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ABSTRACT 17	
It is commonly hypothesized that scientists are more likely to engage in data 18	

falsification and fabrication when they are subject to pressures to publish, when they are 19	
not restrained by forms of social control, when they work in countries lacking policies to 20	
tackle scientific misconduct, and when they are male. Evidence to test these hypotheses, 21	
however, is inconclusive due to the difficulties of obtaining unbiased data.  22	

Here we report a pre-registered test of these four hypotheses, conducted on papers that 23	
were identified in a previous study as containing problematic image duplications through 24	
a systematic screening of the journal PLoS ONE.  Image duplications were classified into 25	
three categories based on their complexity, with category 1 being most likely to reflect 26	
unintentional error and category 3 being most likely to reflect intentional fabrication. 27	
Multiple parameters connected to the hypotheses above were tested with a matched-28	
control paradigm, by collecting two controls for each paper containing duplications. 29	

Category 1 duplications were mostly not associated with any of the parameters tested, 30	
in accordance with the assumption that these duplications were mostly not due to 31	
misconduct. Category 2 and 3, however, exhibited numerous statistically significant 32	
associations. Results of univariable and multivariable analyses support the hypotheses 33	
that academic culture, peer control, cash-based publication incentives and national 34	
misconduct policies might affect scientific integrity. Significant correlations between the 35	
risk of image duplication and individual publication rates or gender, however, were only 36	
observed in secondary and exploratory analyses.  37	

Country-level parameters generally exhibited effects of larger magnitude than 38	
individual-level parameters, because a subset of countries was significantly more likely to 39	
produce problematic image duplications. Promoting good research practices in all 40	
countries should be a priority for the international research integrity agenda. 41	
  42	
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INTRODUCTION 43	
The scientific literature is plagued by a small yet not negligible percentage of papers 44	

with fabricated or falsified results. Survey studies suggest that 1-2% of scientists admit to 45	
having consciously fabricated or falsified data at least once [1, 2], although the actual 46	
percentage of fabricated papers might be just a fraction of the percentage of self-reported 47	
misconduct, at least in the field of Psychology [3]. Direct assessments of the rate of 48	
image manipulation in biology, however, suggest that between 1-4% of papers contain 49	
problematic images, at least part of which is likely to result from intentional fabrication 50	
[4, 5].  51	

Multiple sociological, cultural and psychological factors are hypothesized to increase 52	
the risk that scientists engage in scientific misconduct, and testing these hypotheses is a 53	
matter of ongoing theoretical and empirical research. Particular attention has been paid to 54	
four major factors: 55	
- Pressures to publish: it is commonly suggested that scientists might engage in 56	

scientific misconduct in response to high expectations of productivity and/or impact. This 57	
concern has already guided numerous policies and initiatives aimed at discouraging 58	
scientists from publishing too much and/or from pursuing high impact at all costs (e.g. [6-59	
8]). Pressures to publish may be higher and increasing in countries in which institutions 60	
are evaluated based on their publication performance (e.g. United Kingdom’s Research 61	
Excellence Framework), and/or in countries in which career advancement is determined 62	
by publications (e.g. tenure-track system in the United States of America) and/or in 63	
countries in which high-profile researchers are rewarded with cash (e.g. reward policies 64	
in China, see [9]). The pressures to publish hypothesis is supported by perceptions 65	
reported in anonymous surveys [10, 11], but fails to predict the incidence of retractions 66	
and corrections [12], historical trends of scientists’ publication rate [13], and the 67	
likelihood to report over-estimated effects [14].  68	
- Social control: sociological and psychological theories suggest that individuals 69	

are less likely to engage in misconduct when scrutiny of their work is ensured by peers, 70	
mentors or society (e.g. [15]). An elaborate socio-economic hypothesis predicts that 71	
mutual criticism and policing of misconduct might be least likely to occur in developing 72	
countries in which academia was built on the German model, and might be most likely in 73	
developed (i.e. highly regulated) countries with an Anglo-American (i.e. highly 74	
egalitarian) academic culture [16]. Within teams, the social control hypothesis predicts 75	
that mutual criticism is likely to be directly proportional to the number of team members 76	
and inversely to their geographic distance, a prediction supported by studies on 77	
retractions and bias in the literature [12, 17]. 78	
- Misconduct policies: a growing number of countries and/or institutions are 79	

