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ABSTRACT 

Protein interactions underlie nearly all known cellular function, making knowledge of their binding 

conformations paramount to understanding the physical workings of the cell. Studying binding 

conformations has allowed scientists to explore some of the mechanistic underpinnings of disease caused 

by disruption of protein interactions. However, since experimentally determined interaction structures are 

only available for a small fraction of the known interactome such inquiry has largely excluded functional 

genomic studies of the human interactome and broad observations of the inner workings of disease. Here 

we present Interactome INSIDER, an information center for genomic studies using the first full-interactome 

map of human interaction interfaces. We applied a new, unified framework to predict protein interaction 

interfaces for 184,605 protein interactions with previously unresolved interfaces in human and 7 model 

organisms, including the entire experimentally determined human binary interactome. We find that 

predicted interfaces share several known functional properties of interfaces, including an enrichment for 

disease mutations and recurrent cancer mutations, suggesting their applicability to functional genomic 

studies. We also performed 2,164 de novo mutagenesis experiments and show that mutations of predicted 

interface residues disrupt interactions at a similar rate to known interface residues and at a much higher rate 

than mutations outside of predicted interfaces. To spur functional genomic studies in the human 

interactome, Interactome INSIDER (http://interactomeinsider.yulab.org) allows users to explore known 

population variants, disease mutations, and somatic cancer mutations, or upload their own set of mutations 

to find enrichment at the level of protein domains, residues, and 3D atomic clustering in known and 

predicted interaction interfaces. 
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INTRODUCTION 

Protein-protein interactions facilitate much of known cellular function. Recent efforts to experimentally 

determine protein interactomes in human1 and model organisms2-4, in addition to literature curation of 

small-scale interaction assays5, have dramatically increased the scale of known interactome networks. 

Studies of these interactomes have allowed researchers to elucidate how modes of evolution affect the 

functional fates of paralogs4 and to examine on a genomic scale network interconnectivities that determine 

cellular functions and disease states6. 

While simply knowing which proteins interact with each other provides valuable information to spur 

functional studies, far more specific hypotheses can be tested if the spatial contacts of interacting proteins 

are known7. In the study of human disease, it has been demonstrated that mutations tend to localize to 

interaction interfaces and mutations on the same protein may cause clinically distinct diseases by disrupting 

interactions with different partners6,8. However, the binding topologies of interacting proteins (i.e. the 

relative positions of all atoms in an interaction interface) can only be absolutely determined through 

resource-intensive X-ray crystallography, NMR, and more recently cryo-EM9 experiments, severely 

limiting the number of interactions with resolved interaction interfaces. 

In order to study protein function on a genomic scale, especially as it relates to human disease, a 

similarly large-scale set of protein interaction interfaces is needed. Thus far, computational methods, such 

as docking10 and homology modeling11, have been employed to predict the atomic-level bound 

conformations of interactions whose experimental structures have not yet been determined. Though it is 

capable of producing high quality interaction models12, docking remains highly specialized and docked 

models are not yet available on a large scale. Homology modeling has been used to produce models on a 

large scale13, but is only amenable to interactions with structural templates, which comprise <5% of known 

interactions. Together, co-crystal structures and homology models comprise the currently available pre-

calculated sources of structural interactomes, covering only ~6% of all known interactions (Fig. 1a-b). 

While we aim to study disease mutations at atomic-resolution when possible, for the ~94% of 

interactions without structural information, a lower-resolution picture of interfaces can provide crucial 

information for functional studies, and help to complete structural interactome networks to the best of our 

current capabilities14. For instance, residue-level interaction interfaces, where we know which residues are 

at the interface, but not their precise structural arrangement, can be a great boon to genomic-scale functional 

analyses15,16, and elucidate common modes of human disease8,17. Therefore, a multi-scale interactome 

network containing the highest possible resolution of each protein interaction interface can be an 

indispensable tool for targeted studies to elucidate pathways and dissect disease mechanisms4,18. 

Here, we present Interactome INSIDER (INtegrated Structural Interactome and genomic Data 

browsER), a tool for functional exploration of human disease mutations using the first structurally resolved, 
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multi-scale, proteome-wide human interactome. Interactome INSIDER allows users to find enrichment of 

disease mutations from popular databases and from user uploads in protein interaction domains, residues, 

and through atomic 3D clustering in protein interfaces. In order to study disease on a genomic scale, we 

built an interactome-wide set of protein interaction interfaces by calculating interfaces in experimental co-

crystal structures and homology models when available. For the remaining ~94% of interactions, we applied 

a new, unified framework, ECLAIR (Ensemble Classifier Learning Algorithm to predict Interface 

Residues) to predict the interfaces by applying recent advances in partner-specific interface prediction, such 

as co-evolution- and docking-based feature construction19,20. We used ECLAIR to predict protein 

interaction interfaces in the full human interactome and for 7 highly studied model organisms (D. 

melanogaster, S. cerevisiae, C. elegans, A. thaliana, E. coli, S. pombe, and M. musculus). 

