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The past decade has been proclaimed as a hugely successful era of gene discovery through the high 39 

yields of many genome-wide association studies (GWAS). However, much of the perceived benefit of 40 

such discoveries lies in the promise that the identification of genes that influence disease would 41 

directly translate into the identification of potential therapeutic targets (1-4), but this has yet to be 42 

realised at a level reflecting expectation. One reason for this, we suggest, is that GWAS to date have 43 

generally not focused on phenotypes that directly relate to the progression of disease, and thus 44 

speak to disease treatment.  45 

 46 

As of 2017-04-03, the GWAS Catalog contained 2854 publications and 33674 unique SNP-trait 47 

associations (5). The large majority of these studies investigate genetic variation related to the 48 

presence (or occurrence) of disease. Such variants, though they may be informative for prevention 49 

of disease, have unclear utility in informing disease treatment. If variants implicate aetiological 50 

mechanisms of importance for disease onset, but of little relevance to disease progression, then the 51 

use of case/control GWAS as evidence to inform disease treatment related drug discovery could be 52 

futile. As an obvious example consider GWAS of lung cancer. The lead variants identified in such 53 

GWAS tag a locus related to heaviness of cigarette smoking (6), supporting the overwhelming 54 

evidence that smoking causes lung cancer. However, cessation of smoking is hardly an efficacious 55 

treatment strategy after the onset of disease, although not smoking is a highly effective means of 56 

very substantially reducing the risk of developing lung cancer in the first place. Examples of factors 57 

causing both disease incidence and disease progression exist - for example, LDL cholesterol levels 58 

clearly influence risk of initial coronary events and lowering LDL cholesterol reduces risk of 59 

subsequent events. However, it is not necessarily the case that risk factors will influence both 60 

disease onset and disease progression – for example, a recent GWAS of Crohn’s disease observed 61 

independent genetic variants for risk of onset and progression (7), and reported a negative genetic 62 

correlation (estimated through LD score regression) between occurrence and progression, although 63 

this was imprecisely estimated. It is indeed possible that in some cases the effects of a particular 64 
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exposure on initiation and prognosis of disease could be in opposite directions, as has been 65 

suggested with respect to folate intake and colon cancer(8).  66 

 67 

In contrast to the large body of research on genetic risk of disease incidence, only a small proportion 68 

of GWAS studies (~8% of associations curated in the GWAS Catalog (p<1x10-5)) have attempted to 69 

identify variants associated with disease progression or severity, and those that have are mostly 70 

small (90% have n<5000). Investigating disease progression as a trait offers considerable opportunity 71 

for identifying treatment targets and informing therapeutics, but it also introduces several important 72 

complications that have had little formal discussion in the literature and have not been addressed in 73 

many of the existing disease progression studies. A key problem, which we will discuss in more 74 

detail, is the issue of potential introduction of collider bias when studying a selected (i.e. case-only) 75 

group of individuals. 76 

GWAS studies are now also routinely being used to help strengthen causal inference with respect to 77 

observational associations between exposures and disease, using Mendelian Randomization (MR) (9, 78 

10), (see BOX 1). With its emphasis on causality it is important to appreciate that the challenges we 79 

present here also apply to MR. To date, few studies have used MR to identify factors influencing 80 

disease progression. In the supplementary table 1 we summarise the 27 MR studies of progression 81 

that we identified in a systematic search. Only one of these studies (9) acknowledged the issue of 82 

potential introduction of confounding through collider bias; interestingly this was the first of these 83 

studies to be published.  84 

 85 

Challenges for genetic and MR studies of disease progression 86 

Collider bias.  87 
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Collider bias is a fundamental issue in progression studies(11) (Figure 1). When a study group are 88 

selected on certain characteristics (e.g. being cases for a particular disease), this will introduce 89 

inverse associations between all independent risk factors for characteristics relating to being 90 

included within the study sample. For example, in a study of CHD progression, where only CHD cases 91 

are selected for inclusion, there will be associations induced between all CHD risk factors (genetic 92 

and non-genetic) amongst the study individuals. Therefore, in a genetic study of progression within 93 

these cases, collider bias will induce spurious associations between genetic variants and progression 94 