establishing official policies that define scientific misconduct and that regulate how 80	
suspected cases can be identified, investigated and punished. These policies express the 81	
rationale that clear rules and sanctions will have a deterrent effect on misconduct [18]. 82	
Countries differ widely in how they define and enforce misconduct policies, and it is 83	
commonly suggested that the greatest deterrent effect would be obtained by misconduct 84	
policies that are legally enforced e.g. [19]. 85	
- Gender: males are more prone to taking risk and more status-oriented than 86	

females, and might therefore be more likely to engage in scientific misconduct [20]. This 87	
hypothesis received some support by statistics about findings of misconduct by the US 88	
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Office of Research Integrity [20]. However, other interpretations of these data have been 89	
proposed [21] and gender did not significantly predict the likelihood to produce a 90	
retracted or corrected paper, once various confounders were adjusted for in a matched-91	
control analysis [12]. 92	

Progress in assessing the validity of these hypotheses in explaining the prevalence of 93	
misconduct has been hampered by difficulties in obtaining reliable data. A primary 94	
source of evidence about scientific misconduct is represented by anonymous surveys. 95	
These however are very sensitive to methodological choices and, by definition, report 96	
what a sample of voluntary respondents think and are willing to declare in surveys –not 97	
necessarily what the average scientist actually thinks and does [1, 3, 22]. Retractions of 98	
scientific papers, most of which are due to scientific misconduct [23], offer a pool of 99	
actual cases whose analyses have given important insights (e.g. [12, 23-25]). Results 100	
obtained on retractions, however, may not be generalizable, because retractions still 101	
constitute a very small fraction of the literature and by definition are the result of a 102	
complex process that can be influenced by multiple contingent factors, such as level of 103	
scrutiny of a literature, presence of retraction policies in journals, and the scientific 104	
community’s willingness to act [26]. 105	

An unprecedented opportunity to probe further into the nature of scientific misconduct 106	
is offered by a recent dataset of papers that contain image duplications of a questionable 107	
or manifestly fraudulent nature, i.e. Bik et al. 2016 [5]. These papers were identified by 108	
direct visual inspection of 20,621 papers that contained images of Western Blots, nucleic 109	
acid gels, flow cytometry plots, histopathology or other forms of image that were 110	
published between the years 1995 and 2015 in 40 journals. Having been obtained by a 111	
systematic screening of the literature, this sample is free from most limitations and biases 112	
that affect survey and retraction data, and therefore offers a representative picture of 113	
errors and/or misconduct in the literature – at least with regard to image duplications in 114	
biological research. Descriptive analyses of these data have yielded new insights into the 115	
rate of scientific misconduct and its relative prevalence amongst different countries.  116	

We conducted a pre-registered analysis (osf.io/w53yu) of data from [5] to test, using a 117	
matched-control approach, multiple postulated social and psychological risk factors for 118	
scientific misconduct. Our analysis focused on the largest and most homogeneous 119	
subsample of the original data set, i.e. N=346 papers with duplicated images identified 120	
from a sample of 8,138 papers published in the journal PLoS ONE, between the years 121	
2013 and 2014.  122	

Image duplications included in our sample could be due to unintentional error, 123	
questionable practice or outright scientific misconduct. Following the classification used 124	
in [5], image duplications were grouped in three categories according to their complexity 125	
and therefore their likelihood to result from scientific misconduct: 126	

- Category 1: Simple duplications, in which the same image is presented twice to 127	
represent different conditions, possibly due to accidental mislabeling (N=83). 128	

- Category 2: Duplication with re-positioning, in which one image has been shifted, 129	
rotated or reversed, suggesting some level of active intervention by the researcher 130	
(N=186)  131	

