGTAGACAG	and	799	

TAATTCTTCACCTTTAGACATTTTGTTATTAATTAATTGGATTGTATTCGTGGAGTTTTG)	instead	of	the	800	

GAL1	promoter.	The	resulting	PHO	library	(SLL15)	and	reference	strain	(I32Y)	were	used	in	the	801	

PHO	screen.	802	

Galactose	induction	assay.	Mutant	strains	from	the	deletion	library	that	contains	GAL1pr-YFP	803	

reporter	and	the	corresponding	reference	strain	were	pinned	onto	YEPD	agar	plate	before	804	
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being	inoculated	into	synthetic	complete	2%	raffinose	medium	to	allow	growth	till	saturation.	805	

Mutants	and	the	reference	strain	were	pinned	together	into	150	µl	of	fresh	raffinose	medium	806	

and	grown	for	another	seven	hours,	before	being	inoculated	into	150	ul	of	synthetic	complete	807	

0.2%	glucose	and	0.3%	galactose.	After	induction	for	eight	hours,	10	ul	of	cultures	were	808	

analyzed	by	flow	cytometry	LSRII	with	HTS.	Each	plate	ran	for	~20	minutes	on	the	instrument.	809	

To	ensure	that	all	mutants	underwent	roughly	the	same	induction	time,	no	more	than	four	810	

plates	were	inoculated	at	a	time.	The	induction	level	and	induced	fraction	trait	were	based	on	811	

measurements	from	two	biological	replicates	in	two	separate	days.	Data	were	analyzed	using	a	812	

Matlab	script	(for	representative	raw	data,	see	Figure	S6).	813	

Phosphate	starvation	induction	assay.	Mutant	strains	from	the	library	that	contain	the	814	

PHO84pr-YFP	reporter	and	the	corresponding	reference	strain	were	pinned	on	YEPD	plate	815	

before	being	inoculated	into	synthetic	glucose	medium	(SD).	Mutants	and	the	reference	strain	816	

were	then	co-cultured	in	SD	for	12	hours	before	washing	in	water	twice	and	transferred	into	817	

induction	medium	-	synthetic	glucose	medium	supplemented	with	200	µM	of	K2HPO4.	Medium	818	

recipe	is	from	Wykoff	et	al.	(Wykoff	et	al.,	2007).	Cultures	were	analyzed	by	a	Stratedigm	819	

S1000EX	cytometer	cytometry.	The	three	PHO	traits	were	based	on	measurements	from	two	820	

biological	replicates	in	two	separate	days.	Data	was	analyzed	using	Matlab	scripts.	821	

Fitting	the	effect	size	distribution.	As	the	measured	effects	of	most	strains	are	close	to	822	

measurement	error,	we	first	analyzed	the	effect	size	distribution	of	strains	with	significant	823	

measured	effect	sizes	(FDR<0.5%).	Mutant	effect	sizes	were	binned	and	fitted	to	exponential	824	
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distributions.	The	only	fitting	parameter	is	the	scale	of	the	exponential	distribution,	which	was	825	

estimated	by	maximizing	the	following	log-likelihood	function.	826	

log 𝐿 = 𝑙𝑜𝑔 (𝑃 𝐸𝑆!|𝜃 )
!"#$"%"&'$( !"#"$

	

,	where	𝐸𝑆!  is	the	effect	size	of	the	ith	significant	gene,	and	𝜃	is	the	the	scale	of	the	exponential	827	

distribution.	The	probability	distribution	is	an	exponential	distribution	defined	over	a	range	of	828	

effect	size,	i.e.:	829	

𝑃 𝑥 𝜃 =
1
𝜃 𝑒𝑥𝑝 − 𝑥𝜃 𝑑𝑥!

!!"#

 𝑒𝑥𝑝 (− 𝑥!"#𝜃 )
	

Parameters	that	maximize	the	likelihood	of	measurements	were	used	for	Figure	2.	The	fitted	830	

exponential	distribution	was	extrapolated	into	the	small	effect	size	region	to	estimate	the	831	

number	of	genes	that	are	likely	to	follow	the	distribution.	As	a	parsimonious	model	to	explain	832	

our	effect	size	measurements	for	four	traits,	we	assumed	the	rest	of	mutants	to	have	effect	833	

sizes	as	zero.	Using	this	model,	we	predicted	the	expected	effect	size	measurement	distribution	834	

by	convolving	the	true	effect	size	distribution	with	the	measurement	noise	of	each	assay	(solid	835	

blue	line	in	Figure	2).	This	distribution	was	then	randomly	sampled	in	10,000	simulations	and	836	

the	standard	deviation	of	the	simulation	was	used	as	the	confident	zone	of	our	estimation.	837	

Extrapolate	the	number	of	genes	that	affect	quantitative	traits	to	human	traits.	The	number	838	

of	significant	genes	were	corrected	by	a	factor	determined	by	the	gene	number	ratio	between	839	

known	human	genes	and	screened	yeast	genes.	The	number	of	human	genes	is	estimated	as	840	
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22,500	(Pertea	and	Salzberg,	2010).	The	number	of	screened	yeast	genes	was	determined	as	841	

the	number	of	genes	that	passed	quality	control.	842	

Simulation	of	potential	biases	from	the	study	of	amorphs.	In	our	model,	we	defined	the	843	

explained	heritability	as	the	total	explained	heritability	by	all	SNPs	that	affect	each	gene.	As	844	

described	in	the	main	text,	we	simulated	the	number	of	SNPs	that	affect	each	gene	as	a	Poisson	845	

distribution.	The	allele	frequency	and	relative	effect	size	are	modeled	using	beta	distribution.	846	

Gain-of-function	SNPs	were	modeled	by	re-assigning	effect	sizes	of	a	fraction	of	all	SNPs	by	847	

randomly	sampling	from	the	effect	size	distribution	of	all	SNPs.	In	our	Latin	hypercube	sampling,	848	

parameters	in	the	two	beta	distributions	ranged	from	0.5	to	9,	the	fraction	of	gain-of-function	849	

SNPs	ranged	from	0	to	50%,	and	the	average	number	of	SNP	per	gene	ranged	from	1	to	100.	850	

The	heritability	of	each	SNP	is	modeled	as	2*S2*f*(1-f),	where	S	is	effect	size	and	f	is	allele	851	

frequency.	Measured	knockout	effect	size	on	induced	level	is	used	in	the	model	as	complete	852	

loss-of-function	effects.	The	code	used	for	this	simulation	is	available	at	Dryad.	853	