(providing that at least one other factor influences both incidence and progression) (12). Similarly, in 95 

an MR study of progression within these cases, the assumption that ‘the genetic instrument is 96 

independent of factors that confound the association of the exposure and the outcome’ (assumption 97 

2, BOX 2) would be violated.  98 

We investigated the bias due to studying cases only using a simple simulation study (Table 1). We 99 

simulated the situation depicted in Figure 1, with both a measured (C) and an unmeasured (U) 100 

confounder of disease incidence and progression. We simulated situations with low, moderate, high 101 

and strong confounding. Collider bias has somewhat different implications for two underlying 102 

biological mechanisms. One (as depicted in Figure 1), where risk factor A causes disease incidence, 103 

but A does not cause disease progression. In this scenario, studying cases only introduces collider 104 

bias, which induces an association between A and C, and thus results in an induced association 105 

between A and disease progression in the study sample (Table 1). The bias in the estimated effect of 106 

A on disease progression increases as the degree of unmeasured confounding of disease incidence 107 

and progression increases (i.e. the degree to which there are common factors which influence 108 

disease onset and progression), with the proportion of 95% confidence intervals including the true 109 

effect of zero falling from 90% (low confounding) to 35% (strongest confounding). The second 110 

scenario, is where risk factor C causes both disease incidence and progression (Figure 1). Collider 111 

bias is again induced by studying only cases, and here it biases the estimated effect of C on 112 
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progression towards the null (Table 1). Again, the bias increases as the degree of confounding of 113 

incidence and progression increases. 114 

This collider bias can lead to either over- or under-identification of genetic risk factors for 115 

progression, depending on the direction of the relationships between the risk factors and disease 116 

onset. Collider bias should always be properly considered and a number of things can be done to 117 

mitigate this potential bias. 118 

1. Check for association between the genetic variant and disease incidence in any study of 119 

disease progression. When a variant is identified as associated with progression, the 120 

association between this variant and disease incidence (or other selection criteria) should 121 

also be reported. This can demonstrate whether there is any potential for collider bias. 122 

2. Check for associations between the genetic variant and potential confounders in the study 123 

sample – such associations might indicate that both the genetic variant and confounders 124 

influence disease incidence(13). 125 

3. If there are associations between genetic variant and potential confounders of disease 126 

incidence and progression, then adjusting for such confounders will mitigate the problem. 127 

However, investigators should be aware that as with any study of traditional risk factors, 128 

unmeasured confounding will remain an issue.  129 

4. If certain parameters are known (such as prevalence of disease and the effects of the 130 

genetic and potential confounders on disease onset), then it is possible to estimate the 131 

induced bias and so potentially correct for it using analytical formulae (12) or inverse 132 

probability weighting. 133 

It is an important aside to note that whilst disease incidence and diagnosis are the particular 134 

selection criteria of concern in the context of a progression study, ANY factor which relates to 135 

selection of study participants can result in collider bias(11). Therefore, any study where the 136 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 8, 2017. ; https://doi.org/10.1101/126599doi: bioRxiv preprint 

https://doi.org/10.1101/126599
http://creativecommons.org/licenses/by/4.0/


6 

 

participants are not a random selection of the population can suffer from induced association 137 

between genetic variants and factors which are independent in the underlying population. 138 

 139 

Confounding with disease stage at baseline.  140 

Studies of progression should be carefully designed so that it is true ‘progression’ that is the 141 

outcome. Under some situations disease detection (and hence position of individuals along the 142 

disease progression timeline at diagnosis) may be associated with other factors (e.g. smoking could 143 

be related to age at onset). For example, suppose that older people were more likely to take part in 144 

a screening programme, as national screening programmes often have a lower age limit. Thus, older 145 

people with cancer would tend to have their cancer detected earlier (by screening), and thus present 146 

with less advanced cancer, whereas younger people with cancer might present with symptomatic 147 