- Category 3: Duplication with alteration, in which figures contained evidence of 132	
cutting, patching and other forms of substantive embellishment and manipulation 133	
which betrays a possible intention to mislead (N=77).  134	
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Category 1 duplications are most likely to due to error, whilst categories 2 and 3 are 135	
likely to contain a mixture of errors and intentional fabrications. Therefore, if factors 136	
predicted to affect scientific misconduct have any effect at all, such effects are predicted 137	
to be most relevant in category 2 and 3 duplications and to have little or no effect on 138	
category 1 errors.  139	

For each paper containing duplicated images, we identified two controls that had been 140	
published in the same journal and time period, and that contained images of Western 141	
blots without detectable signs of duplication. We then measured a set of variables that 142	
were relevant to each of the hypotheses listed above, and used logistic regression to test 143	
whether and how these variables were associated with the risk of committing scientific 144	
misconduct.  145	

 146	
RESULTS 147	
Figure 1 reports the effects in each category of duplication of each tested parameter 148	

(i.e. odds ratio and 95% confidence interval), grouped by each composite hypothesis, 149	
with an indication of the direction of effect predicted by that hypothesis. In line with our 150	
overall predictions, Category 1 duplications yielded a null association with nearly all of 151	
the parameters tested (Figure 1, green error bars), and/or yielded markedly different 152	
effects from Category 2 and Category 3 papers (Figure 1, orange and red bars, 153	
respectively). Sharp and highly significant differences between effects measured on the 154	
latter and the former duplication categories were observed for authors’ citation scores and 155	
journal scores (Fig 1a), and for several country-level and team-level parameters (i.e. Fig 1 156	
b-e). No significant difference was observed amongst gender effects, except for a 157	
tendency of Category 3 duplications to be more common amongst female authors (Fig 158	
1f).  159	

 Differences between effects measured on Category 2 and 3 duplications were not 160	
always consistent with our prediction that Category 3 duplications should exhibit the 161	
largest effect sizes. For example, the number of years of activity of the author was only  162	
significantly associated with Category 2 duplications (Fig 1a). In most cases, however, 163	
the confidence intervals of effects measured for Categories 2 and 3 were largely 164	
overlapping, suggesting that differences between Category 2 and 3 might be due to the 165	
smaller sample size (lower statistical power) achieved for the latter category. Overall, 166	
therefore, results of univariable analyses are consistent  with our predictions and confirm 167	
the original assessment of the status of these categories suggested by Bik et al. (2016): 168	
Category 1 duplications are most likely to reflect genuine errors whilst Category 2 and 3 169	
errors are most likely to reflect intentional manipulations. Hypotheses about determinants 170	
of scientific misconduct, therefore, are most directly testable on the latter two categories, 171	
which were combined in all subsequent analyses reported in the main text. A 172	
supplementary file reports all numerical results of all analyses reported in the main text as 173	
well as all robustness analyses obtained on each separate duplication category and on all 174	
categories combined (see SI). 175	

  Results of univariable tests combining Category 2 and 3 papers together are in good 176	
agreement with the social control hypothesis (Fig 2c) and partial agreement with the 177	
misconduct policy hypothesis (Fig 2e). The gender hypothesis was not supported (Fig 2f). 178	
The pressures to publish hypothesis was not or negatively supported by most analyses. In 179	
agreement with some predictions, the risk of misconduct was higher in countries in which 180	
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publications are rewarded by cash incentives (Fig 2b) and was lower for researchers with 181	
a shorter publication time-span (i.e. presumably early-career researchers, Fig 2a). 182	
Contrary to predictions, however, the risk of misconduct was lower for authors with 183	
higher journal score (Fig 1a) and in countries with publication incentive policies that are 184	
career-based and institutional-based, despite the fact that the latter are those where 185	
pressures to publish are said to be highest [10]. 186	

Overall, country-level parameters produced effects of larger magnitude (Fig 2). 187	
Indeed, we observed sharp differences between countries with regard to the risk of 188	
duplication (Fig 3). Compared to the United States, the risk was significantly higher in 189	
China, India, Argentina and other developing countries (i.e. all those included in the 190	
“other” category, Fig 3). Multiple other countries (e.g. Belgium, Austria, Brazil, Israel, 191	
etc.) also appeared to have higher average risk than the United States but the very small 192	
number of studies from these countries hampered statistical power and thus our ability to 193	
draw any conclusion. Germany and Australia tended to have lower risk than the United 194	
States, but only Japan had a statistically significant lower risk (Fig 3).  195	