Interactome INSIDER (http://interactomeinsider.yulab.org) is deployed as an interactive web server, 

containing tools for analyzing known and uploaded disease mutations, cancer mutations, and population 

variants in genome-wide interaction interfaces. Users can also browse predicted interface residues for 

184,605 previously un-resolved interactions in human and 7 model organisms, a 15-fold increase over 

previously known interfaces. Furthermore, for 12,546 interactions with pre-existing sources of structural 

evidence (co-crystal structures or homology models), we calculate interface residues and display interactive 

3D models. Users can search interaction interfaces for enrichment of disease mutations at the level of 

protein domains, residues, and 3D atomic clustering in a unified interactome composed of all of these 

sources. We also include relevant functional annotations, such as deleteriousness predictions21,22 and 

biophysical property changes23,24 for any proposed mutation or variant that can be viewed in the context of 

protein and interaction models for a unified functional genomic experience. We anticipate that the marriage 

of these data sources with our newly predicted full coverage human structural interactome will spur studies 

of interaction interfaces on a genomic scale. 

 

RESULTS 

In order to build Interactome INSIDER, a tool for genome-wide inference in protein interaction interfaces, 

we first must construct an interactome-wide set of protein interaction interfaces. Due to lack of structural 

models, we turned to the well-explored field of protein interaction interface prediction to fill in the gaps in 

interactomes where neither experimentally-determined co-crystal structures nor homology models are 

available. While there are well-established methods for predicting protein interactions themselves (i.e. 

whether or not two proteins interact)25,26, we have focused on interactions that have been experimentally 

determined, but whose interfaces are unknown (Supplementary Note 1). For this task, there is a rich 

literature of methods exploring the potential of many structural, evolutionary, and docking-based methods 
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to predict protein interaction interfaces. However, so far, none of these methods have been used to produce 

a whole-interactome dataset of protein interaction interfaces (Supplementary Note 2). 

We created ECLAIR, a unified framework for predicting the interface of any interaction, by leveraging 

several complementary and proven classification features, including both sequence-based biophysical 

features, and structural features (Supplementary Note 3, Supplementary Figs. 1-2). Furthermore, 

ECLAIR uses recently proposed features for predicting binding partner specific interfaces, including co-

evolutionary27,28 and docking-based metrics20,29. The advantage ECLAIR offers over previous methods is 

its ability to be applied to any interaction, while using the most informative set of available interactions for 

that interaction. In order to accomplish this, ECLAIR is structured as an ensemble of 8 independent 

classifiers, each covering a common case of feature availability (Supplementary Notes 4-5, 

Supplementary Figs. 3-4). Because each ECLAIR sub-classifier has been trained and tested using a unified 

set of known protein interaction interfaces, we were able to benchmark each and show that interfaces can 

be predicted by the single, top-performing sub-classifier that was trained using the full set of features 

available for each residue (Supplementary Note 4.2, Supplementary Fig. 5). In total, we used ECLAIR 

to predict the interfaces of 184,605 interactions with previously unknown interfaces, including for 114,504 

human interactions (Supplementary Fig. 6). We supplemented known structural interfaces from co-

crystalized proteins and homology models with our predictions to create multi-scale structural interactomes 

at both the atomic and residue level (Fig. 2a). Finally, in addition to predicting interaction interfaces in 7 

model organisms, we created the first multi-scale proteome-wide structural interactome in human for all 

121,575 experimentally-determined binary interactions reported in major databases30-36 (4,150 with co-

crystal structures, 2,921 with homology models, and 114,504 with ECLAIR predicted interfaces; see 

Materials and Methods), which we used to explore human disease through our new web tool, Interactome 

INSIDER.  

 

Comprehensive evaluation of predicted interfaces 

In order to use our structural interactomes for functional discovery, we first established that our predictions 

are of high quality through both machine-learning and biological evaluation. We evaluated the trade-offs 

between false positive rate and true positive rate, and between precision and recall for each of the 8 

independent sub-classifiers that compose ECLAIR (Supplementary Fig. 5). As expected, we find that as 

more informative features are added to subsequent classifiers, the areas under the ROC and precision-recall 

curves increase, justifying the use of classifiers trained on more features for residues where this information 

is available. 