(more advanced) cancer. In a study of people with this cancer, it would appear that age was a 148 

positive prognostic factor.  However, if stage at study entry was assessed, then the association 149 

between age and stage could be examined, and controlled for in the analysis. Ideally stage of disease 150 

at study entry should be independent of the genetic variants.  Collider bias with factors such as age 151 

might violate this – if age and genetic variant both influence disease incidence, and age influences 152 

stage of disease at study entry, then in a case-only study, the genetic variant would appear to be 153 

associated with age and hence, also with stage of disease at study entry. In this example, this 154 

spurious correlation could be removed by adjusting for age – however, in practice, all the factors 155 

influencing risk of disease occurrence will not be known. 156 

 157 

Measurement of progression.  158 

GWAS and MR typically use a single measure of either a continuous (e.g. blood pressure at age 60) 159 

or a binary (e.g. occurrence of a myocardial infarction by age 60) outcome. In a study of progression, 160 
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the outcome may be more complex: time to cancer recurrence; survival time; accumulation of 161 

disability over a 20-year period; or recurrence-free survival time. For these outcomes more 162 

sophisticated analysis may be required such as survival analysis (including handling censoring - 163 

whereby follow-up data may be missing for individuals in a non-random pattern) and analysis of 164 

trajectories. We have developed methodology for GWAS of trajectories(14, 15), and methods for 165 

Mendelian Randomization in the context of survival analysis are available(16) but computational 166 

challenges remain and further methodological development is much needed. In addition, to allow 167 

well-powered meta-analysis studies to be conducted, comparable measures of progression will need 168 

to be available across datasets.  169 

 170 

Availability of data. 171 

 GWAS and MR of disease occurrence has had huge recent success, in no small part due to the 172 

availability of very large datasets. In order for GWAS and MR of progression to see the same success, 173 

there is a need for availability of large-scale studies with both progression and genetic data. One 174 

potential source of such data is from randomised controlled trials, which will have detailed follow-up 175 

of patients and often now collect DNA as a standard. Genome-wide genotyping of such resources is 176 

an important first step. Generation of valuable progression data for GWAS is likely to require large 177 

consortia collaboration (as has been the case for traditional GWAS). Therefore, standardisation of 178 

progression measures across a number of studies is also going to be important for this approach to 179 

reach its full potential. 180 

If all of these issues are appropriately addressed, there is huge opportunity for GWAS and MR of 181 

disease progression to identify potential new treatments(17). Platforms such as MR-Base (18), which 182 

catalogues all available GWAS data for simple implementation of MR, will make it possible to easily 183 

screen for potential new drug targets to treat disease. 184 
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 276 

 277 

Figure 1. Directed acyclic graph (DAG) demonstrating the issue of collider bias in studies with 278 

participants selected according to disease status. In this situation collider bias induces an inverse 279 

association (dashed line) between any factors (A, C and U) that affect disease incidence (or other 280 

study selection criteria). When one or more of these factors are also associated with disease 281 

progression (C, U), a back-door path is opened up from A to disease progression through the induced 282 

association. If A is a genetic risk factor, it can appear there is an association between genetic risk 283 

factor A and disease progression only because of the induced association with C or U. If C is 284 

measured and can be adjusted for, the induced association is blocked, but unmeasured U cannot be 285 

adjusted for in the analysis. Only when the genetic risk factor for progression is not also a risk factor 286 

for incidence (i.e. B) will it not be affected by selection bias. 287 

 288 

 289 
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 291 

 292 
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 294 

BOX 1: Mendelian Randomization 

Mendelian randomization is an approach that uses genetic variation to improve causal inference 

in observational studies. A genetic variant associated with the exposure of interest (genetic 

instrument) is used to test the causal relationship between exposure and outcome (Figure B1). If 

there is association between the genetic instrument and the outcome, then there is assumed to 

be a causal relationship, because unlike in the observational association, the genetic variant is not 

subject to issues of reverse causation and/or confounding.   

