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Abstract  

Motivation: High–throughput sequencing has transformed the study of gene expression levels through 

RNA-seq, a technique that is now routinely used by various fields, such as genetic research or 

diagnostics. The advent of third generation sequencing technologies providing significantly longer 

reads opens up new possibilities. However, the high error rates common to these technologies set new 

bioinformatics challenges for the gapped alignment of reads to their genomic origin. In this study, we 

have explored how currently available RNA-seq splice-aware alignment tools cope with increased 

read lengths and error rates. All tested tools were initially developed for short NGS reads, but some 

have claimed support for long PacBio or even ONT MinION reads. 

Results: The tools were tested on synthetic and real datasets from the PacBio and ONT MinION 

technologies, and both alignment quality and resource usage were compared across tools. The effect of 

error correction of long reads was explored, both using self-correction and correction with an external 

short reads dataset. A tool was developed for evaluating RNA-seq alignment results. This tool can be 

used to compare the alignment of simulated reads to their genomic origin, or to compare the alignment 

of real reads to a set of annotated transcripts. 

Our tests show that while some RNA-seq aligners were unable to cope with long error-prone reads, 

others produced overall good results. We further show that alignment accuracy can be improved using 

error-corrected reads. 

Availability: https://github.com/kkrizanovic/RNAseqEval  

Contact: mile.sikic@fer.hr 
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1 Introduction 
Over the past ten years, the use of next generation sequencing (NGS) platforms, in particular Illumina, 

has expanded to dominate the genome and transcriptome sequencing market. Their sequencing-by-

synthesis approach is indeed much cheaper and faster than the previously used Sanger sequencing. 

Recently, two new sequencing technologies, the so-called “third generation sequencing technologies”, 

have emerged, that produce longer reads and hold numerous promises for genomic and transcriptomic 

studies. 

First, the single-molecule sequencing technology unveiled in 2010 by Pacific Biosciences (PacBio), 

produces reads up to a few tens of thousands of base pairs long. However, raw reads (“subreads”) 

display significantly higher error rate (~10-20%) than reads from the Illumina technology (~1%) 

(Schirmer et al., 2015; Ross et al., 2013; GLENN, 2011). To reduce error rates, circularized fragments 

are sequenced multiple times and the subreads produced can be reconciled to produce higher-quality 

consensus “Reads of Insert” (ROIs, previously called Circular Consensus Reads). However, there is a 

trade-off between the ROIs length and accuracy because, with longer fragments accumulating fewer 

sequencing passes. 

Second, the portable MinION sequencer unveiled in 2014 by Oxford Nanopore Technologies (ONT), 

produces even longer reads (up to a few hundreds of thousand base pairs long), but with even higher 

error rates. Using the R7.3 chemistry, raw reads (“1D” reads) had an error-rate of more than 25%, 

while consensus “2D” reads (where template and complement of double-stranded fragments are 

successively sequenced and reconciled) displayed 12-20% error rate (Laver et al., 2015; Sović et al., 

2016). It is likely that improvement in the chemistries (notably the recently released R9 and R9.4) has 

reduced error rates (http://lab.loman.net/2016/07/30/nanopore-r9-data-release). 

For transcriptomic studies, long reads of these third generation sequencing technologies should be 

very helpful in the challenging task of identifying isoforms, and estimating reliably and precisely their 

abundances (Łabaj et al., 2011; Garber et al., 2011). It is unclear though whether high error rates will 

allow precise identification of exon-exon junctions required for proper discrimination of isoforms that 

are very similar in sequence (e.g., NAGNAG splicing). 

The aim of this work was to determine whether currently available RNA-seq splice-aware aligners 

were able to handle third generation sequencing data, namely much longer read length and 

significantly higher error rate. Such a benchmark of RNA-seq alignment tools and pipelines, 

previously performed on both real and synthetic Illumina reads (Engström et al., 2013) proved to be 

very helpful for the community of end-users but, to our knowledge, was not yet performed on third 

generation sequencing data. 

Splice-aware RNA-seq alignment tools can be divided into two groups. First, guided splice-aware 

aligners, use the genome sequence and known gene annotations to calculate gene or transcript 

abundance, but cannot be used to identify new splice junctions. Second, de novo splice-aware aligners 

can align RNA-seq reads to a reference genomic sequence without prior information on gene 

annotations. 