We next compared ECLAIR to several other prediction methods through two independent validations, 

in order to establish that ECLAIR’s performance is comparable to other methods. Due to its ensemble 
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nature, we can then apply ECLAIR to many more interactions than would be possible using each of these 

methods individually. First, we used several readily available predictors37-41 to predict interfaces for 

interactions in our testing set. We find that for the set of interactions for which all classifiers can predict, 

ECLAIR performs as well or slightly better than these methods by measures of precision, recall, true 

positive rate and false positive rate (Fig. 2b). Furthermore, for this set of predictors and ECLAIR, we also 

limited our analyses to only known surface residues, showing that all methods have a slightly lower 

AUROC (since it is more difficult to distinguish interface from non-interface among only surface residues), 

however ECLAIR still performs as well or better than all tested methods (Supplementary Fig. 7). Finally, 

we applied ECLAIR to a standard external benchmark set of protein interaction interfaces42 which has been 

used to evaluate the performance of 10 other interface prediction methods43. We find that ECLAIR 

outperforms all benchmarked methods in accuracy, and is comparable to the top performers in all other 

metrics (Supplementary Table 1). Furthermore, ECLAIR is applicable to any interaction, while methods 

in this benchmark rely on single-protein structure inputs, making them less applicable to genome-wide 

studies. 

We also performed >2,000 mutagenesis experiments to measure the rate at which population variants 

in our predicted interfaces disrupt interactions compared to variants within known co-crystal interfaces and 

non-interfaces (see Material and Methods). Since it is known that mutations at protein interfaces are more 

likely to break interactions6,18, we hope to show that mutations in our predicted interfaces also break their 

corresponding interactions at a significantly higher rate than those known to be away from the interface and 

at similar rates compared to mutations in known interfaces (it is important to note that only ~21% of these 

mutations at known interfaces disrupt corresponding interactions since we tested population variants 

randomly selected from the Exome Sequencing Project44, many of which are believed to be benign). Using 

our high-throughput mutagenesis yeast two-hybrid assay18, we find that the disruption rates for mutations 

at known interface residues are quite similar to disruption rates for mutations of predicted interface residues 

(Fig. 2c). Furthermore, even mutations of residues with a ‘Low’ predicted interface potential are 

significantly more likely to disrupt interactions than mutations of residues known to be away from the 

interface. This suggests that there is viable functional signal in ECLAIR predictions, as even interfaces 

predictions in the ‘Low’ potential category show some signs of similar functional properties to known 

interfaces. 

 

Interactome INSIDER, a genomics toolbox for interactome studies 

We built Interactome INSIDER, a tool for searching for functionally enriched areas of protein interactomes, 

and for browsing our multi-scale structural interactome networks. Interactome INSIDER contains all 

197,151 protein interactions whose interfaces have been either experimentally determined, homology 
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modeled, or predicted using ECLAIR. Specifically for human, Interactome INSIDER contains interface 

information for all 121,575 experimentally-determined binary interactions reported in major databases30-36. 

Additionally Interactome INSIDER includes 56,159 disease mutations from HGMD45 and ClinVar46 and 

analyzed 1,300,352 somatic cancer mutations from COSMIC47  to compute their per-disease, pre-calculated 

enrichment in protein interaction interfaces at the residue level, domain level, and through atomic 

clustering. Furthermore, the site includes information on >600,000 population variants from the Exome 

Sequencing Project44, 1000 Genomes Project48 and more49 (see Materials and Methods). Users can then 

search Interactome INSIDER by protein to retrieve all interaction partners and their interfaces, or by disease 

to retrieve all interaction interfaces that are enriched for mutations of that disease. Additionally, users can 

upload their own set of mutations to find how they are distributed in the interactome and whether they are 

enriched in any protein interaction interfaces at the residue, domain, and atomic levels (Fig. 3). 

Since our goal is to use Interactome INSIDER to explore protein function, especially disease, in 

interactomes, we next investigated the functional biological properties of our predicted interaction 

interfaces. These studies involve measuring functional properties of our de novo predicted interfaces (those 

without prior experimental evidence) and comparing these measurements to those of known interfaces from 

co-crystal structures. Importantly, these known properties of interaction interfaces are completely separate 

of the features used for training ECLAIR, and thus provide an unbiased and functionally relevant means to 

assess the utility of our predicted interfaces. Showing that our predicted interfaces have many of the same 

functional properties as known interfaces suggests their applicability to functional genomic studies. 

Many studies have probed the link between interactome networks and disease50,51, and it is well 

established that disease mutations are enriched at structural interfaces of interacting proteins6,8,52, suggesting 

that disruption of binding with one or more partners may contribute to the disease phenotype. Though not 

all disease mutations will appear at the interfaces of interactions, and can act via other mechanisms, such 

as destabilizing proteins entirely18, their enrichment at interfaces is a statistically significant global trend6,8. 

However, >40% of known missense and nonsense human disease mutations cause alterations to proteins 

lacking any structurally resolved interaction interfaces. To test whether our predicted interfaces may be 

useful for the study of disease, and thus help address this knowledge gap, we looked at their positions 

relative to disease mutations. We find that disease mutations also preferentially occur in our predicted 

interfaces, at similar rates to known interface residues occurring in PDB co-crystal structures (Fig. 4a), 

indicating the viability of using predicted interfaces to study molecular disease mechanisms. Furthermore, 

each more confident bin of predicted interface residues is more likely to contain disease mutations than the 

previous, showing that ECLAIR prediction scores are correlated with true protein function. 