 To reduce the possible confounding effect of country, we performed secondary 196	
analyses on subsamples of countries with relatively homogeneous cultural and economic 197	
characteristics (Fig S1). Such sub-setting appeared to improve the detection of individual-198	
level variables. In particular, the risk of duplication appeared to be positively associated 199	
with authors’ publication rate, citation score, journal score and female gender (Fig S1 a-h, 200	
and see SM for all numerical results). These effects, however, were never formally 201	
statistically significant in such univariable analyses. 202	

Secondary multivariable analyses, however, corroborated all of our main results (Fig 203	
4). A model that included individual parameters, as well as an interaction term between 204	
number of authors and number of countries (in place of the country-to-author ratio, which 205	
is not independent from the number of authors) and country-level parameters of 206	
publication and misconduct policies suggested that the risk of misconduct was 207	
predominantly predicted by country and team characteristics (Fig 4a). The risk was 208	
significantly higher in countries with cash-based publication incentives, lower in those 209	
with national misconduct policies, and grew with team size as well as with number of 210	
authors, with the latter two factors modulating each other: for a given distance, larger 211	
teams were less at risk from misconduct, as the social control hypothesis predicted (Fig 212	
4a).  213	

When limited to English-speaking and EU15 countries, multivariable analyses of 214	
individual and team characteristics supported most theoretical predictions, suggesting that 215	
misconduct was more likely in long-distance collaborations and amongst early-career, 216	
highly productive and high-impact first-authors (Fig 4b). Female first authors were 217	
significantly more at risk of being associated with Category 2 and 3 problems,  a finding 218	
that is inconsistent with  the gender hypothesis. Analyses on the remaining subset of 219	
countries yielded similar results (Fig 4c). 220	

Almost identical results were obtained with a non-conditional logistic regression 221	
model, consistent with the fact that our sample was homogeneous with regards to 222	
important characteristics such as journal, methodology and year of publication. Results 223	
obtained combining all three categories of duplications were largely overlapping with 224	
those presented in the main text and would have led to similar conclusions (see all 225	
numerical results in SI).  226	
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 227	
DISCUSSION 228	
To the best of our knowledge, this is the first direct test of hypotheses about the causes 229	

of scientific misconduct that was conducted on an unbiased sample of papers containing 230	
flawed or fabricated data. Our sample represented papers containing honest errors and 231	
intentional fabrications of various degrees in unknown relative proportions. However, we 232	
correctly predicted that Category 1 duplications would exhibit smaller or null effects, 233	
whilst most significant effects, if observed at all, would be observed in Categories 2 and 3 234	
(Fig 1). Support of this prediction retrospectively confirms that, as suggested by a 235	
previous analysis of these data [5], Category 1 duplications are most likely the result of 236	
unintentional errors or flawed methodologies, whilst Category 2 and 3 duplications are 237	
likely to contain a significant proportion of intentional fabrications. 238	

Results obtained on Category 2 and 3 papers, corroborated by multiple secondary 239	
analyses (see SI), supported some predictions of the hypotheses tested, but did not 240	
support or openly contradicted others: 241	
- Pressure to publish hypothesis: partially supported. Early-career researchers, and 242	

researchers working in countries where publications are rewarded with cash incentives 243	
were at higher risk of image duplication, as predicted. However, countries having other 244	
publication incentive policies had a null or even negative risk (Fig 1b). In further 245	
refutation of predictions, individual publication rate and impact of authors was not or 246	
negatively associated with image duplication, although in secondary multivariable 247	
analyses we observed a positive association between publication rate of first authors and 248	
risk of duplication. The latter finding might represent the first direct support of this 249	
prediction, but should be verified in future confirmatory tests.  The correlation with cash 250	
incentives may not be taken to imply that such incentives were directly involved in the 251	
problematic image duplications, but simply that such incentives may reflect the value 252	
system in certain research communities that might incentivize questionable research 253	
practices. 254	
- Social control hypothesis: supported. In univariable analyses, only predictions 255	