In this paper, we chose to focus on de-novo splice aware aligners and on third generation sequencing 

data. 

BBMap is to our knowledge the only tool claiming support of both PacBio and ONT reads (Bushnell 

et al., 2014). It uses short k-mers to align reads directly to the genome, spanning introns to find novel 

isoforms. It uses a custom affine-transform matrix to generate alignment scores. 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 11, 2017. ; https://doi.org/10.1101/126656doi: bioRxiv preprint 

https://doi.org/10.1101/126656
http://creativecommons.org/licenses/by-nc/4.0/


A tutorial, developed by the PacBio team (available at 

https://github.com/PacificBiosciences/cDNA_primer/wiki/Aligner-tutorial:-GMAP,-STAR,-BLAT,-

and-BLASR) recommends modified sets of parameters for the alignment of PacBio reads with STAR 

and GMAP, based on in-house testing. STAR (Dobin et al., 2013) employs sequential maximum 

mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching 

procedure. It detects novel canonical, non-canonical splices junctions and chimeric-fusion sequences. 

GMap (Wu and Watanabe, 2005) is a part of GMAP/GSNAP package and uses dynamic programming 

to find an optimal global chain of short kmers. 

In our tests we included TopHat2 (Kim et al., 2013), the most popular aligner for Illumina reads. 

TopHat2 implements a two-step approach where initial read alignments are first analyzed to discover 

exon-exon junctions, which are then used in the second step to determine the final alignment. 

HISAT2, the successor of Tophat2, was also included. It uses a global FM-index, as well as a large set 

of small FM-indexes (called local indexes) that collectively cover the whole genome. This strategy 

enables effective alignment of RNA-seq reads spanning multiple exons (Kim et al., 2015). 

In the event that aligners are unable to cope with high error rates in the reads, we tested if the addition 

of an error-correction step before the mapping step could be useful. Recent tools have been developed 

that allow error correction of reads from third generation sequencing technologies, taking advantage of 

the redundancy within each dataset, or combining them with second generation sequencing datasets 

(Bradley et al., 2012). The latter (so-called “hybrid”) approach has already been used to obtain a 

comprehensive characterization of the transcriptome of the human embryonic stem cell (Au et al., 

2013). In this work we applied both approaches and quickly discuss their merits. 

2 Methods 
Since the actual origin of reads in real datasets is unknown and can only be estimated through the 

alignment process, real datasets are not best suited to assess the performance of alignment tools. The 

accuracy and precision of aligners can be assessed on synthetic data, but in return simulators fail to 

mimic every aspect of real-life datasets, potentially biasing the benchmark results. In this work, we 

thus decided to use both simulated and real datasets. 

All real datasets consist of RNA converted to cDNA and amplified prior to sequencing. For 

simulation, we have used the PacBio reads simulator PBSIM (Ono et al., 2013). Several datasets were 

simulated with different parameters, and using the annotated transcriptome of different organisms (the 

baker’s yeast Saccharomyces cerevisiae, the fruit fly Drosophila melanogaster, and human 

chromosome 19; see Supplementary data). 

For the purpose of comparison, one ONT MinION dataset was also simulated using PBSIM, setting 

the parameters according to the statistics of ONT MinION R9 real data. While a PacBio simulator is 

not entirely appropriate for ONT MinION data, we felt that mimicking their read length and error 

profile (frequency of insertions, deletions and mismatches) should provide some useful insight. At the 

time of our simulation experiments, we were unaware of a dedicated MinION reads simulator. Since 

then, we became aware of NanoSim (Yang et al., 2017), but due to time constraints decided not 

include it in our benchmark. 

In order to explore the effect of read error correction on alignment, the highest quality real PacBio 

dataset was error corrected using the recent consensus tool Racon (Vaser et al., 2017). Both correction 

using external Illumina reads and self-correction were explored. 

The description of simulated datasets generation can be found in the Supplementary material. Table 1 

shows relevant statistics of test datasets. As can be seen from the table, datasets vary in size and 

complexity. For example, datasets 2 and 4 have similar size because they were generated using the 
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same approximation of the gene coverage histogram, however, since MinION ONT reads are on 

average longer than PacBio reads, dataset 2 contains more reads than dataset 4. 

2.1 Datasets 

To generate simulated datasets, we used PBSIM version 1.0.3, downloaded from 

https://code.google.com/archive/p/pbsim/. 