Similarly, we looked at the locations of somatic cancer mutations from COSMIC in our interface-

resolved human interactome. We specifically focused on recurrent cancer mutations as these are known to 
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be more likely than infrequently observed mutations to be functional drivers53-55. We find a marked 

enrichment of recurrent cancer mutations in our predicted interfaces compared to outside our predicted 

interfaces (Fig. 4b). Furthermore, the same trend is observed inside and outside of known interfaces from 

co-crystal structures, suggesting that the functional links between cancer and the potential disruption of 

protein interactions can be observed within our entire human interface dataset. We also looked at the 

distribution of population variants, and show that their placement in and out of predicted interfaces matches 

that of known interfaces, with rarer mutations showing an enrichment in protein interfaces (Fig. 4c). 

Furthermore, we show that population variants in our predicted interfaces are more likely to be damaging 

to protein function than variants outside of predicted interfaces, as predicted by PolyPhen-221 (Fig. 4d) and 

EVmutation56 (Fig. 4e), matching the established trend for experimentally determined interfaces57. 

These enrichment analyses and the matched results between our predicted interfaces and known 

interfaces in co-crystal structures further confirm the validity of ECLAIR predictions. More importantly, 

users can take advantage of these enrichment analyses through our Interactome INSIDER web server to 

better dissect large-scale whole-genome and whole-exome sequencing datasets to help identify novel 

disease-associated genes and mutations. For instance, if known disease mutations are significantly enriched 

in a specific interaction interface, this information could be used to complement and further boost the 

confidence of patient and disease-specific variants in the same interface that have been prioritized by other 

methods (e.g., co-segregation58, mutation burden59). This can be particularly helpful to sieve through the 

large number of variants of unknown significance generated by large-scale sequencing studies. 

Furthermore, if known disease mutations are enriched in a specific interface of a protein whose involvement 

in the disease is already understood, this could still suggest its interaction partner’s mechanistic involvement 

in the disease through this specific interface, even if the partner is not yet known to be associated with the 

disease. 

To illustrate the usefulness of Interactome INSIDER, we searched for sub-networks in the human 

interactome that are enriched for disease mutations associated with a single disease by calculating the 

enrichment of disease mutations in interaction interfaces interactome-wide, a functionality also available to 

users via the Interactome INSIDER website. This allowed us to identify the TGF-β/BMP signaling pathway, 

which is known to be involved in juvenile polyposis syndrome (JPS)60, and contains multiple proteins 

harboring JPS mutations (Fig. 5a). We focused on a specific group of mutations in the SMAD4-SMAD8 

interface, which can be found using 3D atomic clustering. Using our mutagenesis Y2H assay, we were able 

to test a JPS mutation (SMAD4 Y353S)61, which is at the interface of SMAD4-SMAD8, and show that it 

breaks this interaction, implicating SMAD8 in JPS. Although SMAD8 (also known as SMAD9) has not 

been reported to harbor JPS mutations in HGMD45, its involvement in the disease has been suggested62, 

showing the ability of Interactome INSIDER to implicate new proteins in disease. Furthermore, Y353S is 
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not predicted by ECLAIR to be at the interface of SMAD4 and another of its binding partners, RASSF4, 

and indeed, through our Y2H experiment, does not break this interaction, demonstrating the functional 

insight Interactome INSIDER can provide about differential interfaces and how they might be relevant to 

understanding the molecular mechanisms of disease. 

 

Disease etiology revealed by partner-specific interfaces 

In addition to providing full coverage of interfaces in the human interactome, one major benefit that 

Interactome INSIDER provides is the ability to interrogate different interfaces for the same protein 

dependent upon its binding partner. For the study of protein function and disease, this is especially 

important as a protein may maintain different functional pathways through different interfaces, and 

disruption of one interface may leave another intact4,8. To demonstrate the potential of Interactome 

INSIDER to tease apart interface-specific disease mutation etiologies, where the same mutation can cause 

differential effects with two different binding partners, we first investigated an example of differential 

interface prediction using ECLAIR. Here we highlight an interaction whose predicted interfaces are 

strongly influenced by a single partner-specific feature, molecular docking. In Figure 5b, the protein TK1 

is shown colored by its docked pose with each of two partners, PROC and MAGEA4. We note that the 

predicted interface residues on TK1 are drastically different for each partner, and that the areas with 

elevated interface potential correspond to the position of the two docking results. Even though these 

interaction interfaces were predicted using features additional to docking, this demonstrates how even a 

single partner-specific feature can lead to differential interface predictions. 