Gene	Ontology	analysis.	Genes	that	are	significant	for	all	four	traits	(FDR<0.5%)	were	used	as	a	854	

hit	list;	all	the	genes	that	passed	quality	control	were	used	as	a	background	list.	Gene	Ontology	855	

analyses	were	done	using	GO	TermFinder	(Boyle	et	al.,	2004).	856	

Spatial	clustering	algorithm.	Each	gene	was	represented	a	4-dimensional	effect	size	vector	857	

using	the	effect	size	measured	for	each	of	the	four	yeast	traits.	Since	different	traits	have	858	

different	units,	we	normalized	each	dimension	of	the	effect	size	vectors	by	its	scale,	which	is	859	

defined	as	the	root	mean	square	of	the	effect	sizes	of	all	the	genes	that	significantly	affect	that	860	

trait.	For	any	gene	set,	we	determined	the	similarity	of	their	effects	on	four	traits	by	1)	filtering	861	
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out	all	genes	that	are	not	significant	to	any	of	our	traits;	2)	calculate	the	circular	mean	of	the	862	

normalized	effect	size	vectors	(e)	as:	𝑅 = 𝑒
𝑒 ;	3)	calculate	the	circular	deviation	as	863	

𝑉𝑎𝑟 = 1− 𝑅.	To	determine	the	significance	of	this,	we	repeated	the	calculation	10,000	times	864	

after	randomizing	the	gene	names.	Gene	Ontologies	that	have	at	least	five	genes	significant	for	865	

any	of	the	four	traits	were	analyzed	using	the	method	above.	Significantly	clustered	processes	866	

were	defined	as	FDR	<	0.01.		867	

Cycloheximide	effect	on	GAL	and	PHO.	Cycloheximide	was	purchased	from	Sigma	(C7698).	868	

Cycloheximide	was	added	directly	to	the	induction	media	and	this	was	the	only	change	in	the	869	

protocol	from	strains	that	were	not	exposed	to	cycloheximide.	Cells	were	grown	in	a	two-fold	870	

dilution	series	of	cycloheximide	with	the	highest	concentration	of	cycloheximide	being	20	µg/ml.	871	

Cycloheximide	effects	in	Figure	5	were	based	on	at	least	three	biological	replicates.	872	

Data	and	code	Availability.	All	codes	and	raw	data	will	be	made	available	on	Dryad.	873	

	874	

	875	
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Supplemental	figures	and	legends	18	

	19	

Figure	S1.	Determining	modes	of	response	with	principal	component	analysis	(Figure	S1.	20	

Related	to	Figure	2)	21	

After	data	segmentation,	histograms	of	GAL1pr-YFP	for	the	mutant	and	reference	strain	for	22	

each	sample	were	normalized,	concatenated,	and	then	analyzed	using	principal	component	23	

analysis.	(A)	The	fraction	of	variation	explained	by	the	first	ten	principal	components.	(B-C)	24	

Effects	on	GAL1pr-YFP	distribution	by	the	top	two	principal	components.	The	average	GAL1pr-25	

YFP	distribution	of	all	reference	and	mutant	strains	are	concatenated	(gray).	The	principal	26	

component	(blue)	from	the	PCA	analysis	is	the	deviation	from	this	average	profile	due	to	27	

mutant	effects.	The	horizontal	line	y=0	means	no	effects;	i.e.	the	behavior	of	the	wild-type	28	
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strain.	Note	that	the	first	two	principal	components	correspond	to	biological	properties,	i.e.	the	29	

induced	fraction	and	induction	level.	 	30	
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	31	

Figure	S2.	Effect	size	distribution	versus	measurement	noise	for	four	traits	(Figure	S2.	Related	32	

to	Figure	2)	33	

As	many	mutants	have	effect	sizes	that	are	close	to	or	smaller	than	average	measurement	noise,	34	

the	total	number	of	genes	that	affects	each	quantitative	trait	was	estimated	by	comparing	the	35	

measured	effect	size	distribution	(red)	and	measurement	noise	effect	size	distribution	(black).	36	

The	measurement	noise	effect	size	distribution	is	the	distribution	of	measurement	noises	37	

between	all	replicated	samples.	The	total	number	of	genes	that	affect	each	trait	was	estimated	38	

from	the	number	of	genes	in	the	shaded	region.	 	39	
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	40	

Figure	S3.	Reanalysis	of	two	screens	confirms	that	a	large	number	of	genes	quantitatively	41	
affect	yeast	galactose	response	(Figure	S3.	Related	to	Figure	2;	Figure	3)	42	

Data	from	two	deletion	studies	(Breslow	et	al.,	2008;	Jonikas	et	al.,	2009),	one	on	growth	rate	in	43	

rich	medium	and	one	on	the	unfolded	protein	response	(UPR),	were	reanalyzed.	Both	the	effect	44	

size	distribution	(A-B)	and	explained	heritability	(C-D)	were	calculated	as	in	Figure	2	and	3.	Fit	of	45	

the	significant	genes	to	an	exponential	(dashed	line)	has	an	R^2	of	0.91	for	growth	rate	(A)	and	46	

0.94	for	UPR	(B).	The	fit	of	the	full	data	to	an	exponential	plus	noise	had	an	R^2	of	9.2	(A)	and	47	

0.95	(B).	(C-D)	The	contribution	to	explained	heritability,	as	calculated	in	3A,	from	UPR	genes	48	

(red)	or	all	genes	(black)	for	growth	rate	in	rich	media	(C)	and	UPR	(D).	 	49	
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		50	

Figure	S4.	Affecting	growth	rate	is	not	the	sole	mechanism	for	significant	mutants	to	affect	51	

yeast	GAL	response	and	unfolded	protein	response	(Figure	S4.	Related	to	Figure	4)	52	

(A)	Two	alternative	models	of	how	quantitative	traits	can	be	affected	by	gene	deletion.	In	the	53	

growth	rate-dependent	model	(left),	mutants	affect	growth	rate	that	in	turn	affects	other	traits.	54	

In	the	growth	rate-independent	model	(right),	mutants	directly	affect	quantitative	traits	55	

including	growth	rate.	These	two	models	can	be	distinguished	by	determining	whether	mutant	56	

effects	on	growth	rate	and	other	traits	are	correlated.	(B-D)	Mutant	phenotypes	for	the	57	

unfolded	protein	response	(B),	GAL	induced	fraction	(C)	and	GAL	induction	level	(D)	are	plotted	58	

against	the	growth	rate	data	reported	by	Breslow	et	al.	Mutants	were	segmented	into	four	59	

quadrants	based	on	whether	the	mutant	had	a	significant	effect	(based	on	0.5%	FDR	cut-off)	on	60	

growth	rate	and	non-growth	rate	trait:	growth	rate	(blue),	other	non-growth	rate	trait	(green),	61	
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both	(red),	neither	(gray).	A	linear	fit	of	the	points	that	are	significant	for	both	traits	(red)	is	62	

plotted	(orange	line).		 	63	
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	64	