 

Synthetic datasets were created from the following organisms: 

- Saccharomyces cerevisiae S288 (baker’s yeast) 

- Drosophila melanogaster r6 (fruit fly) 

- Homo Sapiens GRCh38.p7 (human) 

Reference genomes for all organisms were downloaded from http://www.ncbi.nlm.nih.gov. 

 

PBSIM is intended to be used as a genomic reads simulator, taking as input a reference sequence and a 

set of simulation parameters (e.g., coverage, read length, error profile). To generate RNA-seq reads, 

PBSIM was applied to a set of transcripts generated from a particular genome using the gene 

annotations downloaded from https://genome.ucsc.edu/cgi-bin/hgTables. To make the datasets as 

realistic as possible, real datasets were analyzed and used to determine simulation parameters. Real 

gene expression datasets were used to select a set of transcripts for simulation (downloaded from 

http://bowtie-bio.sourceforge.net/recount/; core (human), nagalakshmi (yeast) and modencodefly (fruit 

fly) datasets ONT MinION were used). 

 
Table 1 Test dataset statistics 

Data 
set 

Type Organism Technology Size No. 
genes 

No. reads % AS 
genes 

0 Real D. melanogaster Illumina 1 GB NA 4,000,000 NA 
1 Synthetic S. cerevisiae PacBio ROI 400 MB 6,000 185,000 0 
2 Synthetic D. melanogaster PacBio ROI 1.4 GB 7,000 412,000 10 

3 Synthetic Homo sapiens, 
chr. 19 

PacBio ROI 200 MB 1,520 84,000 60 

4 Synthetic D. melanogaster ONT R9 2D 1.4 GB 7,000 342,000 10 
5 Real D. melanogaster PacBio ROI 1 GB NA 192,000 NA 
6 Real D. melanogaster PacBio Subreads 1 GB NA 243,000 NA 
7 Real D. melanogaster PacBio ROI error-

corrected 
500 MB NA 192,000 NA 

8 Real D. melanogaster ONT R9 2D 120 MB NA 40,000 NA 

 

 Dataset0 was randomly subsampled from available Illumina data (from 130 GB to 1GB) to 

obtain a coverage in the same order of magnitude as other datasets. 

 Dataset1 was generated using PBSIM and an error profile obtained from PacBio ROI reads 

using Saccharomyces cerevisiae transcriptome. 

 Dataset2 was generated using PBSIM and an error profile obtained from PacBio ROI reads 

using Drosophila melanogaster transcriptome. 

 Dataset3 was generated using PBSIM and an error profile obtained from PacBio ROI reads 

using human chromosome 19 transcriptome. Only one human chromosome was used to keep 

the dataset size appropriate for the test. 

 Dataset4 was generated using PBSIM and an error profile obtained from ONT MinION R9 

reads using Drosophila melanogaster transcriptome. 

 Dataset5 was randomly subsampled from available PacBio ROI reads. 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 11, 2017. ; https://doi.org/10.1101/126656doi: bioRxiv preprint 

https://doi.org/10.1101/126656
http://creativecommons.org/licenses/by-nc/4.0/


 Dataset6 was randomly subsampled from available PacBio subreads. 

 Dataset7 was obtained by error correcting available PacBio ROI reads using self-correction. 

 Dataset8 was obtained by using all available ONT MinION R9 2d reads. 

Real RNA-seq datasets used in this benchmark were generated from D. melanogaster. Technical 

replicates of the same sample were sequenced with three different technologies: Illumina HiSeq, 

PacBio RSII and ONT MinION. Illumina data were used for base-line comparison of all tested tools 

and for error correction of PacBio reads. PacBio and MinION data were used to assess aligners’ 

performances and to determine error profiles that were then used for simulation of synthetic data. In 

total we used: 

 1GB of Illumina reads, subsampled randomly from a larger dataset of 130GB. The reads were  

of size 101bp. 

 Over 5GB of PacBio subreads, sequenced from 3 different size fractions of transcripts (1-2 kb, 

2-3 kb and 3-7 kb, 2 SMRT-cells sequenced for each size fraction). This corresponded to 

about 2GB of Reads of Insert extracted from the subreads. 

 350MB of ONT MinION reads using the R9 chemistry. Because of the very low quality of 1D 

reads, only 2D reads were used in this benchmark. 

