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Abstract
Spontaneous activity measured in human subject under the absence of any task exhibits complex
patterns of correlation that largely correspond to large-scale functional topographies obtained with
a wide variety of cognitive and perceptual tasks. These ”resting state networks” (RSNs) fluctuate
over time, forming and dissolving on the scale of seconds to minutes. While these fluctuations, most
prominently those of the default mode network, have been linked to cognitive function, it remains
unclear whether they result from random noise or whether they index a non-stationary process which
could be described as state switching.

In this study, we use a sliding windows approach to relate temporal dynamics of RSNs to global
modulations in correlation and BOLD variance. We compare empirical data, phase-randomized
surrogate data, and data simulated with a stationary model. We find that RSN time courses exhibit
a large amount of coactivation in all three cases, and that the modulations in their activity are
closely linked to global dynamics of the underlying BOLD signal.
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We find that many properties of the observed fluctuations in FC and BOLD, including their
ranges and their correlations amongst each other, are explained by fluctuations around the average
FC structure. However, we also encounter interesting characteristics that are not explained in this
way. In particular, we find that the brain spends more time in the peaks and troughs of modulations
than can be expected from stationary dynamics.

1 Introduction
In their seminal paper, Biswal et al. (1995) report that correlation patterns in motor cortex during
rest are remarkably similar to those found during a finger tapping task. Following this discovery, a
number of large-scale functional networks was unveiled using the experimental paradigm of “resting
state” (RS) and the concept of functional connectivity (FC) (Lowe et al., 1998; Cordes et al., 2000;
Kiviniemi et al., 2003; Fox et al., 2005; Beckmann et al., 2005; De Luca et al., 2006; Damoiseaux et
al., 2006; Mantini et al., 2007; Smith et al., 2009; Yeo et al., 2011). Investigating these functional
networks, termed “resting state networks” (RSNs), enables us to probe integration (within networks)
and segregation (between networks) in the brain.

More recent research has shown that the FC between brain regions forming the basis of RSNs are
not constant over time. Dynamic functional connectivity (dFC) is defined in contrast to average or
“static” functional connectivity (avFC), and dFC often appear to greatly deviate from it. Changes in
the global FC structure apparent in dFC have been taken to be signs of time-dependent integration
and segregation between functional networks (see Hutchison et al. (2013); Calhoun et al. (2014);
Preti et al. (2016) for reviews). A growing number of studies are proposing and studying new and
innovative approaches to characterizing dFC (Chang and Glover, 2010; Britz et al., 2010; Kiviniemi
et al., 2011; Hutchison et al., 2012; Allen et al., 2012; Leonardi and Van de Ville, 2013a; Liu
et al., 2013; Zalesky et al., 2014; Damaraju et al., 2014; Karahanoğlu and Van De Ville, 2015;
Betzel et al., 2016a). Many of these studies have focused on characterizing recurring “states”
of brain connectivity. This way, it was established that changes occur on the level of large-scale
configurations of inter-network relationships, where some regions belonging to attention networks
and the DMN act as “hubs” not only in terms of their static connectedness, but also in terms of
the variability of their connections. This argues against the rigid assignment of brain regions to a
functional network, and stresses that at certain points in time, the FC patterns can diverge greatly
from the average.

Since the beginning of RS research, it was asked whether the observed fluctuations are “mean-
ingful” or not. This question is tightly related to the question of what the mechanism behind the
fluctuations is. It has already been recognized that several different sources likely contribute to
the variability observed in dynamic FC (dFC) (Messé et al., 2014; Barttfeld et al., 2015): First, the
observed fluctuations can be shown to be relevant to behavior (Fox et al., 2005; Bassett et al., 2011;
Kucyi and Davis, 2014; Yang et al., 2014; Davison et al., 2015) which has recently lead to the idea of
“controllability”, i.e. that the large-scale architecture of the human brain is organized in such a way
that frequently visited states are reachable with minimal effort and maximal energy efficiency (Gu et
al., 2015). Thus, observed dynamics are partially linked to ongoing cognition and are implied to arise
from temporal dynamics on a neural level (He and Raichle, 2009; Kopell et al., 2014). Second, a
certain part of the fluctuations is related to changes in brain state, like arousal (Chang et al., 2013),
sleep state (Larson-Prior et al., 2009; Horovitz et al., 2008), or aneasthesia (Vincent et al., 2007;
Bettinardi et al., 2015; Hutchison et al., 2013). Third, recent work shows a link between ongoing
fluctuations in the brain and rhythms generated in internal organs like the heart and stomach, sug-

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2017. ; https://doi.org/10.1101/126524doi: bioRxiv preprint 

https://doi.org/10.1101/126524
http://creativecommons.org/licenses/by-nc-nd/4.0/


gesting that self-referential behavior related to the default mode network includes the body as well
as the mind (Babo-Rebelo et al., 2016; Richter et al., 2016; Babo-Rebelo et al., 2016). Fourth, a
part of the fluctuations arises from random noise reverberating through a structured network (Deco
and Jirsa, 2012; Messé et al., 2014; Ponce-Alvarez et al., 2015; Glomb et al., 2016). Nonetheless,
this last source of variability could be functionally relevant to the maintenance of synaptic connec-
tions. Furthermore, these reverberations constitue a large part of the broadband-signal (He, 2014;
Chaudhuri et al., 2016), and only recently are receiving increased attention.