Figure	S5.	The	difference	of	effects	on	GAL	and	PHO	response	by	deleting	genes	involved	in	65	

protein	synthesis	(Figure	S5.	Related	to	Figure	5)	66	

For	each	of	the	95	mutants	we	tested	that	are	involved	in	protein	synthesis,	the	mutant	effects	67	

on	the	induction	level	were	quantified	for	the	PHO	(blue)	and	GAL	(red)	responses.	The	effect	68	

size	distribution	was	smoothened	with	kernel	smoothing	with	a	bandwidth	of	0.05.	The	two	69	

distributions	are	extremely	unlike	to	have	results	from	noise	in	a	single	distribution	(p-value	70	

3*10-10,	two-tailed	t-test).	The	magnitude	of	the	average	difference	in	effect	size	between	the	71	

two	distributions	is	3	fold.		72	

	73	
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	74	

Figure	S6.	Data	segmentation	example	(Figure	S6.	Related	to	Figure	2)	75	

An	example	is	shown	here	using	data	from	the	first	replicate	sample	for	mutant	yal068c∆.	Cell	76	

debris	is	filtered	from	the	raw	data	using	a	FSC/SSC	gate,	and	the	mCherry	vs.	YFP	values	of	77	

remaining	events	are	plotted.	Data	is	segmented	on	the	mCherry	channel	to	separate	reference	78	

and	mutant	strain,	and	on	the	YFP	channel	to	separate	the	induced	cells	and	uninduced	cells.	79	

The	horizontal	and	vertical	dashed	lines	show	the	threshold	used	for	segmentation.	80	
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Supplemental	tables	and	legends	82	

Table	S1.	Enriched	Gene	Ontology	for	genes	that	significantly	affect	all	four	yeast	traits	(Table	83	

S1.	Relates	to	Figure	4)	84	

GO	TermFinder	(Boyle	et	al.,	2004)	was	used	to	analyze	GO	enrichment.	The	p-values	are	85	

corrected	for	multiple	hypotheses.	Significant	GOs	are	defined	by	the	ones	with	corrected	p-86	

value	less	than	0.01.	87	

GO	ID	 GO	Term	 Corrected	P-
Value	

GO:0010467	 gene	expression	 9.1E-21	

GO:0016070	 RNA	metabolic	process	 2.1E-15	

GO:0034641	 cellular	nitrogen	compound	metabolic	process	 2.8E-14	

GO:0006807	 nitrogen	compound	metabolic	process	 2.4E-13	

GO:0090304	 nucleic	acid	metabolic	process	 5.8E-13	

GO:0044260	 cellular	macromolecule	metabolic	process	 1.6E-12	

GO:0044271	 cellular	nitrogen	compound	biosynthetic	process	 2.2E-12	

GO:0043170	 macromolecule	metabolic	process	 9.1E-12	

GO:0034645	 cellular	macromolecule	biosynthetic	process	 1.2E-10	

GO:0009059	 macromolecule	biosynthetic	process	 1.8E-10	

GO:0006139	 nucleobase-containing	compound	metabolic	process	 4.2E-10	

GO:0043933	 macromolecular	complex	subunit	organization	 2.3E-09	

GO:0046483	 heterocycle	metabolic	process	 3.1E-09	

GO:0006725	 cellular	aromatic	compound	metabolic	process	 4.2E-09	

GO:1901360	 organic	cyclic	compound	metabolic	process	 1.4E-08	

GO:0044238	 primary	metabolic	process	 2.7E-08	

GO:0006396	 RNA	processing	 1.2E-07	

GO:0044237	 cellular	metabolic	process	 1.2E-07	

GO:0044249	 cellular	biosynthetic	process	 3.1E-07	

GO:0002181	 cytoplasmic	translation	 3.5E-07	

GO:0006355	 regulation	of	transcription,	DNA-templated	 3.8E-07	

GO:1903506	 regulation	of	nucleic	acid-templated	transcription	 3.8E-07	

GO:2001141	 regulation	of	RNA	biosynthetic	process	 3.8E-07	

GO:0071824	 protein-DNA	complex	subunit	organization	 4.1E-07	
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GO:0010468	 regulation	of	gene	expression	 5.8E-07	

GO:0044267	 cellular	protein	metabolic	process	 6.7E-07	

GO:0051252	 regulation	of	RNA	metabolic	process	 7.2E-07	

GO:1901576	 organic	substance	biosynthetic	process	 8.1E-07	

GO:0006351	 transcription,	DNA-templated	 8.8E-07	

GO:0032774	 RNA	biosynthetic	process	 8.8E-07	

GO:0097659	 nucleic	acid-templated	transcription	 8.8E-07	

GO:2000112	 regulation	of	cellular	macromolecule	biosynthetic	process	 1.2E-06	

GO:0071704	 organic	substance	metabolic	process	 1.3E-06	

GO:0010556	 regulation	of	macromolecule	biosynthetic	process	 1.7E-06	

GO:0019219	 regulation	of	nucleobase-containing	compound	metabolic	process	 2.0E-06	