2.2 Simulated data preparation 

Simulated datasets were generated using the following workflow: 

1. Analyze real datasets to determine error profiles. 

2. Filter annotations (keep only primary assembly information) and unify chromosome names. 

3. Separate annotations for genes with one isoform and genes with alternative splicing, keeping 

up to 3 isoforms randomly for each gene with alternative splicing. 

4. Generate a transcriptome from processed annotations and a reference genome. 

5. Analyze gene expression data and determine gene coverage histogram (Figure 1). 

6. Approximate gene coverage histogram with 3 points to determine coverage and number of 

genes in simulated dataset (Figure 1). Scale coverages proportionally down to make a smaller 

dataset, more suitable for testing. 

7. Extract 6 subsets of sequences from generated transcriptome, 3 for genes with single splicing 

and 3 for genes with alternative splicing. Each set contains a number of transcripts 

corresponding to the number of genes from a previous step. 

8. Using PBSIM, simulate reads on each generated subset of transcriptome, using coverages 

determined in step 6 and error profiles determined in step 1. 

9. Combine generated reads into a single generated dataset. 

 

For simplicity, we rounded the coverage and number of genes from each transcriptome subset. For 

example, Table 2 shows the numbers used to generate dataset 2 (D. melanogaster). The annotation 

includes roughly 23,000 genes with a single isoform and 3,000 genes with alternative splicing. 

Rounding up the ratio, we have decided to simulate 1/10 genes with alternative splicing and 9/10 

genes without. We considered that each gene undergoing alternative splicing gave rise to three 

different isoforms with equal expression. 

 

For simulation of PacBio reads, PBSIM parameters (read length, error probability by type, etc) were 

set to match those of dataset 5 containing reads of insert (see Supplement table 1). 

For simulation of MinION ONT reads, PBSIM parameters (read length, error probability by type etc.) 

were set to match those for MinION reads from a R9 chemistry dataset obtained from the Loman lab 
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website (http://lab.loman.net/2016/07/30/nanopore-r9-data-release). Only 2d reads statistics were 

used. 

 

 
Figure 1 Data preparation step 6: Approximating gene expression with three points, applied to dataset 2. Three points were 
chosen as a compromise between achieving simple simulation and realistic datasets. 

 
Table 2 Generating synthetic dataset 2 

Group Total no. 
genes 

Coverage Genes without 
alternative 
splicing 

Genes with 
alternative 
splicing 

Transcripts 
with alternative 
splicing 

Coverage for 
AS transcripts 

1 5000 5 4500 500 1500 2 
2 2000 50 1750 250 750 15 
3 2000 100 1750 250 750 30 

 

2.3 Error correction 

To test if the alignment results could be improved using error correction, the highest quality PacBio 

dataset (containing ROIs) was corrected. Error correction was performed using Racon (Vaser et al., 

2017). Correction using Illumina reads, and self-correction were tested. Since self-corrected dataset 

proved to have better error profile, only this dataset was retained for the benchmark (Dataset statistics 

is given in Supplement table 1). 

Supplement table 1 displays error rate and read length statistics for all real datasets, including all 

datasets obtained using error correction. 

2.4 Evaluated RNA-seq tools 

We tested five RNA-seq alignment tools that have been updated recently reflecting that they are still 

being maintained. 

 

STAR: Downloaded from https://github.com/alexdobin/STAR. Version 2.5.2b was used. STAR was 

run with parameters suggested at Bioinfx study: Optimizing STAR aligner for Iso Seq data from 

PacBio GitHub pages (https://github.com/PacificBiosciences/cDNA_primer/wiki/Bioinfx-study:-

Optimizing-STAR-aligner-for-Iso-Seq-data), see Supplement Note 2. 

Avg. exps. 170 
No. genes 5600 

Avg. exps. 1900 
No. genes 2100 Avg. exps. 9300 

No. genes 2500 
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Tophat2: Binaries were downloaded from https://ccb.jhu.edu/software/tophat/index.shtml and used 

with BowTie2. Version 2.1.1 was used, with default parameters for alignment. SAMTools version 1.2 

were used to convert Tophat output from BAM to SAM format. 

 

Hisat2: Binaries were downloaded from https://ccb.jhu.edu/software/hisat2/index.shtml. Version 2.0.4 

was used, with default parameters for alignment. 