based on socio-cultural conditions of different countries were in large agreement with 256	
observations (Fig 1c). However, when country characteristics were controlled and/or 257	
adjusted for, we observed a consistent negative interaction between number of authors 258	
and number of countries per author in a paper, which is in good agreement with the 259	
hypothesis (Fig 4). 260	
- Misconduct policy hypothesis: partially supported. Countries with national and 261	

legally enforceable policies against scientific misconduct were significantly less likely to 262	
produce image duplications (Fig 1e, Fig 4a). However, other misconduct policy 263	
categories were not associated with a reduced risk of image duplication, and tended if 264	
anything to have a higher risk. As noted above for publication incentive policies, we 265	
cannot prove a cause-effect relationship. The presence of national misconduct policies 266	
may simply reflect the greater attention that a country’s scientific community pays to 267	
research integrity.  268	
- Gender hypothesis: not supported. In none of the main and secondary analyses did 269	

we observe the predicted higher risk for males. Some of the secondary analyses might 270	
have found an association between female authors and the risk of image duplication (Fig 271	
4b). This latter finding, however, needs to be validated in future confirmatory studies. 272	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2017. ; https://doi.org/10.1101/126805doi: bioRxiv preprint 

https://doi.org/10.1101/126805
http://creativecommons.org/licenses/by-nc-nd/4.0/


Why	do	scientists	falsify	data?	A	matched-control	analysis	

	 7	

A previous, analogous analysis conducted on retracted and corrected papers had led to 273	
largely similar conclusions [12]. The likelihood to correct papers for unintentional errors 274	
was not associated with most parameters, similarly to what this study observed for 275	
category 1 duplications. The likelihood to retract papers, instead, was also found to be 276	
significantly associated with misconduct policies, academic culture, as well as early-277	
career status and average impact score of first or last author. Differently from what this 278	
study observed on image duplications, however, individual publication rate was 279	
negatively associated with the risk of retraction and positively with that of corrections 280	
[12]. We hypothesize that at least two factors may underlie this difference in results. 281	
First, analyses on retractions included every possible error and form of misconduct, 282	
including plagiarism, whereas the present analysis is dedicated to a very specific form of 283	
error or manipulation. Second, analyses on retractions are intrinsically biased and subject 284	
to many confounding factors, because retractions are the end results of a complex chain 285	
of events (e.g. a reader signals a possible problem to the journal, the journal editor 286	
contacts the author, the author’s institution starts an investigation, etc.…) which can be 287	
subjected to many sources of noise and distortion. Therefore, whilst on the one hand our 288	
results may be less generalizable, on the other hand they are more accurate and less 289	
biased than results obtained on retractions. 290	

A remarkable agreement was also observed between these results and those of a recent 291	
assessment of the causes of bias in science, authored by two of us [14]. This latter study 292	
tested similar hypotheses using identical independent variables on a completely different 293	
outcome (the likelihood to over-estimate results in meta-analysis) and using a completely 294	
different study design. Therefore, the convergence of results with this latter study is even 295	
more striking and strongly suggests that all these separate analyses are detecting genuine 296	
underlying patterns that reflect a connection between research integrity and 297	
characteristics of authors, team and country.  298	

The present study has avoided many of the confounding factors that limit studies on 299	
retractions, but could not avoid other limitations. An overall limitation concerns the kind 300	
of image duplication analyzed in this study, which is only one of the many possible forms 301	
of data falsification and fabrication that may occur in the literature. This restriction limits 302	
in principle broad generalizations. However, as noted above, our results are in large 303	
agreement with previous analyses that encompassed all forms of bias and misconduct [12, 304	
14], which suggests that our findings are consistent with general patterns linked to these 305	
phenomena.  306	