Evidently, the mechanisms behind dFC are manifold and require careful interpretation of data as
well as integration of results from many lines of inquiry and different methods (Ritter et al., 2013).
Two tools that whose importance cannot be stressed enough in this context are proper statistical
assessments on the one hand (Handwerker et al., 2012; Bassett et al., 2013; Lindquist et al., 2014;
Hindriks et al., 2015; Betzel et al., 2016a; Laumann et al., 2016), and modelling approaches on the
other (Messé et al., 2014; Hansen et al., 2014; Glomb et al., 2016). While the former is necessary
to answer the question whether observed fluctuations contain hallmarks of non-stationarity, the
latter is crucial to our understanding of underlying mechanisms and provides the interpretation of
the observed variability as a “dynamic repertoire” of the brain (Deco et al., 2013). Analyzing
this repertoire is crucial for understanding the brain in terms of general principles of information
processing, pattern formation, integration across temporal and spatial scales, etc.

The temporal dynamics of modulations present in time courses of spontaneous brain activity
measured with fMRI BOLD are the focus of the present study. We will first characterize these
dynamics on the level of RSNs and the underlying BOLD signal, and then investigate in how far our
findings are explained by stationary dynamics. To this end, we will use both stationary surrogate
data and a stationary model.

2 Methods

2.1 Data
We use data previously published in Schirner et al. (2015), recorded at the Charite University
Medicine in Berlin, Germany. Three datasets are recorded from each of 24 healthy subject aged 18
to 35 years: 1) 22-minute (T = 661 frames, TR=2s) RS scans (eyes closed), 2) diffusion-weighted
(dw) MRI, 3) anatomical scans (T1-weighted). The latter are used for parcellation and for creating
masks for fiber tracking. We use the Desikan-Killiany atlas (Desikan et al., 2006) to parcellate our
data into large-scale brain regions; discarding the Corpus Callosum on both sides, we are left with
N = 66 cortical areas.

DwMRI was performed with 64 directions. For each voxel, the fiber orientation distribution func-
tion was computed, which was then used by the probabilistic fiber tracking algorithm implemented
in MRTrix (Tournier et al., 2004, 2007) to initiate tracts in the grey matter-white matter interface
and prolong them until they reach a termination region. When constructing the structural connec-
tivity matrices from the tracking output, assumptions about limitations on connection strength were
used to improve upon several shortcomings of fiber tracking algorithms. For example, connection
strengths were assumed to be bounded by the area available at the grey matter-white matter inter-
face (see Schirner et al. (2015) for details). The number of streamlines detected per connection was
then used as input to an algorithm which derives effective connectivity from structural connectivity
using a noise diffusion model (see section 2.5).

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2017. ; https://doi.org/10.1101/126524doi: bioRxiv preprint 

https://doi.org/10.1101/126524
http://creativecommons.org/licenses/by-nc-nd/4.0/


2.2 RSN time courses
We use tensor decomposition, a general dimensionality reduction approach which has previously
been shown to be useful in neuroscience (Beckmann and Smith, 2005; Cichocki, 2013; Leonardi
and Van de Ville, 2013a; Leonardi and Van De Ville, 2013b; Ponce-Alvarez et al., 2015) and which
we apply to community detection (Gauvin et al., 2014); in our case, the communities we wish to
detect are recurring FC patterns. For each subject (or simulation), we compute pair-wise FC inside
of sliding windows of width 120 s (60 frames) which are moved in increments of 1 frame (figure 2A),
resulting in W = 601 time windows. This results in an N × N dynamic FC matrix, dFC(w) with
w = 1, 2, ...,W which is symmetrical. The W dFC-matrices are then stacked along the temporal
dimension into 3-way data structures of dimensions N ×N ×W , called tensors (figure 2B), denoted
by Y. We use a special case of tensor decomposition, non-negative canonical polyadic decomposition
(NCP). In order to do so, we use a non-negative measure of dFC, i.e. mutual information as described
in Kraskov et al. (2004). We obtain a number F of features for each of these tensors (figure 2C, for
F = 3). Each feature i is a rank-1-tensor, i.e. it can be represented as the outer product, denoted
as ◦, between three vectors, each vector corresponding to one dimension of the tensor:

Y =
F∑

i=1
ui ◦ vi ◦ wi + E = Ŷ + E,

ui = vi

(1)

Since the dFC matrices are symmetric, the first two vectors (of length N) are identical (ui = vi)
and are interpreted as containing membership weights. These weights describe how much each of the
66 brain regions is a member of community i. The third vector wi (of length W ) is the time course
which describes how much this community as a whole contributes to the dFC in each window. Of
course, the decomposition which we obtain is only an approximation, leaving the variability contained
in the error E unexplained.

In this study, we are mostly interested in the time courses wi. Each of the community vectors vi

is identified as a known RSN such that each time course can be associated to a certain RSN. For
this, we use templates obtained from our data, i.e. we look for communities that are valid for the
whole group. We cluster the vi obtained from all subjects into K clusters using K-means-clustering,
using different numbers of F (but always the same F for all subjects). We assess the goodness of
clustering via the silhouette value (de Amorim and Hennig, 2015), comparing to phase-randomized
surrogate data (section 2.4) which do not contain a cluster structure. Additionally, we remove
noise be keeping only the 2% highest dFC values and binarizing the resulting tensor (Glomb et al.,
2016). We choose the values of F and K such that the difference between the sihouette values for
surrogates and real data is maximal. This is the case for F = 3 and K = 4. Then, the cluster
centers are used as templates.

Thus, for empirical data, the RSN identity is its cluster membership. For surrogate and simu-
lated data, we use Cohen’s kappa to compute how similar extracted features are to the templates
(comparing each community vector to each template). This measure relies on computing confusion
matrices, and we use a quantization on three levels. Then, the κ-value is computed as
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κ = Pa − Pe

1 − Pe

Pa is the overlap, Pe is the expected overlap. Each feature is assigned to a template according
to its maximum κ-value.

2.3 Measures of RS dynamics
We use three measures to quantify global dynamics of RS. Two measures are related to changes in
functional connectivity (FC), and one to changes in the BOLD signal itself. For each of them, one
time course is created for each subject s, using the same sliding windows as for the tensors (width
120s, i.e. 60 frames, increments of one frame, giving W = 601 windows per measure per subject)
in order to be able to relate the resulting time courses to the RSN time courses.