The ability of Interactome INSIDER to reveal interaction partner-specific effects can also be 

demonstrated as a global trend in our ECLAIR-predicted interfaces. As discussed, this is important because 

disruptions of different interfaces of the same protein may cause differential disease states; for instance, 

disruption of one interface may cause a disease while disruption of another may not cause any detriment to 

protein function. To demonstrate this on a large-scale, we looked at pairs of disease mutations in the human 

interactome that appear at interaction interfaces. It has been shown that pairs of disease mutations in 

interacting proteins cause the same disease when located in the interaction interface more often than 

mutations located in interaction interfaces with separate partners8. We performed the same analysis using 

differential interaction interfaces predicted by ECLAIR and find the same trend—mutation pairs in the 

interface of two interacting proteins are much more likely to cause the same disease than mutation pairs in 

other interfaces of the same proteins that do not mediate the given interaction (Fig. 5c). We also find that 

mutation pairs on the same protein, but in separate interfaces with different binding partners tend to cause 

different diseases (Fig. 5d). Moreover, this trend is observed in both known and predicted interfaces. This 

shows that ECLAIR is able to use partner-specific features such as docking and co-evolution to predict 
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different interfaces depending on the binding partner of a protein that match established trends of pleiotropy 

and locus heterogeneity in known interfaces8. Importantly, this indicates that Interactome INSIDER can be 

used to form functional hypotheses about the specificity of mutations to specific interactions and molecular 

pathways. 

Using Interactome INSIDER to find sub-networks in the human interactome enriched for disease 

mutations associated with a single disease, we also uncover a set of interacting proteins known to harbor 

mutations causal of hypertrophic cardiomyopathy (HCM)63, a disease marked by enlargement of the 

myocardium heart muscle that can become fatal, and automatically recapitulate the core constituents of a 

known KEGG pathway related to the same disease (Fig. 6). These proteins were identified by enrichment 

of disease mutations in their shared interaction interfaces and, in the case of TNNI3-TNNC1, using cross-

interface atomic clustering of disease mutation positions in 3D. Access to enrichment and 3D atomic 

clustering tools for this disease and users’ uploaded mutations is available via the Interactome INSDIER 

web interface. 

 Interestingly, in addition to identifying known members of the HCM pathway, Interactome INSIDER 

also identified several additional proteins, including CSRP3, MYOM1, ANKRD and TCAP, which are not 

part of the known KEGG pathway, but carry HCM mutations enriched at their respective interaction 

interfaces with members of the pathway. We also identify a protein, TNNT1, which, although it contains 

no HCM mutations of its own, can be implicated in HCM by interacting with two proteins TPM1 and 

TNNC1, which are enriched for HCM mutations at their interfaces with TNNT1. Finally, we note that 

Interactome INSIDER reveals cases of partner-specific interfaces in this pathway. For instance, the known 

HCM pathway protein TTN’s interface with ACTA1 is enriched for HCM mutations, and ACTA1 

mutations are increasingly linked to HCM64,65. On the other hand, a separate interface of ACTA1 with its 

binding partner dystrophin is enriched with mutations causing a distinct disorder, actin myopathy66. This 

shows how ACTA1 can play roles in two different diseases through separate interaction interfaces with 

TTN and dystrophin, and demonstrates Interactome INSIDER’s unique ability to discover such cases of 

differentiable function mirroring differential interfaces.  

 

DISCUSSION 

Interactome INSIDER is an integrative information center for genomics studies in the structural human 

interactome. By leveraging several sources of protein interaction interfaces, including experimentally 

determined co-crystal structures, homology models, and predicted interfaces, Interactome INSIDER allows 

scientists to probe for functional insights in whole interactomes, and to predict disease etiologies based on 

network topology and specific structural interfaces at several scales of resolution. Our new interface 

prediction pipeline, ECLAIR, incorporates many previously validated strategies and features for predicting 
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protein interaction interfaces in whole genomes, allowing Interactome INSIDER to be the first resource to 

show that predicted interfaces can be used for functional analyses in whole interactomes, especially for the 

study of human disease. 

We anticipate Interactome INSIDER will help to bridge the divide between genomic-scale datasets and 

structural proteomic analyses, both now and in the future. Now that large-scale sequencing data from many 

contexts are readily available, for instance from whole-genome/whole-exome population variant studies44,67 

and cancer studies68,69, researchers have become increasingly interested in ways to assess the potential 

functional consequences of variants on a genomic scale59,70-72. For instance, recently we and others have 

developed methods to predict functional cancer driver mutations by finding hotspots of mutations in the 

structural proteome52,54,73. With the comprehensive map of protein interfaces presented, we can now go a 

step further to predict specific etiologies of cancer and disease based on induced biophysical effects74,75 that 

may break interactions. Because our interface map is partner-specific, it can also be applied to predict 

pleiotropic effects, wherein several mutations in a single protein may affect different pathways depending 

upon which binding interfaces are mutated8. This could be the basis for designing new therapeutics and for 

rational drug design to selectively target specific protein functional sites76. 