Two other possible limitations of our study design made results very conservative. 307	
Firstly, we could not ascertain which of the duplications were actually due to scientific 308	
misconduct and which ones derived from honest error, systematic error or negligence. 309	
Secondly, our individual-level analyses focused on characteristics of the first and the last 310	
author, under the assumption that authors in these positions are most likely to be 311	
responsible for any flaws in a publication. However, we do not know who, amongst the 312	
co-authors of included studies, was actually behind the problematic duplication. Both 313	
these limitations ought to increase confidence in our results, because they are likely to 314	
have reduced the magnitude of measurable effect sizes. As our univariable analyses 315	
confirmed, image duplications that are due not to scientific misconduct but to 316	
unintentional error are unlikely to be associated with any factor (Fig 1). Similarly, if an 317	
image duplication was not caused by its study’s first or last author, then we simply would 318	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2017. ; https://doi.org/10.1101/126805doi: bioRxiv preprint 

https://doi.org/10.1101/126805
http://creativecommons.org/licenses/by-nc-nd/4.0/


Why	do	scientists	falsify	data?	A	matched-control	analysis	

	 8	

not expect the characteristics of first and last author to be associated with the likelihood 319	
of that error. Therefore, to any extent that they affected the study, these two limitations 320	
have introduced random noise in our data, reducing the magnitude of any measurable 321	
effect and thus making our results more conservative.  322	

Any random noise in our data might have reduced the statistical power of our 323	
analyses, for the reasons discussed above. However, our statistical power was relatively 324	
large. Even when restricted to the smallest subset (e.g. category 3 duplications) our 325	
analyses had over 89% power to detect an effect of small magnitude. We can therefore 326	
conclude that, despite the limitations discussed above, all of our tests had sufficient 327	
power to reject null hypotheses for at least large and medium effect sizes.   328	

A further possible limitation in our analysis pertains to the accuracy with which we 329	
could measure individual-level parameters. Our ability to correctly classify the gender 330	
and to reconstruct the publication profile of each author was subject to standard 331	
disambiguation errors [27] which may be higher for authors in certain subsets of 332	
countries. In particular, authors from South- and East- Asian countries have names that 333	
are difficult to classify, and often publish in local journals that are not indexed in the Web 334	
of Science and were therefore not captured by our algorithms. Any systematic bias or 335	
error in quantifying parameters for authors from these countries would significantly skew 336	
our results because country-level factors were found in this study - as well in previous 337	
studies on retractions - to have significant effects [12]. However, all our main conclusions 338	
are based on effects that were measured consistently in subsets of authors based on 339	
countries at lower risk of disambiguation error. Moreover, this limitation is only likely to 340	
affect the subset of tests that focused on author characteristics.  341	

Indeed, this study suggests that significant individual-level effects might not be 342	
detectable unless country-level effects are removed or adjusted for. This prominence of 343	
country-level effects in determining the risk of problematic image duplications might be 344	
one of the most important finding of this study. We observed clear and indisputable 345	
evidence that problematic image duplications are overwhelmingly more likely to come 346	
from China, India and other developing countries, consistent with the original 347	
interpretation of these data [5]. Regardless of whether the image duplications that we 348	
have examined in this study were due to misconduct or unintentional error, country-level 349	
effects suggest that particular efforts might be needed to improve the reliability of studies 350	
from developing countries. 351	

Previous analyses on retractions, corrections and bias [12, 14] as well as the present 352	
analysis of image duplications cannot demonstrate causality. However, all these analyses 353	
consistently suggest that developing national misconduct policies and fostering an 354	
academic culture of mutual criticism might be effective preventive measures to ensure the 355	
integrity of future research. 356	

 357	
 358	
MATERIALS AND METHODS 359	
Methods of this study very closely followed the protocol of a previous analysis of risk 360	

factors for retractions and corrections [12]. To guarantee the confirmatory and unbiased 361	
nature of our analyses, all main and secondary analyses as well as sampling and 362	
analytical methodology were pre-specified and registered at the Center for Open Science 363	
(osf.io/w53yu) [28]. The main goal of the analysis was to produce a matched-control 364	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 12, 2017. ; https://doi.org/10.1101/126805doi: bioRxiv preprint 

https://doi.org/10.1101/126805
http://creativecommons.org/licenses/by-nc-nd/4.0/


Why	do	scientists	falsify	data?	A	matched-control	analysis	

	 9	

retrospective analysis aimed at identifying which characteristics of papers and their 365	
authors were significantly predictive of the likelihood to fall into the “treatment” as 366	
opposed to “control” category (papers with or without problematic image duplications, 367	
respectively). 368	