 

 

 

 

 

Figure B1. Directed acyclic graph (DAG) of Mendelian Randomization method 

Assumptions of MR (19): 

(1) The genetic instrument is associated with the exposure of interest 

(2) The genetic instrument is independent of factors that confound the association of the 

exposure and the outcome 

(3) The genetic instrument is independent of the outcome, given the exposure and the 

confounders 

The method has been widely applied in the investigation of exposures that increase the risk of 

disease (20), both within single studies and in a two-sample framework based on summary data, 

generally from large-scale genome wide association study (GWAS) consortia (21). Such studies 

have demonstrated evidence of causal relationships (e.g. for obesity, blood pressure and smoking 

with increased risk of coronary heart disease CHD (22-24)), lack of causal relationships (e.g. for C 

reactive protein relationship with CHD, diabetes and cancer (25-27)), debunking supposed 

protective behaviours (such as the beneficial effects of moderate alcohol intake on CHD risk (28)) 

and predicting randomised controlled trial successes and failure (29).  

The emphasis on causality in a Mendelian randomization study has led to the acknowledgement 

within the field that they are also likely to have great value in suggesting what are likely to be 

successful interventions for treatment of disease (30,31). However, there are particular aspects of 

the study of disease prognosis that limit the applicability of Mendelian randomization.  

Genetic 

instrument 
Exposure Outcome 

Confounders 
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 301 

  302 

BOX2: Collider bias in MR 

Collider bias is an issue in MR of progression, because for any exposure that causes onset of 

disease, the genetic instruments for that exposure will be inversely associated with any other 

risk factor for onset and so the association between the genetic variant and progression may 

be subject to confounding by these factors (Figure B2). Although this is true for single variants, 

the combination of variants into a polygenic score may serve to dramatically increase this 

effect (32). 

 

 

 

 

 

 

 

Figure B2. DAG to demonstrate how the introduction of collider bias through the selection of 

cases (grey paths) can impact an MR analysis between an exposure and disease progression as 

an outcome. 

Association induced because SNP causes disease (via exposure), and thus conditioning on disease 
induces an association between all variables causing disease. In a model not adjusting for exposure 
(e.g. relating progression to SNP), there is an association between SNP and the confounders, which 
biases the SNP-progression association. 
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 Degree of confounding by unmeasured confounder(s) (U) 

 Low  

OR for disease=1.5 

Beta for progression=0.5 

Mod  

OR for disease=2  

Beta for progression=0.8 

High  

OR for disease=2.5  

Beta for progression=1 

Strong  

OR for disease=3 

Beta for progression=1.5 

Apparent effect of A on progression 

(regression coefficient, SE) 

True effect=0 

-0.01 (0.01) -0.02 (0.02) -0.03 (0.02) -0.06 (0.03) 

Percentage of 95% CI including 0 90% 78% 66% 35% 

Apparent effect of C on progression 

(regression coefficient, SE) 

True effect=0.1 

0.10 (0.01) 0.08 (0.01) 0.07 (0.01) 0.04 (0.02) 

Proportion of 95% CI including 0.1 72% 35% 18% 1% 

Table 1: Estimated effects of A (risk factor for incidence only) and C (risk factor for incidence and progression) from Figure 1, under different degrees of 303 

unmeasured confounding of incidence and progression.  304 

 305 

Each cell represents results from 500 simulations with a sample size of 50,000.  306 

Uppercase letters refer to factors in Figure 1, lowercase letters refer to effect sizes of paths in Figure 1. 307 

In all scenarios the OR for A and C for disease incidence are 1.3, and the MAF for genetic variants A is 0.2.  308 

C and the unmeasured confounder (U) are standard normal variables, disease is a binary variable (with prevalence of approximately 0.2) and prognosis is a 309 

normally distributed variable. 310 
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