The FC-related measures rely on pairwise correlations, i.e. as for the tensors (section 2.2),
we compute dFC-matrices for each window, containing pair-wise FC values, but this time, using
correlation instead of mutual information. Again, the dFC matrices are symmetrical, and their
diagonals are filled with ones. The instantaneous average correlation is just the average over all
unique pairs, i.e. using the upper or lower triangle of the dFC(w) matrix, excluding the diagonal:

FC strs(w) = tanh 1
((N ·N) −N)/2

N∑
i=1

N∑
j=(i+1)

tanh−1(Cijw) (2)

Cijw is the entry in the dFC(w) matrix at pair ij and window w, s is the subject index, tanh−1

is the arcus tangens hyperbolicus, needed to z-transform the correlation values before averaging
them, and likewise, tanh is the tangens hyperbolicus, needed to back-transform the result into a
correlation value. In other words, this is the average FC present in each slice of a tensor (without
thresholding).

We evaluate how similar each dFC(w) matrix is to the average FC (avFC) matrix, i.e. the FC
matrix obtained from correlating the full time courses of the ROIs. We call this measure similarity
to avFC. This is done by simply correlating the upper or lower triangle of the matrices with each
other after flattening them into a vector.

sim to avFCs(w) = corr
{

vec
[
U(tanh(dFC(w)))

]
,vec

[
U(tanh(avFC))

]}
(3)

vec(·) stands for the vectorization of a matrix, U is the upper triangle of a matrix, and corr
stands for Pearson correlation.

Additionally, we use a measure that tracks changes in the BOLD signal itself, namely of its
variance. For this, a normalization step is necessary because the variability of variances across
subjects does not carry any meaning, only the relative differences between ROIs within a subject
do. Therefore, for each subject, we normalize such that the variance of its most variable ROI is 1.
We then compute the variance of the signal xi for each ROI i inside each window ranging from t
to t + 59 (in frames) and average over ROIs, resulting in a measure for the mean variance of the
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signal, which we refer to as instantaneous BOLD variance.

BOLD vars(w) = 1
N

N∑
i=1

vart:t+59(xi) (4)

Note that this is not the variance of the mean signal.

2.4 Surrogates
Surrogate data are constructed by randomizing an aspect of the empirical data with the goal to pro-
duce data that preserve all characteristics except the one of interest. In this case, this characteristic
is nonstationarity, corresponding to the null hypothesis that observed dynamics are a result of the
long-term correlations and power spectrum, but that no additional structure is present. We use the
Fast Fourier Transform (FFT) to obtain a representation of the signal in frequency space and then
add random phases to each bin.

In particular, we have x1, x2, ..., xT and y1, y2, ..., yT , where x and y are two ROI’s signals in time
whose long-term correlation we want to preserve. After applying the FFT and obtaining signals
X1, X2, ..., XN and Y1, Y2, ..., YN in frequency space, a random phase vector ϕr,1, ϕr,2, ..., ϕr,N ,
values of which are drawn from a uniform distribution in the interval [−π, π], is used to randomize
phases in each frequency bin. The long-term correlations are preserved by adding the same phases
to both signals before transforming back.

2.5 Model and simulations
We use a dynamic mean-field (DMF) model (Wong and Wang, 2006; Deco et al., 2014) where
each of the 66 cortical regions are modelled by a node. Each node i contains one excitatory and
one inhibitory pool which are described by their population firing rates ri, currents Ii, and synaptic
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gating variables Si according to the following coupled differential equations:

I
(E)
i = I0,E + wEES

(E)
i +G

∑
j

CijS
(E)
j − wEI,iS

(I)
i

I
(I)
i = I0,I + wIES

(E)
i − wIIS

(I)
i

r
(E)
i = H(E)(I(E)

i ) = aEI
(E)
i − bE

1 − exp(−dE(aEI
(E)
i − bE))

r
(I)
i = H(I)(I(I)

i ) = aII
(I)
i − bI

1 − exp(−dI(aII
(I)
i − bI))

dS(E)
i (t)
dt = −S

(E)
i

τE

+ (1 − S
(E)
i )γr(E)

i + σνi(t)

dS(I)
i (t)
dt = −S

(I)
i

τI

+ r
(I)
i + σνi(t)

(5)

The model is illustrated in figure 1A. Locally, excitatory (indexed by E) and inhibitory (indexed by
I) pools are connected to each other, using weights wEE, wEI,i, wIE, and wII. Most of these weights
are constant (wEE = 0.21, wII = 1, wIE = 0.15), except for the feedback inhibition wEI,i which is
adjusted prior to running simulations in order to keep mean firing rates in each population between 3
and 10 Hz. This is necessary because in this asynchronous regime, the model only has one attractor
and is thus stationary (Deco and Jirsa, 2012). This model includes three types of synapses: 1)
NMDA for local excitatory connections with τE = 100 ms, 2) GABA for local inhibitory connections
with τI = 10 ms, and 3) AMPA for long-range connections between excitatory pools, governed
by the connectivity matrix C with entries Cij setting the weights between nodes i and j. The
dynamics of these synapses are not modelled directly because they reach their steady state almost
instantaneously (Deco et al., 2014). Additionally, each population receives a constant background
current, I0,E = 0.382 nA and I0,I = 0.267 nA. Cij are entries in the adjacency matrix governing the
weights between the nodes. These weights are scaled by the factor G, which is a global coupling
parameter, and the only free parameter of the model.