 

BBMap: Downloaded from https://sourceforge.net/projects/bbmap/. The script mapPacBio.sh was 

used. BBMap version 35.92 was used. Reads were first converted to FASTA format (originally in 

FASTQ format) using samscripts tool (https://github.com/isovic/samscripts). The program was then 

run with the option fastareadlen set to a value appropriate for each dataset. 

 

GMap: Source code was downloaded from http://research-pub.gene.com/gmap/. Version 2016-11-07 

of GMap as used. GMap was used with default parameters, as recommended in the tutorial for using 

GMap with PacBio data (https://github.com/PacificBiosciences/cDNA_primer/wiki/Aligner-

tutorial%3A-GMAP%2C-STAR%2C-BLAT%2C-and-BLASR). 

2.5 RNAseqEval tool 

Three of the five RNA-seq aligners were evaluated on resource usage and alignment quality. CPU and 

memory consumption were evaluated using a fork of the Cgmemtime tool 

(https://github.com/isovic/cgmemtime.git). 

 

To evaluate the quality of each aligner, we developed RNAseqEval 

(https://github.com/kkrizanovic/RNAseqEval), meant to be a general tool for evaluating RNA-seq 

alignments. It is written in Python and contains two main scripts, one for evaluating data simulated 

using PBSIM and the other for evaluating real data or data whose origin is unknown. Both scripts 

require aligner output in SAM format which they compare to gene annotations and, in case of 

simulated data, alignment files in MAF format describing the origin of each simulated read. 

2.5.1 Evaluating synthetic data. 

The script for evaluating synthetic or simulated data currently works only on data simulated with 

PBSIM, but could be expanded in the future to support other simulators. Aside from aligner output in 

SAM format and gene annotations in GTF or BED format, the script takes a folder containing files 

generated by PBSIM. The folder containing PBSIM data needs to have a specific structure and follow 

a specific naming convention described in the program documentation. 

For each read from aligner output, the script will use PBSIM generated MAF files and gene 

annotations to find its origin on the reference genome and will compare it to the alignment calculated 

by the aligner. The start and end position of an alignment and of read origin are compared, and an 

error of 5 nucleotides is tolerated. The script outputs summary information on how many reads were 

accurately aligned to their chromosome, strand and position of origin. 

2.5.2 Evaluating real data 

The script for evaluating real data takes only aligner output in SAM format and gene annotation in 

GTF or BED format as its input. Because the origin of a read is unknown, the script will check 

annotations for genes with which the read overlaps, and then evaluate how well a read alignment 

matches exons and introns of that gene. 
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When matching beginning and end of an alignment to each exon in an annotation, an error of 5 

nucleotides is tolerated. Similarly, an overlap between an alignment and an exon annotation needs to 

be at least 5 base-pairs to be considered valid. 

3 Results 

3.1 Baseline comparison 

We first examined how alignment tools performed on the Illumina “baseline” dataset 0 (Table 3). We 

found that all aligners managed to align a large fraction of Illumina reads. 

On datasets that include longer and more erroneous reads however (dataset 1 to dataset 8), there were 

large discrepancies across tools. In particular, Tophat2 and Hisat2 were unable to align any or hardly 

any read. Therefore, we did not consider these two tools in further analyses, and we focused on the 

remaining three aligners: BBMap, GMap and STAR. 

Table 1 Percentage of reads aligned over all aligners and datasets 

Dataset 
Dataset 

0 
Dataset 

1 
Dataset 

2 
Dataset 

3 
Dataset 

4 
Dataset 

5 
Dataset 

6 
Dataset 

7 
Dataset 

8 

No. reads 4000000 185000 412000 84000 342000 192000 243000 192000 40000 

Aligner  

STAR 96.8% 48.9% 33.3% 32.3% 5.5% 46.1% 0.1% 67.2% 16.7% 

Tophat2 85.2% 0.7% 0% 0% 0% 0% 0% 0% 0% 

Hisat2 94.8% 6.77% 0% 0% 0% 0% 0% 0.4% 0% 

BBMap 97.6% 91,4% 84.5% 64.3% 43.0% 74.5% 72.8% 82.8% 88.0% 

GMap 96.7% 89.2% 92.0% 88.3% 98.8% 85.4% 89.7% 88.5% 98.3% 

 

Based on the percentage of reads aligned, the best results were achieved by GMap, which aligned 

more than 85% of reads across the all tested datasets.  