The scale of interactomes and functional genomic data in Interactome INSIDER uniquely enables it to 

be useful for genomic studies. While at least one previous resource, dSysMap77, is able to display disease 

mutations in structural interfaces, it is limited to 9,875 human interactions with either co-crystal structures 

or homology models, severely limiting its applicability to genomic studies by offering the same small slice 

of the interactome that has been studied extensively. Interactome INSIDER on the other hand contains 

interfaces for an additional 111,700 human interactions alone, which have never been available before in 

any repository. Furthermore, unlike dSysMap, Interactome INSIDER contains somatic cancer mutations, 

population variants, and mutation functional annotations, as well as interfaces for 7 model organisms with 

potential use in model systems studies, which have proven useful in the study of human disease78 and for 

studying molecular evolution4,79. Thus, we intend Interactome INSIDER be a more broadly applicable 

resource, with the ability to inform many aspects of genomic studies, from identifying functional regions 

of proteins, to incorporating orthogonal information about known mutations and functional effects in these 

regions. 

With future increases to the scale of biological databases from which we derive features, we expect that 

Interactome INSIDER will come to encompass even higher confidence predictions for many more 

interactions, thereby becoming increasingly applicable to functional studies. This may also address some 

limitations of structural databases today. For instance, the PDB is depleted of disordered proteins80, and it 

has been shown that disordered regions can form interfaces81. Since ECLAIR has not been trained on 

disordered interfaces, it is unlikely to predict new disordered interfaces. However, the ensemble classifier 
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structure of ECLAIR uniquely positions it to incorporate all newly-available evidence into interface 

predictions without sacrificing quality or scale, ensuring the highest quality map of interaction interfaces 

now and in the future. Furthermore, the addition of new variants, especially cancer mutations and 

population variants from large-scale sequencing studies, will only increase the value of performing systems-

level explorations with Interactome INSIDER. 
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MATERIALS & METHODS 

Interaction datasets 

We compiled binary protein interactions available for H. sapiens, D. melanogaster, S. cerevisiae, C. 

elegans, A. thaliana, E. coli, S. pombe, and M. musculus from 7 primary interaction databases. These 

databases include IMEx82 partners DIP30, IntAct31, and MINT32, IMEx observer BioGRID33, and additional 

sources iRefWeb34, HPRD35, and MIPS36. Furthermore, iRefWeb combines interaction data from BIND83, 

CORUM84, MPact85, OPHID86, and MPPI87. We filtered these interactions using the PSI-MI88 evidence 

codes of assays that can determine experimental binary interactions (Supplementary Table 2), as these are 

interactions where proteins are known to share a direct binding interface that we can then predict5. In total, 

we curated 197,151 interactions in these 8 species including the full experimentally determined binary 

interactome in human (121,575 interactions) (Supplementary Note 1). Those interactions with known 

interface residues based on available co-crystal structures in the Protein Data Bank (PDB)89 were set aside 

for use in training and testing the classifier. Interactions without known interface residues comprise the set 

for which we make predictions.  

Testing and training sets for interface residue prediction 

For those interactions with known co-crystal structures in the PDB, we calculate interface residues for their 

specific binding partners. To identify UniProt protein sequences in the PDB, we use SIFTS90, which 

provides a mapping of PDB-indexed residues to UniProt-indexed residues49. For each interaction and 

representative co-crystal structure, interface residues are calculated by assessing the change in solvent 

accessible surface area of the proteins in complex and apart using NACCESS91. Any residue that is at the 

surface of a protein (≥15% exposed surface) and whose solvent accessible surface area (SASA) decreases 

by ≥1.0 Å2 in complex is considered to be at the interface. We aggregate interface residues across all 

available structures in the PDB for a given interaction, wherein a residue is considered to be at the interface 

of the interaction if it has been calculated to be at the interface in one or more co-crystal structures of that 

interaction (all other residues are considered to be away from the interface). In building our final training 

and testing sets, we only consider interactions for which aggregated co-crystal structures have combined to 

cover at least 50% of UniProt residues for both interacting proteins. 

The training and testing sets each include a random selection of 400 interactions with known co-crystal 

structures, of which 200 are heterodimers and 200 are homodimers (Supplementary Table 3). To ensure 

an unbiased performance evaluation, we disallowed any homologous interactions (i.e. interactions whose 

structures could be used as templates for homology modeling) between the training and testing set. We also 

disallowed repeated proteins between the two sets to avoid simply reporting a remembered shared interface 
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between a protein and multiple binding partners, thereby artificially elevating the performance of our 

classifier on the testing set. 