Here, C is the effective connectivity (EC) matrix, shown in figure 1B, derived by combining
DTI-based structural connectivity (SC) with a noise diffusion (ND) model (Gilson et al., 2016).
The weights in the EC are tuned such that time-shifted covariance matrices are reproduced when
simulating the ND model. We previously showed (Glomb et al., 2016) that, when the nodes in
the DMF model are connected according to this matrix, communities can be extracted from the
resulting dFC time courses that approximate the RSNs found in empirical data. The EC matrix
is asymmetric, contains homotopic connections, and exhibits a nearly uniform degree distribution
which promotes stable simulations over a wide range of values of G. The results we show here are
obtained by simulating with the value of G which leads to the maximum overlap with RSNs obtained
from empirical data (see section 2.2).
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Figure 1: A Illustration of DMF model used to produce stationary simulated data. Each node contains an
excitatory (E) and an inhibitory (I) pool which are locally connected by GABA (black lines, spheres) and
NMDA (black lines with arrows) synapses and E pools have long range AMPA connections (gray lines) set
by entries Cij of the connectivity matrix. B Effective connectivity matrix. Note the asymmetry and the
even distribution of the weight magnitudes. Weights are in arbitrary units.

3 Results

3.1 Resting state networks coactivate strongly
One of the most prominent approaches is to measure pairwise functional connectivity (FC) inside
of overlapping sliding time windows, thus obtaining a sequence of dFC matrices (dFCMs, figure 2A,
B).

We were interested in shedding light on the basis of these fluctuations, given that it remains
unclear whether RSNs are separate in time (Baker et al., 2014; Betzel et al., 2016a) or not (Mitra
et al., 2014; Karahanoğlu and Van De Ville, 2015; Glomb et al., 2016).

Figure 5 illustrates these two scenarios schematically.
We use 22 minute long resting state (RS) scans from S = 24 healthy participants (Schirner

et al., 2015), parcellated according to the Desikan-Killiany atlas (Desikan et al., 2006), obtaining
N = 66 large-scale brain regions covering the entire cortex. We use nonnegative canonical polyadic
decomposition (NCP), a highly interpretable version of tensor decomposition (Cichocki, 2013; Gauvin
et al., 2014; Ponce-Alvarez et al., 2015) to obtain RSN time courses. This approach approximates
a sequence of dynamic FC matrices (dFCMs) as a linear superposition of a small number of static
FC patterns. The patterns’ weights and thus, the degree to which they contribute to dFC, is time-
dependent (figure 2). In contrast to the most frequently used approach, i.e. independent component
analysis (ICA), these networks are allowed to overlap in both space and time. We obtain a small
number of networks that generalize across subjects and find that they resemble RSNs (figure 3):
default mode network, somatomotor network, control networks, visual network.

Their associated time courses (figure 4) are interpreted as activation time courses. Our first obser-
vation is that the activations fluctuate considerably, and that these fluctuations seem to be strongly
modulated on an infraslow time scale of 50 to 100 seconds. However, what is not immediately clear
is to what degree the RSNs overlap in time. In order to quantify their coactivation, we consider the
“contribution” of each RSN to the overall activation in each time window, which is just the ratio
between its activation and the sum of all activations in this window. If this value is close to 1, this
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Figure 2: Illustration of sliding windows dynamic FC and tensor decomposition. A Example time courses for
one subject. The slliding window are illustrated in grey: it is moved alond the entire time course, resulting
in W windows, each of which covers a portion of the BOLD time courses. B The data points that fall
into any given window are used to compute a dynamic FC matrix. DFC matrices from all W windows are
stacked to form the tensor. C The tensor is decomposed into a given number F of sets of three vectors.
Each set i contains two spatial features vi, i.e., the communities; they are identical due to the symmetry
of the dFC-matrices. The third vector wi is the time course of weights associated with this community.
Taking the outer product vi ◦ viT results again in a matrix. Any given dFC matrix is approximated by
adding all F matrices given in this way for the tensor, weighed by the value wi(t).
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Figure 3: Community extraction from empirical data leads to recovery of RSNs. Each subject’s tensor is
decomposed into three features, and the three community vectors are pooled across all subjects. Pooled
community vectors are clustered. Using the cluster centers as templates and projecting them back to the
cortex surface, we recover four known RSNs: DMN - default mode network, SMN - sensorimotor network,
CTR - control network, VIS - visual network.

Figure 4: Example time courses of RSNs for three subjects. The time courses are obtained from the tensor
decomposition and describe the degree to which each network contributes to the dFCM in each window
and thus, how much it is activated.
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Figure 5: Illustration of two alternative scenarios for RSN activation time courses. (a) RSNs could activate
in sequence. At any point in time, one RSN’s weight would be much higher than the other two. (b) RSNs
could coactivate. At any point in time, combinations of RSNs would be present.

network dominates in the given time window. If the value is close to 1/F , i.e. one third in this case,
there is a large degree of co-activation; and if the value is very small, the network is not active at
all.

Figure 6A shows the contribution values across windows for each RSN (DMN, somatomotor,
control, visual), pooled across subjects. The distributions show a prominent peak around 1/3, a
value which corresponds to perfect coactivation in the case of having three RSNs per subject. There
are also many zeroes, indicating windows in which the network was not active (windows in which all
three were zero were excluded from the analysis since “contribution” cannot be defined in this case),
but the number of values falling in a higher range does not counter-balance this peak, suggesting that
there is a bias towards RSNs being coactivated or not active at all and away from single RSNs being
dominant. This prevalence of coactivation clearly contradicts the notion of independent networks.