BBMap performed slightly better on Illumina (dataset0) and on synthetic S. cerevisiae PacBio dataset 

(dataset1, which contains very few multi-exon transcripts), but the fraction of reads aligned fell behind 

GMap on more complex synthetic datasets and real datasets (e.g., only 43% of the synthetic H. sapiens 

PacBio reads of dataset 4 were aligned).  

STAR managed to align a large percentage of Illumina reads (96.8%), but its performance was uneven 

across third generation sequencing datasets, aligning from 0.1% to 67.2% of the reads, and often 

aligning less than half of the reads. STAR was seemingly affected by increased complexity of the 

datasets, as well as by increased error rates (Illumina and error-corrected PacBio datasets achieving the 

best performance). 

Across all tools, error correction improved alignment rates, as can be seen from the comparison of 

dataset 5 and dataset 7. 

In summary, for some aligners the percentage of alignment for third generation sequencing 

technologies reads was similar to what is achieved for Illumina reads. However, looking only at the 

number of the reads each tool managed to align to a genome is not a reliable measure of general 

alignment quality. For example, a tool could align most of the reads, but only on only a portion of their 

length, or it could align them at incorrect location on the genome. 
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3.2 Synthetic datasets 

To get more insights into the quality of the alignments, we evaluated the aligners on 4 synthetic 

datasets generated from transcriptomes of varying complexity using the PBSIM tool (materials and 

methods), and supposed to reflect characteristics of the PacBio (datasets 1 to 3) and ONT MinION 

technologies (dataset 4). In these datasets, the precise origin of each read is known, allowing to assess 

the alignment quality by examining how well the alignment location matches the origin location in the 

genome. The alignment results for those datasets were evaluated using the RNAseqEval tool, as 

summarized in Figure 2. 

 
Figure 2 Simulating and evaluating synthetic datasets 

Results of the evaluation on all synthetic reads are shown in Table 4. The evaluation on the subset of 

split reads (i.e., reads aligned to multiple non-contiguous locations on the reference genome) is also 

shown. Split reads, if aligned correctly, should overlap at least one exon-exon junction in the transcript 

of origin, and thus cover two or more exons. Percentage of reads shown in Table 4 are relative to the 

number of reads in input; the percentage relative to the number of aligned reads are shown in 

Supplement table 2. 

Overall, the most accurate alignments were given by GMap and BBMap. In particular, GMap 

performed the best at aligning reads to correct general genomic locations, i.e., overlap exonic regions 

from which the simulated reads originated (hit all and hit one). BBMap however performed better at 

aligning the beginning and end of reads to their exact genomic position of origin (both ends), 

especially on lower complexity datasets.  

Reads aligned by STAR mostly aligned to correct general genomic locations (hit all and hit one), and 

displayed very good match rates, however the low fraction of reads overall aligned (Table 3 and 4) did 

not allow this tool to compare favorably to GMap and BBmap. Moreover, STAR did not perform 

particularly well at correctly aligning the beginning and end of reads. 

Datasets 2, 3 and 4 displayed a significant number of split reads, for example dataset 3 based on 

chromosome 19 of human genome included 60% of genes with alternative splicing. Focusing on split 

ALIGNMENT  EVALUATION 

G 

R1       Both ends / Hit all 
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R3       Bad alignment 
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T1 

T2 
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Gene2 
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R1 

R2 

R3 
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read statistics on those datasets, BBMap performed significantly worse than GMap and sometimes 

than STAR: on dataset 3 it managed to overlap all exons from a read origin (Split hit all) less precisely 

than STAR (10.2% Vs. 19.4%). For STAR, results for split reads were in line with its overall results, 

but the overall number of aligned reads being so low, STAR cannot be recommended for the 

alignment of third generation sequencing RNA-seq reads. 

Overall, BBMap outperformed GMap in alignment precision on datasets with lower isoform diversity, 

but lagged behind in general alignment efficiency, sometimes by a large margin, on more complex 

datasets. This indicates that BBMap could be the best tool to cope with third generation sequencing 

error rate as a DNA-seq aligner, but should be used with caution to align split RNA-seq reads. In this 

setting, GMap shows the best performance and should be preferred, although the results on dataset 1 

indicate that it is not the best tool to deal with high error rates of third generation sequencing data 

reads. 

Table 2 Aligner evaluation on synthetic datasets. All results are displayed as the percentage of all reads in the dataset. The 
percentages of reads that were aligned is shown (without assessing the accuracy), the match rate of aligned reads, percentage 
of reads for which the beginning and the end are accurately placed (both ends), percentage of reads that overlap all exons of 
the read origin (hit all) and percentage of reads that overlap at least one exon of the read origin (hit one). 