GO:0009058	 biosynthetic	process	 2.0E-06	

GO:0019538	 protein	metabolic	process	 2.1E-06	

GO:0031326	 regulation	of	cellular	biosynthetic	process	 4.3E-06	

GO:0009889	 regulation	of	biosynthetic	process	 5.1E-06	

GO:0022613	 ribonucleoprotein	complex	biogenesis	 6.2E-06	

GO:0034654	 nucleobase-containing	compound	biosynthetic	process	 7.4E-06	

GO:0051171	 regulation	of	nitrogen	compound	metabolic	process	 8.4E-06	

GO:0006325	 chromatin	organization	 9.1E-06	

GO:0008152	 metabolic	process	 1.3E-05	

GO:0006412	 translation	 1.3E-05	

GO:0060255	 regulation	of	macromolecule	metabolic	process	 1.8E-05	

GO:0043043	 peptide	biosynthetic	process	 1.8E-05	

GO:0018130	 heterocycle	biosynthetic	process	 2.8E-05	

GO:0034728	 nucleosome	organization	 3.3E-05	

GO:0043604	 amide	biosynthetic	process	 3.9E-05	

GO:0034660	 ncRNA	metabolic	process	 3.9E-05	

GO:0019438	 aromatic	compound	biosynthetic	process	 4.0E-05	

GO:0019222	 regulation	of	metabolic	process	 6.8E-05	

GO:0034622	 cellular	macromolecular	complex	assembly	 6.9E-05	

GO:0080090	 regulation	of	primary	metabolic	process	 8.8E-05	

GO:1901362	 organic	cyclic	compound	biosynthetic	process	 9.1E-05	

GO:0034470	 ncRNA	processing	 9.3E-05	

GO:0016568	 chromatin	modification	 1.0E-04	

GO:0042254	 ribosome	biogenesis	 1.1E-04	

GO:0051276	 chromosome	organization	 1.1E-04	

GO:0006364	 rRNA	processing	 1.2E-04	

GO:0031323	 regulation	of	cellular	metabolic	process	 1.3E-04	

GO:0043486	 histone	exchange	 1.3E-04	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2017. ; https://doi.org/10.1101/126409doi: bioRxiv preprint 

https://doi.org/10.1101/126409
http://creativecommons.org/licenses/by-nc-nd/4.0/


GO:0006518	 peptide	metabolic	process	 1.4E-04	

GO:0071840	 cellular	component	organization	or	biogenesis	 2.4E-04	

GO:0030490	 maturation	of	SSU-rRNA	 3.5E-04	

GO:0016072	 rRNA	metabolic	process	 4.7E-04	

GO:0071822	 protein	complex	subunit	organization	 4.8E-04	

GO:0043603	 cellular	amide	metabolic	process	 7.3E-04	

GO:0065003	 macromolecular	complex	assembly	 1.1E-03	

GO:0044085	 cellular	component	biogenesis	 1.1E-03	

GO:0043044	 ATP-dependent	chromatin	remodeling	 1.3E-03	

GO:0010629	 negative	regulation	of	gene	expression	 1.7E-03	

GO:0045892	 negative	regulation	of	transcription,	DNA-templated	 2.0E-03	

GO:0051253	 negative	regulation	of	RNA	metabolic	process	 2.0E-03	

GO:1902679	 negative	regulation	of	RNA	biosynthetic	process	 2.0E-03	

GO:1903507	 negative	regulation	of	nucleic	acid-templated	transcription	 2.0E-03	

GO:0000462	 maturation	of	SSU-rRNA	from	tricistronic	rRNA	transcript	(SSU-rRNA,	5.8S	rRNA,	
LSU-rRNA)	 2.1E-03	

GO:0006338	 chromatin	remodeling	 3.7E-03	

GO:0042274	 ribosomal	small	subunit	biogenesis	 3.8E-03	

GO:0010558	 negative	regulation	of	macromolecule	biosynthetic	process	 4.0E-03	

GO:2000113	 negative	regulation	of	cellular	macromolecule	biosynthetic	process	 4.0E-03	

GO:0016569	 covalent	chromatin	modification	 5.0E-03	

GO:0016570	 histone	modification	 5.0E-03	

GO:0006357	 regulation	of	transcription	from	RNA	polymerase	II	promoter	 5.7E-03	

GO:0051172	 negative	regulation	of	nitrogen	compound	metabolic	process	 8.8E-03	

GO:0031327	 negative	regulation	of	cellular	biosynthetic	process	 9.4E-03	

GO:0045934	 negative	regulation	of	nucleobase-containing	compound	metabolic	process	 9.6E-03	

	88	
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Table	S2.	The	number	of	genes	that	affect	growth	rate	and	each	of	the	three	non-growth	90	
traits	(Table	S2.	Relates	to	Figure	4)	91	

Genes	that	significantly	affect	the	unfolded	protein	response,	induced	fraction	(GAL),	and	92	

induction	level	(GAL)	were	compared	to	the	genes	that	significantly	affect	growth	rate.	The	93	

total	number	of	genes	that	were	measured	in	both	growth	rate	and	the	other	trait	is	listed.	Of	94	

this	total	number,	the	number	that	significantly	affected	growth	rate,	significantly	affected	the	95	

non-growth	rate	trait,	and	significantly	affected	both	traits	is	listed.	96	

	
No.	genes	also	

assayed	in	growth	
rate	screen	

No.	genes	
significantly	affect	

growth	rates	

No.	genes	
significantly	affect	
the	non-growth	rate	

trait	

No.	genes	
significantly	affect	

both	

Unfolded	protein	
response	 4152	 779	 594	 369	

Induced	fraction	
(GAL)	 3869	 634	 595	 254	

Induction	level	(GAL)	 3869	 634	 744	 316	
	 	97	
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Table	S3.	Significantly	spatially	clustered	Gene	Ontology	(Table	S3.	Relates	to	Figure	4)	98	

For	each	Gene	Ontology	that	is	spatially	clustered,	the	direction	in	the	four-trait	space	is	shown,	99	

as	well	as	the	p-value	and	false	discovery	rate	(FDR).	Significant	GOs	were	defined	by	FDR	<	0.01.	100	

	101	

Table	S4.	Quantitative	screens	that	are	analyzed	for	gene	effect	size	distribution	(Table	S3.	102	
Relates	to	Figure	2)	103	

We	manually	scanned	over	200	published	deletion	library	screens	to	identify	datasets	that	104	

could	be	reanalyzed	to	potentially	determine	an	effect	size	distribution.	Of	these	200	papers,	105	

we	found	only	6	that	contained	datasets	in	a	form	that	was	suitable	for	our	reanalysis.	106	

First	author,	
publication	

year	
Trait	

#	
Gene
s	

Source	of	
published	data	

Reference	

Breslow,	2008	 Growth	
rate	 4204	 Supplementary	

table	S5	

Breslow,	D.	K.	et	al.	A	comprehensive	strategy	
enabling	high-resolution	functional	analysis	of	the	
yeast	genome.	Nat.	Methods	5,	711–718	(2008).	

Schluter,	2008	
Endosomal	
protein	
sorting	

4814	
Supplementary	

table	1	

Schluter,	C.	et	al.	Global	analysis	of	yeast	endosomal	
transport	identifies	the	vps55/68	sorting	complex.	

Mol.	Biol.	Cell	19,	1282–1294	(2008).	

Vizeacoumar,	
2010	

Spindle	
morphogen

esis	
4286	

Supplementary	
table	S6	

Vizeacoumar,	F.	J.	et	al.	Integrating	high-throughput	
genetic	interaction	mapping	and	high-content	

screening	to	explore	yeast	spindle	morphogenesis.	J.	
Cell	Biol.	188,	69–81	(2010).	

