Abstract
Pre-analytical factors can significantly affect circulating cell-free DNA (cfDNA) analysis. However, there are few robust methods to rapidly assess sample quality and the impact of pre-analytical processing. To address this gap and to evaluate effects of DNA extraction methods and blood collection tubes on cfDNA yield and fragment size, we developed a multiplexed droplet digital PCR (ddPCR) assay with 5 short and 4 long amplicons targeting single copy genomic loci (mean amplicon size: 71 bp and 471 bp respectively). Using this assay, we compared performance of 7 cfDNA extraction kits and found cfDNA yield and fragment size varies significantly between them. We also compared 3 blood collection protocols used to collect plasma samples from 23 healthy volunteers (EDTA tubes processed within 1 hour and Cell-free DNA BCT tubes at ambient temperature processed within 24 hours and 72 hours of collection). To assess whether cell-stabilizing preservative in BCT tubes introduced noise in cfDNA, we performed digital targeted sequencing. We found no significant differences in cfDNA yield, fragment size and background sequencing noise between these protocols. In 219 clinical samples tested for quality using the ddPCR assay, cfDNA fragment size was significantly shorter in plasma samples immediately processed for ctDNA analysis compared to archived samples, suggesting background DNA contributed by lysed peripheral blood cells. In summary, we describe a multiplexed ddPCR approach that enables cfDNA quality assessment and could inform the design of future circulating tumor DNA studies.
Gene names None
Footnotes
Abbreviations
- cfDNA
- cell-free DNA
- ddPCR
- droplet digital PCR
- EDTA
- Ethylenediaminetetraacetic acid
- BCT
- blood collection tube
- HMW
- high molecular weight
- LMW
- low molecular weight
- GE
- haploid genome equivalent
- GMR
- global nucleotide mismatch rate