3.2 Modulations in RSN activation driven by underlying BOLD
In order to explain the observation that RSNs coactivate strongly, we take a step back and look at
the underlying BOLD signal. Considering the example shown in figure 2A, one immediately notices
“bands” or “events” as many, if not all, ROIs increase or decrease their BOLD activity simultaneously.
It is fair to assume that these strong modulations will have an effect on the overall FC strength
(Chawla et al., 1999; Daffertshofer and van Wijk, 2011) and eventually, on RSN dynamics themselves.
We quantify this with two simple global measures. First, we take the variance of each ROI’s BOLD
signal, averaged over all ROIs, inside each window. In time windows when all ROIs increase or
decrease their activity together, this value will be high. We term this the instantaneous BOLD
variance (figure 7, orange). Second, we take the average over all pairwise correlations in each
window (figure 7, blue) and term this instantaneous average correlation.

It is immediately visible that these two measures are closely correlated. Computing the correlation
coefficient for all subjects, we obtain an average of 0.81, suggesting that there is an immediate need
for methods that will disentangle the effects of variations in signal strength on FC. Taking this a
step further, we also correlate the instantaneous BOLD variance with the previously extracted RSN
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Figure 6: Contribution histogram for each RSN, pooled across subjects. A Empirical data, B surrogate data,
C simulated data. Since there are three features per subject, a value of 1/3 means perfect coactivation
between the three RSNs. Higher values correspond to dominance of one RSN over the others. Values close
to 0 indicate deactivation. The large peak around 1/3 clearly favors the coactivation scenario in figure
5. DMN: Default mode network, SMN: somatomotor network, CTR: right and left control networks, VIS:
visual network

Figure 7: Global modulations in underlying BOLD signal (blue and orange curves) is tightly correlated
with RSN dynamics (grey curve). Orange: instantaneous BOLD variance, blue: instantaneous average
correlation, grey: sum over all RSN activations.
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time courses. Again, we find a correlation of 0.81 across all subjects, indicating that variations in
RSN activation (and coactivation) may to a large part be driven by changes in the variance of the
underlying BOLD signal.

3.3 During peaks, the brain is closer to average FC structure
We asked the question what influence the modulations in instantaneous BOLD variance have on
FC. We saw that these modulations are closely related to modulations in instantaneous average
correlation. What is more, RSN activations are modulated in the same way. This suggests that
windows of high BOLD variance are to be interpreted as windows in which the signal to noise-ratio
(SNR) is high; alternatively, one could think that it might be low, leading to an unstructured all-
to-all dFCM. To illustrate further that the former is the case rather than the latter, we employ a
third global measure of temporal dynamics: We measure, for each time window, the similarity of
the dFCM to the avFCM by taking the correlation between the two. We expect that the dFCM
should be more similar to the avFCM when the other two measures (instantaneous BOLD variance
and -average correlation) and also the RSN activations are high, and vice versa. Indeed, this is the
case for almost all subjects, however, the correlation values are not as high as might be expected
and are not significant for all subjects (averages correlations to sim. to avFC across subjects: inst.
BOLD var.: 0.53, significant for 21/24 subjects; inst. av. corr: 0.57, 22/24; sum of RSN activities:
0.49, 22/24).

In order to further explore this, we plot in the left panel of figure 8 the joint distribution of
instantaneous BOLD variance and similarity to avFC, averaged over all subjects. It is evident that
this relationship is not linear. Furthermore, there seem to be very many time windows in which
the instantaneous BOLD variance and the similarity to avFC are both very low (prominent cluster
at the bottom left). The same, although a bit less strongly, goes for the opposite end of both
ranges (cluster at the top right). In the next step, we will use surrogate data to test whether this
observations really hints at nonstationarity, as could be suspected.

3.4 Stationary dynamics can explain a lot, but not everything
It has been suggested that the modulations apparent in dFC are well within what is predicted
by a multivariate Gaussian process, adjusted for the autocorrelations inherent in the BOLD signal
(Handwerker et al., 2012; Hindriks et al., 2015). This is equivalent to the null hypothesis that
observed modulations can be fully explained by the presence of long-term correlations and thus,
by noisy fluctuations around the average FC structure. We test this hypothesis by constructing
appropriate surrogate data. We use a method that randomizes the phases while preserving the
pairwise correlations and the power spectrum (Handwerker et al., 2012; Hindriks et al., 2015),
resulting in any nonstationary properties being removed (see figure 9A and C for an example).

It is evident that also the surrogates possess the bands/events noted before, and thus, these
synchronized movements are not per se an indication of any active process. Rather, they are the
consequence of the average correlations and the 1/f power spectrum, which is shown in figure 9E
to be reproduced by the surrogates. As a result, when using the same three measures as before,
modulations are apparent also in the time courses derived from surrogate data, and the correlations
between them are preserved as well.

In many studies on dFC, the focus is on large deviations from the average correlation, referred to
in some instances as “hypersynchronization” (Hutchison et al., 2012). As we have shown here, the
peaks of the modulation do not in fact coincide with large deviations from the average correlation
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Figure 8: Joint distribution of instantaneous BOLD variance (x-axes) and similarity to avFC (y-axes) for
empirical data (left) and surrogates (right). The marginal distributions are shown at the top and sides.
There is a clear and significant difference between the distributions, see section... (surrogates), hinting at
longer dwell times in the extremes of the distributions.
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Figure 9: Stationary null data used in this study. A Phase randomized BOLD time courses from one
subject. B Simulated data which were passed through the Balloon-Windkessel model. C Average FC
matrix obtained from the surrogate time courses shown in A. It is nearly identical to that of the empirical
data from which the surrogates where derived. D Average FC matrix obtained from the simulated time
courses shown in B. The correlation between the two FC matrices is about 0.6. E Average power spectra
of empirical, surrogate, and simulated data. Empirical and surrogate spectra lie almost exactly on top of
each other.
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Figure 10: Comparison of empirical (filled circles) and surrogate (empty circles) histograms. The asterisks
indicate instances where the real data have significantly more or fewer windows in the extreme bins than
the surrogate data. A Instantaneous average correlation, B instantaneous BOLD variance, C similarity to
avFC.

structure - on the contrary, dFCMs tend to be more similar to the avFCM at the peaks. Furthermore,
the fact that brief instances in time are sufficient to extract RSNs can from this point of view be
explained with the prominent overlap of RSNs, which leads to a situation where they are present
together in those windows with “up”-modulation. Still, it is possible that the deviations are large in
empirical data as compared to what can be explained by stationary dynamics.