 

Hyperparameter optimization with TPE 

In order to train our ensemble of classifiers that comprise ECLAIR, we used the tree-structured Parzen 

estimator approach (TPE)92, a Bayesian method for optimizing hyperparameters for machine learning 

algorithms. TPE models the probability distribution p(x|y) of hyperparameters given evaluated loss from a 

defined objective function, L(x). We selected the following loss function to minimize based on classical 

hyperparameter inputs and residue window sizes: 

𝐿𝐿(𝜃𝜃,𝑤𝑤) = 1 − min
𝑛𝑛∈{1,2,3}

�𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝜃𝜃,𝑤𝑤,𝑛𝑛� 

where x is comprised of θ, a set of hyperparameters, and w, a set of residue window sizes. The 

evaluation metric, AUROCn, is the area under the roc curve for the nth left-out evaluation fold in a three-

fold cross-validation scheme. We then used TPE to randomly sample an initial uniform distribution of each 

of our hyperparameters and window sizes and evaluate the loss function for each random set of inputs. TPE 

then replaces this initial distribution with a new distribution built on the results from regions of the sampled 

distribution that minimize L(x): 

𝑝𝑝(𝑥𝑥|𝑦𝑦) = �
𝑙𝑙(𝑥𝑥)   𝑖𝑖𝑖𝑖 𝑦𝑦 < 𝑦𝑦∗
𝑔𝑔(𝑥𝑥)   𝑖𝑖𝑖𝑖 𝑦𝑦 ≥ 𝑦𝑦∗ 

where y* is a quantile γ of the observed y values so that p(y < y*) = γ.  Importantly, y* is guaranteed to 

be greater than the minimum observed loss, so that some points are used to build l(x). TPE then chooses 

candidate hyperparameters to sample as those representing the greatest expected improvement, EI, 

according to the expression: 

𝐸𝐸𝐸𝐸𝑦𝑦∗(𝑥𝑥) =
𝛾𝛾𝑦𝑦∗𝑙𝑙(𝑥𝑥) − 𝑙𝑙(𝑥𝑥)∫ 𝑦𝑦𝑦𝑦(𝑦𝑦)𝑑𝑑𝑑𝑑𝑦𝑦∗

−∞
𝛾𝛾𝛾𝛾(𝑥𝑥) + (1 − 𝛾𝛾)𝑔𝑔(𝑥𝑥)  ∝  �𝛾𝛾 + 

𝑔𝑔(𝑥𝑥)
𝑙𝑙(𝑥𝑥)

(1 − 𝛾𝛾)�
−1

 

In order to maximize EI, the algorithm picks points x with high probability under l(x) and low 

probability under g(x). Each iteration of the algorithm returns x*, the next set of hyperparameters to sample, 

with the greatest EI based on previously sampled points. 

 

Training the classifier 

The ECLAIR classifier was trained in three stages, using a custom wrapper of the scikit-learn93 random 

forest94 classifier to allow for use of TPE to search both algorithm hyperparameters and residue window 

sizes simultaneously. In all cross-validations performed, we allowed TPE to search the following 

hyperparameters, beginning with uniform distributions of the indicated ranges: (1) minimum samples per 

leaf (0-1000), (2) maximum fraction of features per tree (0-1), and (3) split criterion (entropy or gini 
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diversity index). The number of estimators (decision trees) in each random forest was fixed at either 200 

for training the feature selection classifiers, or 500 for training the full ensemble. We also allowed TPE to 

search over residue window sizes (± 0-5 residues for a total window of up to 11 residues, centered on the 

residue of interest). This was achieved by allowing extra features for neighboring residues to be included 

at the time of algorithm initialization. 

In the first stage of training, cross-validation using TPE was performed on classifiers trained using only 

features from 1 of the 5 feature categories. The feature or set of features from each category with the 

minimum loss was selected to represent that category in building the ensemble classifier (Supplementary 

Table 4). In the second stage, the ensemble classifier was built of 8 random forest classifiers, each trained 

on different subsets of feature categories, and hyperparameters and window sizes were again chosen using 

cross-validation and TPE (Supplementary Table 5). In the final stage, following performance 

measurement on the testing set, the 8 sub-classifiers were retrained using the full set of 3,447 interactions 

with at least 50% UniProt residue coverage in the PDB, using the same hyperparameters and window sizes 

found in the previous step. 

 

Evaluating the ensemble 

After training and optimizing using only the training set, we predicted interface residues in a completely 

orthogonal testing set. For each sub-classifier of the ensemble, all residues in the testing set that could be 

predicted (given the full set of necessary features or a superset) were ranked according to their raw 

prediction scores to produce ROC and precision-recall plots. 

 

Benchmarking against other methods 

Interfaces for interactions in our testing set were computed using several popular interface prediction 

methods37-41. We compiled a set of representative protein structures from the PDB for each protein in our 

testing set, selecting the structure with the highest UniProt residue content based on SIFTS and excluding 

any PDB structures of interacting protein pairs from our testing set. We then evaluated the precision, recall, 

and false positive rate for proteins that were able to be classified by all methods. These represent point 

estimates of these metrics for the external methods with binary prediction scores. 