Data set Aligner Aligned Match 
rate 

Both ends Hit all Hit one Split 
reads 

Both 
ends split 

Split hit 
all 

Split hit 
one 

1 STAR 48.9% 93.7% 21.6% 46.5% 47.1% 1.89% 0.8% 1.19% 1.78% 
BBMap 91.4% 92.5% 48.2% 87.0% 88.1% 3.46% 1.0% 2.22% 3.30% 
GMap 89.2% 92.3% 40.9% 84.3% 85.4% 3.30% 0.9% 2.00% 3.14% 

 

2 STAR 33.3% 94.0% 4.1% 27.7% 30.7% 23.9% 1.4% 19.3% 22.3% 
BBMap 84.5% 89.9% 10.5% 54.4% 78.4% 64.8% 2.4% 36.7% 60.7% 
GMap 92.0% 92.0% 8.7% 69.7% 85.4% 72.8% 1.7% 52.7% 68.5% 

 

3 STAR 32.3% 94.3% 3.9% 27.5% 30.5% 23.1% 1.7% 19.4% 22.4% 
BBMap 64.3% 86.2% 10.0% 26.8% 61.2% 46.0% 3.3% 10.2% 44.5% 
GMap 88.3% 91.8% 8.0% 64.8% 83.7% 70.0% 4.4% 48.9% 68.0% 

 

4 STAR 5.50% 89.6% 0.7% 5.03% 5.3% 3.19% 0.1% 2.9% 3.16% 
BBMap 43.0% 88.4% 4.7% 26.8% 42.1% 34.2% 2.1% 18.7% 33.8% 
GMap 98.8% 90.5% 6.6% 83.6% 97.1% 80.4% 3.0% 66.4% 79.8% 

 

3.3 Real datasets 

For real data, the origin of each read is not known, thus aligners were evaluated by comparing the read 

alignment locations to a given set of gene annotations. Some other relevant statistics, such as 

alignment match rate and number of expressed genes, were also extracted (Table 5). All real datasets 

consisted of technical replicates of RNA-seq on the same D. melanogaster sample sequenced on 

different platforms. Interestingly, these datasets were characterized by different error profiles 

(Supplement table 1). 

As expected from previous tests, GMap showed the best results, followed closely by BBMap. GMap 

was notably slightly better at aligning reads to annotated exonic locations in the genome. The match 

rate of aligned reads was roughly equal to the determined error profile for each dataset (Shown in 

Supplement table 1) thus suggesting that the reads are aligned to correct positions. GMap was even 

able to align ONT MinION data with a reasonable accuracy. It is interesting to note that by some 
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criteria GMap shows better results on lesser quality dataset 6 (consisting of subreads) compared to 

higher quality dataset 5 (consisting of ROI) and dataset 7 (error corrected ROI). 

Both BBMap and GMap reported a large percentage of ONT MinION reads aligned, however, match 

rate and exon hit percent-age were lower than for PacBio datasets, indicating that a larger percentage 

of those alignments were at an incorrect position.  

STAR showed the worst alignment results. Reads successfully aligned displayed a high match rate, 

which might reflect the fact that STAR is unable to align reads with highest error rates, or that 

alignment settings are very conservative. 

Table 5 Aligner evaluation on real datasets. The table shows percentage of reads that were aligned (without assessing the 
accuracy), percentage of reads that overlap at least one exon (exon hit) and percentage of reads that overlap one or more 
exons in a sequence, corresponding to a gene annotation (contiguous exon alignment). All values are displayed as the 
percentage of all reads in the dataset. The table also shows the number of expressed genes and average match rate of aligned 
reads. Match rate is calculated as a percentage of aligned bases that are equal to the corresponding bases on the reference. 