 369	
Sampling of papers 370	
Papers had been identified by the independent assessment of three of the present 371	

paper’s authors (EB, AC, FF). Control papers were retrieved from the set of papers that 372	
had been examined by the authors and in which no evidence of data duplication had been 373	
recognized. For each treatment paper, two controls were retrieved for inclusion, i.e. one 374	
published immediately before and one immediately after the treatment paper. Order of 375	
publication was determined based on Web of Science’s unique identifier code. When the 376	
candidate control paper of one treatment paper coincided with the candidate control of 377	
another treatment paper, the next available control paper was selected instead.  378	

 379	
Data collection 380	
Following previous protocols[12, 14], we collected a set of relevant characteristics of 381	

all included papers and of all of their authors. More specifically, for each paper we 382	
recorded: 383	
- Number of authors of each paper. 384	
- Number of countries listed in the authors’ addresses. 385	
- Average distance between author addresses, expressed in thousands of kilometers. 386	

Geographic distance was calculated based on a geocoding of affiliations covered in the 387	
Web of Science [29]. 388	

For each author of each paper in the sample we retrieved the following data from the 389	
Web of Science: 390	
- Year of first and last paper recorded in the Web of Science. 391	
- Total number of article, letters and review papers authored or co-authored. 392	
- Total number of citations received by all papers authored or co-authored. 393	
- Field-normalized citation score. 394	
- Field-normalized journal impact score. 395	
- Proportion of papers authored or co-authored that appeared in the top-10 journals 396	

of that author’s field. 397	
- Author’s main country of activity, based on the address most commonly 398	

indicated.  399	
- Author’s first name. The combination of first name and country was used to 400	

assign gender. The majority of gender assignments were made by a commercial service 401	
(genderapi.com) but an attempt was made to identify the gender of unassigned names. 402	
When neither approach could attribute an author’s gender reliably, gender was assigned 403	
to the “unknown” category. 404	
 405	
Country information was used to assign each author to the corresponding country-level 406	
variable, using the following scheme: 407	

- Publication incentives policies: i.e. cash-incentives to individuals (CN, KR, TU); 408	
performance linked to individual’s career (DE, ES, USA); performance linked to 409	
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institution’s funding (AU, BE, NZ, DK, IT, NO, UK), based on classifications in 410	
[30]. 411	

- Social control hypothesis: developmental state - German academic model (CN, 412	
JP, KR); intermediate case (DE, SI, TW, ISR); regulatory state & Anglo-413	
American academic culture (US, UK), based on classification by [16]. 414	

- Misconduct policy: national and legally enforced (USA, DK, NO); national non-415	
legally enforced (UK, SW, FI, NL, DE, AT, AU, JP, CN, KR, CR, TN, ZA); local 416	
(institutional) policies (ES, IL, FR, BE, CH, EE, LV, PL, CZ, HU, PE, GR, IN, 417	
BD), data based on references in [12]. 418	

Although we collected information for all authors of the papers, we only tested 419	
individual predictors measured on the first and last authors, positions that in biomedical 420	
papers tend to be attributed to the authors that most contributed to the research, often in 421	
the role of junior and senior author, respectively [31, 32]. 422	

 423	
Analyses 424	
All variables were included in the analysis untransformed, although a few variables 425	

were re-scaled linearly: author publication rate data was divided by 10, geographic 426	
distance data was divided by 1000, and countries-to-author ratio was multiplied by 100. 427	
This re-scaling of some variables served the purpose of improving the visibility of effect 428	
sizes in figures and had no impact on the results. 429	

All hypotheses were tested using standard conditional logistic regression analysis, i.e. 430	
a logistic regression model with an added “stratum” term that identifies each subgroup of 431	
treatment and matched controls. The conditional logistic regression approach is most 432	
useful when papers differ widely in important characteristics, such as year and journal of 433	
publication (see [12]). Analyses were also repeated with a non-conditional logistic 434	
regression to assess the robustness of the results. Analyses were conducted with all three 435	
categories of duplication combined, separately on category 1 and category 2 and 3 papers, 436	
and combining categories 2 and 3. 437	