In order to test this, we record, for each subject, both the minimum and the maximum of the
modulations in all three measures (instantaneous BOLD variance, instantaneous average correlation,
similarity to avFC). We compute 100 sets of surrogate data sets and count how many times they
reach a higher (lower) value than the original data. We find that many surrogates reach higher
maxima (inst. av. corr: 21.8%, inst. BOLD var.: 16.8%, sim. to avFC: 81.0%) or lower minima
(inst. av. corr: 52.4%, inst. BOLD var.: 6.9%, sim. to avFC: 11.6%) than the real data, meaning
that surrogates can fully explain the size of the modulations.

On the other hand, it might still be possible that the system visits these states more (or less) often
than could be explained by stationary dynamics, as is indeed suggested by the clusters of windows
seen in figure 8 (left). In order to test this, we count the number of windows falling into the extreme
bins of the distributions (both minimum and maximum). Figure 10 illustrates this with the average
distributions. We take the average number of windows across subjects and, again, compute 100 sets
of surrogates. Here we find that the real data have more windows of high instantaneous average
correlation, both low and high instantaneous BOLD variance, and of low similarity to avFC than the
surrogates, i.e. none of the surrogates reached or surpassed the number of windows present in the
real data. On the other hand, real data have fewer windows with high similarity to avFC than the
surrogates, i.e. all surrogates reached or surpassed the number of windows present in the real data.

Returning to figure 8 and now comparing the two panels (empirical vs. surrogates), it becomes
clear that the modulations themselves are explained by the power spectrum and the presence of
average correlations, but that the prevalence of extreme modulations (both up and down), or in
other words, the dwell times in those states, is not explained by these stationary features of the
data.
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3.5 RSN temporal dynamics in surrogates and stationary model
RSNs can be extracted in the exact same way from the surrogate as from the empirical data. When
computing the histograms of the contributions in order to evaluate the propensity for coactivation
(figure 6, middle panel), we find again strong temporal overlap as in the empirical data. However,
as a consequence of the longer dwell times, the peaks to the left and right are missing, i.e. what is
reduced in the surrogate RSN time courses are both periods in which networks are inactive and in
which one network dominates.

Our next step is to explicitly test the hypothesis that the observed modulations can be explained
by correlated fluctuations around a single single fixed point - that is, by the average functional
connectivity. We use a dynamic mean field model which possesses exactly this structure and which
has been shown before (Glomb et al., 2016) to reproduce RSNs. Nodes in the model, representing
brain regions, are connected according to effective connectivity obtained by combining diffusion
tensor imaging results with a simple model (Gilson et al., 2016).

Figure 9B and D show an example for a simulated signal and the average FC matrix computed from
it. Figure 9E also shows the average power spectrum of all simulations when using the value of G
which produces the best match between empirical and simulated avFC. Clearly, while the correlation
structure is captured well, the power spectrum is consistent with white noise, while empirical (and
thus surrogate) data exhibit a 1/f spectrum (Biswal et al., 1995; Niazy et al., 2011).

As for the empirical data and the surrogate data, we compute time courses of our three global
measures of temporal dynamics, and find that they exhibit very similar dynamics. Likewise, com-
puting the coactivation histograms for the model data (figure 6, right panel) shows again strong
coactivation, but fewer windows in the extremes of the distributions, even more prominently than
in the surrogate data.

In conclusion, we have shown that

1. the modulations observed in BOLD temporal dynamics and RSNs are stereotypical in the
sense that peaks correspond to strong RSN coactivation, high BOLD variance, high average
correlation and high similarity of dFCM to avFCM (as opposed to the notion that each peak
represents a different state),

2. the presence and the size of these modulations are explained by the power spectrum and
the average correlations present in the data, as shown by using surrogates and a stationary
dynamic mean field model,

3. nonetheless the dwell times in the maxima and, most prominently, the minima of the modula-
tions are longer than can be explained by stationary dynamics, suggesting the presence of an
active, nonstationary process.

4 Discussion
In this study, we used three simple measures to characterize modulations in the BOLD signal and
their relationship to dFC: (1) instantaneous BOLD variance, (2) instantaneous average correlation,
(3) similarity to avFC. We related these measures to RSN activation time courses obtained from
empirical data via tensor decomposition. We found that a good part of the modulations we observe
can be described as stereotypical events which evolve from a state where all three measures and
RSN activations are low, to a state where these measures are high. The dynamics of the transitions
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between “down” and “up” exhibit nonstationary features: There are many more “down” windows
than expected, and also slightly more “up” windows.

The main finding of this study is that modulations in the activation strength of RSNs can be
largely explained by changes in the variance of the underlying BOLD signal. The highest BOLD
variance (“up”) occurs in windows which have both synchronized increase in BOLD activity (orange
band in figure 2A) as well as a decrease (blue band). In the following, we summarize this as a
“cycle” for illustration purposes, without claimin that there is an actual oscillation going on. At the
beginning of a “cycle”, there is a large amount of activity that propagates through the entire brain
network, shaped by the underlying effective connectivity and the node dynamics. At this stage, the
avFC is expressed clearly because the signal-to-noise-ratio is favorable. When the BOLD activity
drops, pairwise dFC is still high because of synchronized decrease of activity. It is due to these high
pairwise dFC values that we find RSNs in these windows, and due to the synchronized increase and
decrease, that the RSNs overlap in time. On the other hand, RSNs are derived from the avFC, which
seems at odds with the lower correlations of similarity to avFC with RSN activation, as well as with
other measures. This could be due to the fact that during the decrease, the avFC as a whole is
not as well expressed because the SNR is lower, but thresholding in the tensor before decomposition
depends only on the magnitude of the dFC values.