Data set Aligner Aligned Match rate No. expressed genes Exon hit Contiguous exon alignment 

5 STAR 46.1% 92% 8310 27.5% 10.2% 
 BBMap 74.5% 71% 9371 45.1% 20.1% 

 GMap 85.4% 88% 10427 49.1% 27.1% 
 

6 STAR 0.1% 0.8% 94 0.05% 0.0% 
 BBMap 72.8% 68% 9166 45.3% 15.5% 

 GMap 90.1% 82% 10884 51.9% 20.4% 
 

7 STAR 67.2% 93% 8515 39.0% 18.6% 
 BBMap 82.8% 72% 9599 48.4% 22.1% 
 GMap 88.5% 92% 9985 50.4% 31.4% 

 

8 STAR 16.8% 83% 1675 6.3% 1.4% 
 BBMap 88.0% 67% 5449 36.3% 12.2% 
 GMap 98.3% 81% 5266 39.0% 18.7% 

 

Supplement table 1 shows that error correction somewhat improved the error profile, increasing 

average match rate by 2-3 percent. However, even that slight improvement resulted in visibly better 

alignment results on dataset 7 for all aligners: more reads reported as aligned, more exons hit, more 

genes expressed and higher match rate. However, these results are achieved on significantly less reads. 

Considering that, the box plot results are consistent with those in table 4 and table 5. 

Finally, we examined what fraction of the read length was aligned (Figure 3). The results are 

consistent with other measures of mapping quality, with STAR managing to align reads on a larger 

portion of their length compared to GMap.  

BBMap results are not displayed because in the tested settings, all alignments are made on the whole 

length of the reads (global alignments). This behaviour has some implication in the reported results, as 

the alignment on both ends of the reads is sometimes incorrect, resulting in lower match rates. It could 

be a good idea to clip alignments resulting from BBMap, for example using the “local” flag, which 

converts global alignments into local alignments by clipping them if that results in higher scores. 

However, that option seems to cause exceptions in BBMap, resulting in terminated threads and in 

significantly lower number of aligned reads on real datasets. Because of that, we used results for 

BBMap global alignment, and do not show aligned read percentage box plot for BBMap. 
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Figure 3 Box plot of aligned read percentage for STAR and GMap. Due to a large number of values, the plot contains many 
outliers. 

 

3.4 Resource usage 

To estimate the efficiency of each RNA aligner, CPU time and Maximum memory usage (Resident set 

size - RSS) were measured (Figure 4). Illumina data (dataset0) were omitted from this analysis 

because the focus of the paper is on third generation sequencing data. 

Running time seemed to depend on dataset size. In all settings, GMap used the least amount of 

memory and ran the fastest. STAR was the slowest and consistently used 60-80 GB of RAM. BBMap 

memory footprint was also consistently around 10-15 GB of RAM. 

 
Figure 4 CPU time and memory usage 

4 Conclusion 
In recent years, third generation sequencing devices have been steadily establishing themselves in the 

area of genomic research. These technologies promise to solve problems caused by the short read 

length of the NGS. Regarding RNA-seq analysis, longer reads should notably improve transcript 

identification. However, third generation sequencing technologies also introduce new bioinformatics 

challenges, mostly due to their high error rate. 
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In this study we attempted to assess the ability of currently available RNA-seq alignment tools to work 

with third generation sequencing data. Five alignment tools were tested using real and synthetic 

datasets.  

Hisat2 and Tophat2 were unable to align almost any read. STAR displayed only passable results on 

the least erroneous datasets, but failed almost completely on highly error-prone ONT MinION data.  

BBMap, performed quite well, especially on PacBio ROI reads (which have lower error rates) and on 

simpler organisms with few multiexonic genes and low level of alternative splicing. This seems to 

indicate that although it is a splice-aware aligner, BBMap best performance is achieved on contiguous 

alignments (coming from DNA-seq for example), and might not be best suited for RNA-seq data. 

Finally, GMap showed the best alignment results. It ran the fastest, used the least memory and usually 

produced the highest alignment rates, especially on complex datasets. This high rate of read alignment 

was sometimes at the cost of accuracy, and we observed that BBMap sometimes outperformed GMap 

in determining the correct beginning and end positions of aligned reads.  

Overall, aligning third generation sequencing RNA reads is currently viable with some available tools, 

but we were surprised by the low precision on alignment location. Apart from dataset 1, no aligner 

attributed more than 10.5% of reads to their correct position of origin (+/-5 bases). It is not clear if this 

result is inherent to the high error rates of the technologies, or if it is due to alignment algorithms that 

were not originally developed for these types of data, or to the specific parameters used in this 

benchmark. 

There is probably large room for improvement, by developing new more sophisticated and more 

sensitive algorithms, or by incorporating an error-correction step in bioinformatics pipeline before read 

alignment, since in our tests this visibly improved the alignment results. 
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