 Since the sample size was pre-determined, we did not conduct a prospective power 438	
analysis. Post-hoc power analyses based on unconditional logistic regression suggest that 439	
our main analyses, when combining papers from all duplication categories (a total of 440	
1039 data points) had over 99% statistical power to detect a small effect size (i.e. 441	
OR=1.5), and 89% power for analyses restricted to the smallest subsample, i.e. category 3 442	
duplications. All analyses were conducted with the open-source statistical package 443	
Survival implemented by the R software [33]. 444	
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FIGURES 554	

Figure 1 555	

 556	

Fig 1: Effect (odds ratio and 95%CI) of characteristics of study and of first and last 557	
authors on the likelihood to publish a paper containing a Category 1 (green), Category 2 558	
(yellow) or Category 3 (red) problematic image duplication. When six error bars are 559	
associated with one test, the first three error bars correspond to data from the first author 560	
and the last three are for data from the last author. Panels are subdivided according to 561	
overall hypothesis tested, and signs in parentheses indicate direction of expected effect 562	
(“>” : OR>1; “<” : OR<1; “0”: intermediate effect predicted).  563	
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Figure 2 564	

 565	

Fig 2: Effect (odds ratio and 95%CI) of characteristics of study and of first and last 566	
authors on the likelihood to publish a paper containing a Category 2 or 3 problematic 567	
image duplication. For each individual-level parameter, first and second error bars 568	
correspond to data from first and last authors, respectively. Panels are subdivided 569	
according to overall hypothesis tested, and signs in parentheses indicate direction of 570	
expected effect (“>” : OR>1; “<” : OR<1; “0”: intermediate effect predicted). Formal 571	
thresholds of statistical significance are added above each error bar to facilitate effect 572	
estimation (“+”: p<0.1; “*”: P<0.05; “**”: P<0.01; “***”: P<0.001). 573	
  574	
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Figure 3 575	

 576	

Fig 3: Effect (odds ratio and 95%CI) of country of activity of first and last authors on 577	
the likelihood to publish a paper containing a Category 2 or 3 problematic image 578	
duplication, compared to authors working the United States. The data were produced with 579	
a multivariable logistic regression model, in which dummy variables are attributed to 580	
countries that were associated with the first or last author of at least one treatment and 581	
one control paper. All other countries were included in the “other” category. Numeric 582	
data are raw numbers of treatment and control papers for first and last author (upper and 583	
lower row, respectively). Formal thresholds of statistical significance are added above 584	
each error bar to facilitate effect estimation (“+”: p<0.1; “*”: P<0.05; “**”: P<0.01; 585	
“***”: P<0.001).  586	
  587	
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Figure 4 588	

 589	

Fig 4: Effect (odds ratio and 95%CI) of characteristics of study and first and last 590	
author on the probability of publishing a paper containing a Category 2 or 3 problematic 591	
image duplication. Each subpanel illustrates results of a single multivariable model, 592	
partitioned by country subsets (see text for further details). First and second error bars 593	
correspond to data from first and last authors, respectively. Signs in parentheses indicate 594	
direction of expected effect (“>” : OR>1; “<” : OR<1). Formal thresholds of statistical 595	
significance are added above each error bar to facilitate effect estimation (“+”: p<0.1; 596	
“*”: P<0.05; “**”: P<0.01; “***”: P<0.001).  597	
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Figure S1 598	

 599	

Fig S1: Effect (odds ratio and 95%CI) of characteristics of first and last author on 600	
probability of publishing a paper containing a Category 2 or 3 image duplication. Each 601	
subpanel shows results of univariable analyses on subsets of countries (see text for further 602	
details). First and second error bar correspond to data from first and last authors, 603	
respectively. Panels are subdivided according to overall hypothesis tested, and signs in 604	
parentheses indicate direction of expected effect (“>” : OR>1; “<” : OR<1). Formal 605	
thresholds of statistical significance are added above each error bar to facilitate effect 606	
estimation (“+”: p<0.1; “*”: P<0.05; “**”: P<0.01; “***”: P<0.001). 607	
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