Cooper,	2010	
Amino	acid	

level	 4382	
Supplementary	

table	4	

Cooper,	S.	J.	et	al.	High-throughput	profiling	of	amino	
acids	in	strains	of	the	Saccharomyces	cerevisiae	
deletion	collection.	Genome	Res.	20,	1288–1296	

(2010).	

Jonikas,	2009	
Unfolded	
protein	
response	

4563	 Supplementary	
table	1	

Jonikas,	M.	C.	et	al.	Comprehensive	characterization	
of	genes	required	for	protein	folding	in	the	

endoplasmic	reticulum.	Science	323,	1693–1697	
(2009).	

Hillenmeyer,	
2008	

Chemical	
genomic	
profile	

5337	

http://chemoge
nomics.stanfor
d.edu/supplem
ents/global/do
wnload.html	

Hillenmeyer,	M.	E.	et	al.	The	chemical	genomic	
portrait	of	yeast:	uncovering	a	phenotype	for	all	

genes.	Science	320,	362–365	(2008).	

	107	
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Supplemental	Text	109	

Re-analysis	of	previous	quantitative	screening	using	yeast	deletion	collections	110	

Since	the	release	of	the	yeast	deletion	collection,	a	large	number	of	studies	have	been	111	

performed	(Giaever	and	Nislow,	2014)	potentially	providing	a	rich	source	to	understand	the	112	

quantitative	effects	of	gene	deletions	on	traits.	Unfortunately,	the	raw	data	was	not	published	113	

and	readily	available	for	all	but	a	small	handful	of	these	studies	(Table	S4).	114	

Data	from	each	screen	in	the	Table	S4	was	analyzed	using	the	following	method:	1)	download	115	

raw	data;	2)	determine	the	measurement	error;	3)	calculate	p	value	for	each	gene	by	116	

comparing	effect	size	measurement	to	measurement	error	(two-tailed	t-test,	assuming	117	

measurement	error	is	Gaussian	distributed);	4)	correct	the	p	values	for	multiple	hypothesis	118	

tests	by	calculating	false	discovery	rate;	5)	identify	the	number	of	significant	genes	as	ones	with	119	

FDR<0.5%.	120	

The	measurement	error	for	individual	assays	were	determined	as	below.	We	assume	that	the	121	

true	effects	of	deleting	the	𝑖!!	gene	is	𝑥!.	The	two	independent	measurements,	𝑥!,! = 𝑥! + 𝜖!,! 	122	

for	𝑗 = 1,2,	where	Ɛ	is	the	measurement	noise	term.	Assuming	that	measurement	noise	follows	123	

a	Gaussian	distribution,	i.e.	𝜖!,!~𝑁(0,𝜎).	The	difference	of	the	two	measurements	on	the	124	

identical	strain	will	reveal	information	about	the	standard	deviation	of	measurement	noise.	125	

Specifically,	since		126	

𝑥!,! − 𝑥!,!~𝑁(0, 2𝜎)	
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we	can	derive	the	following	estimate	of	the	standard	deviation	of	measurement	noise:	127	

𝜎 =
∑ 𝑥!,! − 𝑥!,! !

2 ∗ (𝑁!"#" − 1)
	

This	method	was	applied	to	the	raw	data	from	the	six	assays	in	Table	S4.	Breslow	et	al.	had	128	

different	number	of	replicates	(Breslow	et	al.,	2008),	and	hence	the	measurement	error	for	the	129	

individual	mutants	varied	depending	on	the	number	of	replicates.	Specifically,	among	4204	130	

assayed	genes,	2809	genes	have	one	measurement,	874	genes	have	two	replicates	and	521	131	

genes	have	at	least	three	replicates.	To	avoid	this	complication,	we	only	used	the	data	from	the	132	

first	measurements	and	used	the	remaining	data	to	estimate	the	measurement	error.	We	first	133	

estimated	the	measurement	error	by	applying	the	equation	above	to	the	replicate	134	

measurements	of	874	strains	with	two	measurements	and	determined	measurement	error	as	135	

0.015.	Then	we	calculate	the	measurement	error	the	521	strains	for	which	three	measurements	136	

had	been	made.	This	yielded	a	measurement	error	of	0.017.	As	these	two	estimations	are	close,	137	

we	use	the	average	(0.016)	as	the	measurement	error	for	the	assay.	We	observed	that	the	138	

measurement	noise	tends	to	be	larger	for	strains	with	large	effect	size,	which	means	that	most	139	

strains	with	moderate	effect	sizes	probably	have	smaller	than	estimated	measurement	error.	140	

Hence,	we	do	not	believe	that	this	method	will	overestimate	the	number	of	genes	affecting	the	141	

growth	rate	trait.	142	

Similarly,	mutants	in	Jonikas	et	al.	had	different	numbers	of	replicates	(Jonikas	et	al.,	2009).	143	

Measurement	noise	decreased	as	the	number	of	replicate	increased.	As	a	conservative	144	

estimate	of	effect	size	measurements,	we	treated	all	measurements	as	if	they	had	only	two	145	
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replicate	data.	To	estimate	the	measurement	error,	we	used	the	data	from	541	strains	with	146	

exactly	two	replicate	data.	In	the	original	paper,	the	standard	deviation	of	measurements	for	147	

each	strain	was	reported.	Since	there	were	only	two	measurements	for	these	strains,	the	148	

standard	deviation	equals	the	half	of	the	difference	between	two	measurements.	Assuming	149	

that	measurement	noise	of	each	replicate	data	followed	𝑁 (0,𝜎),	the	expectation	of	the	half	of	150	

the	difference	of	two	independent	measurements	is	𝜎/√𝜋.	When	plotting	the	histogram	of	this	151	

data,	we	found	that	a	number	of	measurement	have	exceptionally	large	measurement	error,	152	

which	artificially	increased	our	estimation.	After	removing	strains	with	measurement	error	153	

larger	than	0.5,	the	resulting	measurement	standard	deviation	has	an	average	as	0.0678.	Hence,	154	

we	estimated	the	measurement	noise	as	 !
!
= 0.0678 ∗ !