Additionally to these descriptive results, we used surrogate data from which nonstationarities were
removed, as well as simulated data obtained from a stationary model, to investigate the mechanisms
behind our observations. We showed that many statistical properties of spontaneous fluctuations
in the resting state BOLD signal are explained by the presence of long-term correlations and the
characteristic power spectrum of these data. Both the range of modulations and the correlations
between them are reproduced by the surrogates and the simulated data. However, when considering
the full distributions of the three measures we established, it is revealed that dynamics of the empirical
data exhibit nonstationary properties in the amount of time the system spends in the extrema of
the modulations.

4.1 Relationship between changes in activity and in FC
We have shown very clearly that there is a strong positive correlation between changes in BOLD
variance and changes in FC, in parallel to findings on a finer spatial and temporal scale (Chawla
et al., 1999; De La Rocha et al., 2007) and for phase relationships (Daffertshofer and van Wijk,
2011). While it may be clear that this relationship is expected in the sense that it is explained by
the long-term correlations, it is not necessarily intuitive or without alternative. Naively, one could
hypothesize that fluctuations in BOLD act as noise which would lead to globally high correlations
and thus, to a negative correlation between BOLD variance and similarity to avFC. Instead, we find
the opposite, which implies that, when reporting changes in FC, for example due to task, disease,
anaesthesia, etc., it should be carefully assessed which role the changes in activity play. In other
words, changes in FC could just be “apparent” changes and not really indicate any difference in the
communication between the areas in question. In general, while it is straightforward to define FC
in terms of statistical dependency of two full time courses, it seems that to what exactly it refers in
terms of dynamical changes is not as clear. Effective connectivity might be a useful complementary
approach.

To quantify the contribution of BOLD fluctuations to observed changes in FC, the surrogates used
here could be useful because no real changes in FC occur. A suitable metric to quantify the distance
between distributions of measures of dynamics, for example based on entropy, could capture the
“residual” differences between surrogates and real data caused by real changes in FC.
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4.2 Time scales and possible origins of fluctuations
One limitation of our methods here is that we cannot make clear predictions about the origin of the
observed time scales: In the surrogate data, the Fourier spectra of the time courses are preserved
as per construction, and the simulated data, while preserving many properties of the dynamics, do
not exhibit the same kind of power spectrum at all (figure 9E). Recent work has begun to illuminate
the relationship between network structure and power spectrum (He, 2014; Chaudhuri et al., 2016;
Ocker et al., 2017). Elsewhere, it has been shown that slow (<0.1 Hz) fluctuations observed on
the level of BOLD activity can arise from gamma band oscillations on the neuronal level (Cabral et
al., 2011, 2014), and it has been suggested (Deco and Kringelbach, 2016) that they are a signature
of long-range communication in the communication through coherence (CTC)-framework (Fries,
2005). Furthermore, it was recently found by Matsui et al. (2016) in a mouse study that global
waves of activity occur in both Calcium signal and in the hemodynamic signal, and that the latter
follows the former, implying a causal relationship. Therefore it seems that the observed fluctuations
are at least partly of neural origin.

Fluctuations of our three global measures occur on an even slower time scale (≈0.01 Hz). The
time scale reported here is consistent with previous findings (Hutchison et al., 2012; Hansen et
al., 2014; Ponce-Alvarez et al., 2015), and in particular, modelling studies (Hansen et al., 2014;
Ponce-Alvarez et al., 2015) have shown that they arise from spontaneous fluctuations in the band
around 0.1 Hz and are slow modulations in the level of synchronization, manifesting as global state
transitions or metastability.

4.3 RSNs overlap in time
Previous studies have suggested that RSN activation occurs as a sequence of transients (Baker et
al., 2014; Ponce-Alvarez et al., 2015), putting the focus on their being separate in time. Here, we
find that they coactivate a lot of the time, which was also reported by de Pasquale et al. (2012);
Smith et al. (2012); Karahanoğlu and Van De Ville (2015). We find that RSNs are most strongly
activated and coactivated during periods of strong synchronization (i.e., high average correlation).
This is at odds with the idea that each peak in the measures represents a distinct “state”, and
suggests that, rather, we are looking at stereotypical events. This is in line with the interpretation
given in Mitra et al. (2014): the activation of RSNs is embedded in stereotypical events triggered
by global waves of BOLD activity. It is conceivable that the sequences observed by Baker et al.
(2014) are due to the faster time scale in that study (MEG). Matsui et al. (2016) found that in
mice, typical co-activations between brain areas are embedded in global waves of activity, and that
this is true both on the level of Calcium signals and the hemodynamic signal.

These findings go hand in hand with the result that dFC structure is most of the time close to
avFC and that most modulations can be explained by fluctuations around this average structure.
While this may be surprising, it might indeed be a sign of optimal organization of the brain network,
as suggested by recent work combining dFC with control theory (Gu et al., 2015; Betzel et al.,
2016b). From the point of view proposed there, it is desirable to remain in a regime from which
frequently visited states are easily reached, both in terms of energy cost and time. In this light, it
would actully be surprising to see large excursions from the average during RS.
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4.4 Conclusions and Outlook
We have shown that no additional assumptions about dynamics are necessary to model a community
structure that evolves in time (figure 3, Glomb et al. (2016)), but rather, that this property can be
obtained from combining a meaningful underlying connectivity (EC in our case) with simple node
dynamics. RSNs can be extracted from brief intervals which correspond to the peaks in the global
measures used here. This is explained by the fact that, in terms of distributions of dFC values, the
BOLD signal on the longer time scale of the modulations studied here (about 50-100s) contains
much of the same information as that on the shorter time scale used for the EC, and both time
scales are predicted by the avFC.