!
= 0.085.	155	

Mutants	in	Schluter	et	al.	were	assayed	in	replicates	for	both	haploid	and	diploid	156	

strains(Schluter	et	al.,	2008).	We	applied	the	equation	above	to	this	data	and	determined	that	157	

the	measurement	error	was	0.027	for	the	MATa,	haploids,	0.021	for	the	MATalpha	haploids,	158	

and	0.042	for	diploids.	We	used	the	average	of	these	three	to	estimate	measurement	error	159	

(0.030).	Vizeacoumar	et	al.	provided	p	values	for	each	mutants	in	the	assay	(Vizeacoumar	et	al.,	160	

2010).	We	convert	the	p	value	back	to	a	z-score	using	Matlab	function	norminv().	While	Copper	161	

et	al.	published	raw	data,	they	did	so	for	only	one	replicate	and	hence	we	did	not	proceed	with	162	

further	analysis	on	this	data	set	(Cooper	et	al.,	2010).	163	

Furthermore,	we	analyzed	the	raw	data	from	Hillenmeyer	by	comparing	the	measured	effect	164	

sizes	in	independent	experiments	using	the	same	condition	(drug	name,	dosage	and	the	165	

duration	to	apply	the	drug)	in	separate	batches	(Hillenmeyer	et	al.,	2008).	We	found	a	large	166	
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variation	of	the	reproducibility	between	these	replicates,	determined	as	the	pair-wise	Pearson	167	

correlation	coefficient	(ranging	from	-0.2	to	0.99	with	a	median	of	0.36	depending	on	the	168	

condition	used).	Hence	we	did	not	analyze	the	data	further	more.	169	

To	evaluate	the	number	of	gene	deletions	that	significantly	affected	each	of	the	quantitative	170	

trait,	we	first	considered	a	null	model	where	all	gene	deletions	had	no	effects	on	the	assayed	171	

traits.	We	expected	the	measured	effect	sizes	to	follow	a	normal	distribution	determined	by	172	

measurement	noise,	i.e.	~𝑁(0,measurement noise).	However,	we	found	this	was	not	the	case	173	

for	all	the	traits	that	we	analyzed.	To	better	illustrate	this,	we	re-scaled	the	effect	sizes	by	174	

measurement	error	for	each	trait,	and	plotted	the	histograms	of	the	re-scaled	effect	sizes	for	175	

the	gene	deletions	that	have	effect	sizes	at	least	3-fold	of	the	estimated	measurement	noise	in	176	

Figure	S2.	We	found	the	distributions	were	continuous.	Note	that	only	about	(1-177	

99.7%)*5000=15	genes	were	expected	from	the	noise	distribution.	This	suggests	that	the	178	

measured	effects	of	most	of	the	plotted	genes	were	not	from	the	measurement	noise.	Note	179	

that	the	data	from	Vizeacoumar	was	not	shown	here	as	the	majority	of	genes	have	effects	that	180	

are	within	three-fold	of	measurement	noise.	181	

To	identify	assays	that	are	sensitive	enough	the	measure	the	effect	sizes	of	as	many	genes	as	182	

possible.	We	estimated	the	number	of	genes	that	significantly	affect	each	of	the	analyzed	traits	183	

by	comparing	the	measured	effect	sizes	to	measurement	noise.	Using	a	cutoff	of	FDR	<	0.5%,	184	

we	determined	that	two	screens	by	Jonikas	et	al.	and	Breslow	et	al.	are	suitable	for	effect	size	185	

distribution	analysis	as	they	have	smallest	measurement	errors.	186	

Flow	cytometry	data	processing	187	
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Raw	data	was	exported	from	an	LSRII	or	Stratedigm	in	fcs3.0	file	format.	All	data	was	loaded	188	

using	customized	MATLAB	code.	In	briefly,	data	from	each	sample	was	first	filtered	on	FSC/SSC	189	

channel	to	remove	cell	debris,	and	on	SSC	channel	to	normalize	for	cell	size.	The	FSC/SSC	gates	190	

were	drawn	manually	on	pooled	samples.	The	SSC	gate	was	determined	to	include	events	191	

between	the	25th	to	75th	percentiles	of	the	pooled	sample.	Pooled	samples	were	also	used	to	192	

find	thresholds	on	YFP	and	mCherry	channels	to	segment	induced	vs.	uninduced	cells,	and	193	

reference	vs.	mutant	cells	(Figure	S6	as	an	example).	Mutants	were	filtered	to	ensure	that	there	194	

are	at	least	700	events	for	both	reference	and	mutant	cells	in	at	least	one	biological	replicates.	195	

Mutants	in	twelve	plates	in	replicate	one	of	the	GAL	screen	have	higher	induced	fraction	than	196	

the	reference	strain	in	the	same	sample.	Data	from	the	second	replicate	were	used	for	these	197	

mutants	in	the	future	analysis.	For	the	PHO	screen,	we	calculated	the	standard	deviation	of	the	198	

effect	size	differences	between	two	replicates	for	each	of	the	three	traits.	The	effect	size	199	

measurements	for	fourteen	mutants	are	greater	than	five-fold	of	these	standard	deviations.	200	

These	strains	were	filtered	from	future	analysis.	201	

Principal	component	analysis	on	reporter	expression	distribution	of	the	entire	deletion	202	

collection	203	

Yeast	responds	to	a	mixture	of	glucose	and	galactose	in	a	bimodal	way.	We	measured	204	

expression	level	of	GAL1pr-YFP	in	single	cells	for	each	of	the	mutant	strain	in	the	deletion	205	

collection.	We	generally	observed	that	the	reproducibility	was	higher	when	normalizing	the	206	

distribution	by	comparing	the	mutant	distribution	to	the	reference	distribution	in	the	same	well	207	
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(see	the	section	Data	Normalization	for	details);	as	opposed	to	analyzing	the	mutant	data	208	

directly.	This	is	presumably	due	to	slight	variation	between	wells,	plates,	and	days.		209	

To	find	appropriate	metric	by	which	to	analyze	the	mutant	strains,	we	performed	PCA	analysis.	210	

We	did	this	by	pooling	reference	and	mutant	YFP	distribution	from	two	replicates.	After	data	211	

segmentation,	the	GAL1pr-YFP	distributions	of	both	reference	strain	and	mutant	strain	were	212	

binned	into	92	equally	size	log2	bins	ranging	from	the	maximum	to	minimum	value.	Data	was	213	

normalized	to	probability	distribution,	separately	for	reference	strain	and	mutant	strain	in	each	214	

sample.	PCA	results	were	shown	in	Figure	S1.	The	first	three	principle	components	explain	~	60%	215	

variation.	By	manually	examining	the	shape	of	each	principle	component,	we	could	provide	a	216	

plausible	biological	explanation	for	the	major	components.	The	first	vector	affects	the	induced	217	

fraction	without	affecting	the	expression	level.	The	second	vector	has	two	effects,	shifting	the	218	

expression	level	of	induced	cells	as	well	as	changing	the	fraction	of	induced	cells.	The	third	219	

vector	change	the	expression	level	of	both	uninduced	cells	(basal	level)	and	induced	cells.	In	220	

further	analysis,	we	found	that	the	expression	level	of	uninduced	cells	could	not	be	accurately	221	

determined	for	the	majority	of	strains	in	our	assay	for	GAL1pr-YFP	reporter,	and	hence	only	the	222	

induced	fraction	and	the	induction	level	are	used	in	the	main	text.	This	third	metric	was	used	223	

for	analysis	of	the	PHO	response.	224	

Data	normalization	225	

The	induced	fraction	and	induction	level	traits	were	calculated	for	each	mutant	strain	using	the	226	

following	method.	First,	the	induced	fraction	and	induction	level	were	calculated	for	reference	227	

strains	and	query	strain	in	each	sample.	The	induced	fraction	was	calculated	as	the	ratio	of	the	228	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2017. ; https://doi.org/10.1101/126409doi: bioRxiv preprint 

https://doi.org/10.1101/126409
http://creativecommons.org/licenses/by-nc-nd/4.0/


number	of	induced	events	over	the	number	of	all	events.	The	induction	level	was	calculated	as	229	

the	average	level	of	YFP	of	the	induced	cells.	For	both	traits,	the	mutant	value	was	regressed	230	

against	the	reference	value	using	the	Matlab	function	robustfit().	The	residual	of	each	231	

measurement	from	the	fit	was	averaged	between	two	replicates	to	determine	the	final	values	232	

of	the	induced	fraction	and	the	induction	level.	233	

Estimate	the	number	of	genes	that	affect	yeast	quantitative	traits	234	

The	noise	distribution	determined	from	measurement	noise	estimation	was	overlaid	with	the	235	

actual	effect	size	measurements.	Both	curves	were	normalized	to	the	total	number	of	genes.	236	

The	area	of	the	region	where	the	actual	effect	size	distribution	was	outside	the	measurement	237	

noise	distribution	was	determined	for	estimating	the	number	of	genes	that	affected	each	of	the	238	

four	yeast	traits	(Figure	S2).		239	

Compare	the	number	of	detected	mutants	by	using	induced	fraction	and	induction	level	vs.	240	

average	expression	level	241	

Our	screening	data	on	the	yeast	galactose	response	provided	a	test	for	estimating	the	total	242	

number	of	significant	mutants	using	different	metrics.	This	is	interesting	as	many	biological	243	

traits	could	usually	be	defined	in	different	ways,	yet	it	was	unclear	to	our	knowledge	how	much	244	

potentially	subtle	differences	in	metric	could	influence	genes	identified.	Here	when	we	are	245	

referring	to	different	metrics	it	is	probably	easiest	to	think	of	them	as	different	sub	246	

measurements.	For	example,	if	one	measured	standing	height	as	opposed	to	sitting	height,	247	

would	one	uncover	different	sets	of	genes.	In	our	case,	the	effect	of	gene	deletion	on	galactose	248	
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response	can	be	represented	as	the	two	GAL	traits	as	used	in	the	main	text,	or	alternatively	we	249	

could	simply	use	the	average	YFP	level	as	used	in	Jonikas	et	al	(Jonikas	et	al.,	2009).	To	estimate	250	

such	effects,	we	re-analyzed	our	data	by	quantifying	not	just	the	two	GAL	traits,	but	also	the	251	

average	YFP	level.	After	applying	the	same	method	to	detect	mutants	that	significantly	affect	252	

yeast	GAL	response,	we	found	that	the	two-traits	method	detected	more	mutants	(1104)	than	253	

the	average	YFP	method	(593).	In	addition,	the	one-trait	method	could	not	reveal	the	distinct	254	

modes	by	which	different	mutants	worked;	i.e.	50%	reduction	in	average	can	come	because	50%	255	

of	cells	don't	induce	or	100%	of	cells	are	50%	less	induced.	Hence	our	data	suggested	that,	256	

biological	meaningful	decomposition	of	a	complex	trait	will	increase	detection	sensitivity,	and	257	

provides	new	biology	insights	to	understand	traits.		258	

Genes	that	saturated	our	assay	259	

Our	GAL	assay	was	designed	to	detect	genes	of	small	effect	size,	and	as	a	result,	ten	genes	of	260	

larger	effect	size	saturated	our	assay.	These	genes	were	manually	verified	by	inspecting	the	YFP	261	

distribution	of	the	raw	data.	These	genes	are:	GAL4	(YPL248C),	GCN4	(YEL009C),	GAL80	262	

(YML051W),	GAL1	(YBR020W),	SNF3	(YDL194W),	STI1	(YOR027W),	REG1	(YDR028C),	GAL3	263	

(YDR009W),	SNF2	(YOR290C),	HSC82	(YMR186W).	This	is	important	when	calculating	the	264	

explained	heritability	for	top	N	genes	(see	main	text).	One	of	our	main	arguments	is	that	the	265	

number	of	genes	that	affect	a	quantitative	trait	is	around	8%	of	the	genome.	If	the	true	effects	266	

of	these	ten	genes	is	much	larger	than	what	we	estimated,	the	number	of	genes	that	affect	a	267	

quantitative	trait	could	be	smaller.	268	
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When	using	the	nominal	values	of	the	measurements	as	effect	sizes	of	these	genes,	we	269	

determined	that	the	total	contribution	of	these	genes	are	25.2%	and	7.5%	for	induction	level	270	

and	induced	fraction	respectively.	As	another	way	to	estimate	the	effect	sizes	of	these	genes,	271	

we	randomly	sampled	the	effect	size	distribution.	The	average	contribution	of	these	genes	is	272	

27.8%	and	10.5%	respectively,	suggesting	that	this	alternate	method	does	not	strongly	affect	273	

conclusion.	274	

Overlapping	among	genes	that	are	significant	for	each	of	the	four	studied	traits	275	

We	examined	the	overlap	between	significant	genes	that	affect	growth	rate	and	ones	that	276	

affect	each	of	the	three	other	non-growth	traits.	To	do	so,	genes	with	missing	data	in	one	of	the	277	

data	sets	were	removed.	The	result	is	in	Table	S2.	The	p-value	was	calculated	between	each	278	

pair	of	growth	rate	and	non-growth	rate	trait,	using	a	hypergeometric	test	(one-tailed).		279	