However, we do find interesting properties in the dynamics not explained by a fluctuating avFC.
In terms of RSNs, the transition from “down” to “up” means a transition from none of them being
activated to all of them being coactivated. Here, the nonlinear relationship is evident from the
histograms of the contributions (figure 6, left), where both strong coactivation (“high” windows)
and absence of activation (“low” windows) are over-represented. The recruitment of single RSNs
occurs at intermediate values, and could be seen as excursions from the stereotypical path from
“low” to “high” and thus from the mere fluctuation of avFC. Therefore, more data will be necessary
to obtain a sufficient sampling of different kinds of excursions, i.e. to tie the activation of certain
RSNs to certain configurations of our three measures. This could provide a promising entry point
to pinpoint differences between rest and task, in that specific recruitment of task-related networks
should happen more strongly and reliably in task than in rest.

The model used here is able to reproduce some of the hallmarks of dFC due to the temporal
structure of BOLD signals, but lacks the non-stationarities. Possibly a model which has previously
been linked to multistability at the level of neural fluctuations (Freyer et al., 2011), and which has
recently been shown to reproduce features of fMRI RS temporal dynamics (Deco and Kringelbach,
2016), could be of interest. As before, they key is that the system is close to a bifurcation, in
this case, a subcritical Hopf bifurcation. Cast in these terms, the system would be in a regime of
damped oscillations when the global measures are low, and in an oscillatory regime when they are
high; switching occurs due to noise. Another property that the DMF model used here does not
reproduce is the power spectrum. We find that the time scale of modulations is not explained in
spite of the fact that the hemodynamic signal is modelled explicitly (Friston et al., 2000), i.e. the
1/f power spectrum of real BOLD signals is not shared by the simulated data. Whether the Hopf
model could reproduce the power spectrum should be included in the investigations.
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Ocker GK, Hu Y, Buice MA, Doiron B, Josić K, Rosenbaum R, Shea-Brown E (2017) From the
statistics of connectivity to the statistics of spike times in neuronal networks. arXiv preprint
arXiv:1703.03132 .

Ponce-Alvarez A, Deco G, Hagmann P, Romani GL, Mantini D, Corbetta M (2015) Resting-state
temporal synchronization networks emerge from connectivity topology and heterogeneity. PLoS
Computational Biology 11:e1004100.

Preti MG, Bolton TA, Van De Ville D (2016) The dynamic functional connectome: State-of-the-art
and perspectives. NeuroImage .

Richter CG, Babo-Rebelo M, Schwartz D, Tallon-Baudry C (2016) Phase-amplitude coupling at the
organism level: the amplitude of spontaneous alpha rhythm fluctuations varies with the phase of
the infra-slow gastric basal rhythm. NeuroImage .

Ritter P, Schirner M, McIntosh AR, Jirsa VK (2013) The virtual brain integrates computational
modeling and multimodal neuroimaging. Brain connectivity 3:121–145.

Schirner M, Rothmeier S, Jirsa VK, McIntosh AR, Ritter P (2015) An automated pipeline for con-
structing personalized virtual brains from multimodal neuroimaging data. NeuroImage 117:343–57.

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R,
Laird AR et al. (2009) Correspondence of the brain’s functional architecture during activation
and rest. Proceedings of the National Academy of Sciences 106:13040–13045.

Smith SM, Miller KL, Moeller S, Xu J, Auerbach EJ, Woolrich MW, Beckmann CF, Jenkinson M,
Andersson J, Glasser MF et al. (2012) Temporally-independent functional modes of spontaneous
brain activity. Proceedings of the National Academy of Sciences 109:3131–3136.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2017. ; https://doi.org/10.1101/126524doi: bioRxiv preprint 

https://doi.org/10.1101/126524
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distri-
bution in diffusion mri: non-negativity constrained super-resolved spherical deconvolution. Neu-
roImage 35:1459–1472.

Tournier JD, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orienta-
tion density function from diffusion-weighted mri data using spherical deconvolution. NeuroIm-
age 23:1176–1185.

Vincent J, Patel G, Fox M, Snyder A, Baker J, Van Essen D, Zempel J, Snyder L, Corbetta M, Raichle
M (2007) Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83–86.

Wong KF, Wang XJ (2006) A recurrent network mechanism of time integration in perceptual
decisions. The Journal of Neuroscience 26:1314–1328.

Yang Z, Craddock RC, Margulies DS, Yan CG, Milham MP (2014) Common intrinsic connectivity
states among posteromedial cortex subdivisions: Insights from analysis of temporal dynamics.
Neuroimage 93:124–137.

Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller
JW, Zöllei L, Polimeni JR et al. (2011) The organization of the human cerebral cortex estimated
by intrinsic functional connectivity. Journal of neurophysiology 106:1125–1165.

Zalesky A, Fornito A, Cocchi L, Gollo LL, Breakspear M (2014) Time-resolved resting-state brain
networks. Proceedings of the National Academy of Sciences 111:10341–10346.

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2017. ; https://doi.org/10.1101/126524doi: bioRxiv preprint 

https://doi.org/10.1101/126524
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Data
	RSN time courses
	Measures of RS dynamics
	Surrogates
	Model and simulations

	Results
	Resting state networks coactivate strongly
	Modulations in RSN activation driven by underlying BOLD
	During peaks, the brain is closer to average FC structure
	Stationary dynamics can explain a lot, but not everything
	RSN temporal dynamics in surrogates and stationary model

	Discussion
	Relationship between changes in activity and in FC
	Time scales and possible origins of fluctuations
	RSNs overlap in time
	Conclusions and Outlook