Compare	the	effects	on	GAL	and	PHO	response	by	deleting	genes	involved	in	protein	280	

synthesis	281	

For	95	genes	involved	in	protein	synthesis,	we	compared	their	effects	on	GAL	and	PHO	traits	in	282	

the	main	text	and	Figure	S5	using	t-test	(two-tailed).	The	average	difference	between	the	283	

effects	on	GAL	and	PHO	is	0.15.	The	standard	deviations	of	effects	on	GAL	and	PHO	are	0.21	284	

and	0.10.	As	an	alternative	method	to	test	for	significance,	we	pooled	the	measured	effects	on	285	

GAL	and	PHO	response	and	randomly	split	the	pooled	data	into	two	groups	for	1,000,000	times	286	

and	calculated	the	difference	between	two	groups.	The	observed	difference	(0.15)	is	not	287	

observed	in	the	randomized	sample.	Hence	we	determined	that	p	<	10-6	using	this	method.	288	
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Canonical	genes	involved	in	galactose	signaling	and	unfolded	protein	response	289	

Glu/Gal	gene	list:	GPB2,	IRA1,	TOS1,	GLK1,	GPA2,	GAL83,	SAK1,	GLC7,	YCK1,	BCY1,	RGT1,	ELM1,	290	

TPK3,	HXK1,	GPR1,	RGT2,	SNF3,	REG1,	MTH1,	MSN5,	SIP1,	SNF1,	MIG1,	SNF4,	SIP2,	PDE1,	HXK2,	291	

CYR1,	TPK1,	GRR1,	SDC25,	CDC25,	SIP5,	RAS2,	YCK2,	IRA2,	STD1,	RAS1,	RGS2,	PDE2,	GPB1,	TPK2,	292	

GAL1,	GAL3,	GAL80,	GAL4,	SNF2,	GCN4,	HSC82,	STI1	293	

Gene	localized	in	ER,	Golgi,	and	early	Golgi	are	(298	genes):	YEL031W,	YJR117W,	YFL025C,	294	

YJL062W,	YML012W,	YAL023C,	YJR118C,	YML055W,	YML013W,	YOR002W,	YGL084C,	YCR044C,	295	

YER122C,	YNL219C,	YNR030W,	YDL095W,	YML115C,	YGL020C,	YGL054C,	YIL039W,	YEL036C,	296	

YPL227C,	YOL013C,	YMR022W,	YMR161W,	YKL212W,	YDL192W,	YLR110C,	YGL167C,	YMR264W,	297	

YAL058W,	YER083C,	YDR027C,	YLR372W,	YCR094W,	YLR268W,	YNL238W,	YMR307W,	YJL029C,	298	

YBR171W,	YDL100C,	YGL226C-A,	YBR106W,	YJR073C,	YNL322C,	YGR229C,	YGR284C,	YJR010C-A,	299	

YML128C,	YFR041C,	YNL323W,	YEL042W,	YMR123W,	YBR015C,	YJR075W,	YBR162W-A,	300	

YCR067C,	YJL004C,	YCR017C,	YAL026C,	YOR216C,	YIL090W,	YAL007C,	YNL041C,	YJL123C,	301	

YIL040W,	YBR164C,	YCL045C,	YNL051W,	YIR004W,	YPL050C,	YPL051W,	YGL126W,	YCR034W,	302	

YMR292W,	YDR233C,	YNL297C,	YGL005C,	YDR245W,	YBR036C,	YDR221W,	YPL192C,	YLL014W,	303	

YDR508C,	YEL001C,	YER005W,	YDR137W,	YDL099W,	YGL231C,	YHR108W,	YMR238W,	YAL053W,	304	

YIL027C,	YER072W,	YML038C,	YER120W,	YEL027W,	YIL030C,	YDR492W,	YJR131W,	YMR010W,	305	

YHR181W,	YPR063C,	YIL124W,	YLR350W,	YJR088C,	YBL011W,	YML048W,	YNL044W,	YDR358W,	306	

YOR311C,	YDR411C,	YMR272C,	YNL049C,	YMR015C,	YDL052C,	YJR134C,	YKL096W,	YNL280C,	307	

YLR194C,	YER113C,	YDR077W,	YDR055W,	YNR021W,	YNL327W,	YLR130C,	YNR039C,	YJL099W,	308	

YKL146W,	YPR003C,	YHL017W,	YOR245C,	YER166W,	YBR132C,	YOR016C,	YPR090W,	YNL300W,	309	
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YLR250W,	YGR038W,	YPL259C,	YPR071W,	YKL065C,	YKL046C,	YPL274W,	YEL048C,	YOR317W,	310	

YDR100W,	YNL146W,	YMR253C,	YJR031C,	YER011W,	YJL078C,	YIL016W,	YML037C,	YGR247W,	311	

YFL004W,	YBR023C,	YIL044C,	YMR052W,	YDL204W,	YBR067C,	YDR153C,	YIL043C,	YNL095C,	312	

YDR476C,	YOR307C,	YOR321W,	YCR011C,	YMR237W,	YMR071C,	YER004W,	YPR028W,	YGL255W,	313	

YPL170W,	YKL063C,	YJL044C,	YLR023C,	YMR215W,	YMR251W-A,	YGR261C,	YPR091C,	YDR056C,	314	

YLL028W,	YLR330W,	YBL010C,	YNR019W,	YGL124C,	YDR294C,	YNL046W,	YDR519W,	YKR088C,	315	

YLR042C,	YKL094W,	YCR048W,	YCR043C,	YDR084C,	YKR067W,	YJL196C,	YLL061W,	YML101C,	316	

YDL232W,	YOL030W,	YMR054W,	YDR410C,	YBR273C,	YLR120C,	YHR110W,	YOR044W,	YDL137W,	317	

YJL171C,	YOR285W,	YMR029C,	YLR064W,	YPL137C,	YOR092W,	YBR159W,	YGL083W,	YNL156C,	318	

YDL128W,	YBR296C,	YOR175C,	YJL198W,	YOL101C,	YHL019C,	YJL117W,	YGR263C,	YML059C,	319	

YOR214C,	YNR013C,	YOR087W,	YJL192C,	YGR177C,	YBL102W,	YPL195W,	YLL052C,	YLR390W-A,	320	

YDR264C,	YOR299W,	YMR152W,	YLL055W,	YDR424C,	YBR287W,	YEL040W,	YNL125C,	YHL003C,	321	

YBR283C,	YDL121C,	YHR045W,	YNR075W,	YOR377W,	YHR039C,	YGL010W,	YCL025C,	YNR044W,	322	

YLR050C,	YOL137W,	YOL107W,	YDL018C,	YDR307W,	YDR297W,	YNL190W,	YDR503C,	YBR177C,	323	
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