We also compared ECLAIR to 10 popular methods for interface prediction by predicting interfaces in 

a standard benchmark set of protein complexes42 (Supplementary Table 1). Here, we followed the 

experimental procedures laid out by Maheshwari et al.43, and excluded complexes in which the receptor is 

<50 or >600 amino acids, where the interface is made up of <20 residues, or where multiple interfaces are 

present. 
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Predicting new interfaces 

We retrained the ensemble using all available co-crystal structures, including those from both testing and 

training sets, a standard machine learning practice that makes maximal use of labeled data95. Using this 

fully trained ensemble of classifiers, we predicted interface residues for the remaining 184,605 interactions 

not resolved by either PDB structures or homology models. Sub-classifiers were ordered based on the 

number and information content of features used in their training. Each residue was then predicted by only 

the top ranking classifier of the ensemble trained on the full set or a subset of available features for that 

residue. 

 

Interface enrichment and 3D atomic clustering 

Interface domain enrichment, residue enrichment, and 3D atomic clustering can be calculated through the 

Interactome INSIDER web interface. For enrichments presented in this study, we accessed all disease 

mutations from the Human Gene Mutation Database (HGMD)45 and ClinVar46, recurrent cancer mutations 

appearing ≥ 6 times in COSMIC47, and population variants from the Exome Sequencing Project44 to 

compute the log odds ratio: 

𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑙𝑙𝑙𝑙 �

𝑝𝑝1
1− 𝑝𝑝1
𝑝𝑝2

1− 𝑝𝑝2
� 

where p1 is the probability of a mutation or variant being at the interface and p2 is the probability of any 

residue being at the interface. We computed the log odds ratio for residues in each of the interface prediction 

potential categories. We also computed the log odds ratio for interactions with known interfaces from PDB 

co-crystal structures, defined as all known interface residues from NACCESS calculations and all residues 

in Pfam96 domains with ≥ 5 interface residues. For the disease mutation enrichment analysis (Fig. 4a, we 

used all disease mutations available from HGMD, and the following numbers of mutations occurred in each 

category: 10,196 Very Low, 10,547 Low, 2,970 Medium, 1,135 High, and 305 Very High. We also 

computed enrichment of 18,638 mutations in known interfaces and 17,760 mutations in known non-

interfaces (from co-crystal structure evidence). 

To perform 3D atomic clustering of amino acid loci of interest, we used an established method54 for 

clustering and empirical p-value calculation and applied it to multi-protein clustering, wherein clusters can 

occur across an interaction interface. Here, we perform complete-linkage clustering97 in the shared 3D space 

of both proteins, and iteratively, and randomly rearrange mutations in each protein to produce an empirical 

null distribution of cluster sizes.  
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Mutagenesis validation experiments 

We performed mutagenesis experiments in which we introduced random human population variants from 

the Exome Sequencing Project44 into known and predicted interfaces. We randomly selected mutations of 

predicted interface residues in each of the top four ECLAIR categories (Low – Very High). As positive and 

negative controls, we also selected random mutations of known interface and non-interface residues in co-

crystal structures in the PDB. The selected mutations were then introduced into the proteins according to 

our previously published Clone-seq pipeline18 and their impact (either disrupting or maintaining the 

interaction) was assessed using our yeast two-hybrid assay (Supplementary Note 6). In this manner, we 

tested the impact of 2,164 mutations: 1,664 in our predicted interfaces and 500 in known interface and non-

interface residues from co-crystal structures. In Figure 2c, we report the fraction of tested interface residue 

mutations that caused a disruption of the given interaction for each of the interface residue bins. 

 

Web server 

Interactome INSIDER is deployed as an interactive web server (http://interactomeinsider.yulab.org) 

containing known and predicted interfaces for 197,151 protein interactions in 8 species, as well as variants 

and functional annotations mapped relative to the residues in the human proteome. For each interaction, the 

most reliable, high-resolution model is presented, i.e. co-crystal structures are always displayed in lieu of 

homology models, and all remaining unresolved interactions are predicted by our ECLAIR classifier. Co-

crystal structures are derived from the PDB, with extraneous chains removed for each interaction, and 

homology models are computed by MODELLER11 and downloaded from Interactome3D13. For both types 

of structural model, we computed all residues at the interface over all available models, and allow users to 

view any model from which a unique interface residue has been calculated. For predicted interfaces, a non-

redundant set of single protein models are shown when available, with locations of predicted interface 

residues indicated. In total, the resource contains 7,135 interactions with co-crystal structures, 5,411 with 

homology models, and 184,605 with predicted interfaces. 

Interactome INSIDER also includes pre-calculated enrichment of mutations derived from several 

sources: 56,159 disease mutations from HGMD45 and ClinVar46 and 1,300,352 somatic cancer mutations 

from COSMIC47. It also includes 194,396 population variants from the 1000 Genomes Project48, 425,115 

from the Exome Sequencing Project44, and 54,165 catalogued by UniProt49. Predictions of deleteriousness 

for all variants and any user-submitted variants within the curated interactomes are obtained from 

PolyPhen-221 and SIFT22, and biophysical property change guides (i.e. polar to non-polar, hydrophobic to 

hydrophilic) are also displayed for convenience. Mutation and variant enrichment analyses can be triggered 

by the user for existing variants or for user-submitted sets within interacting protein domains, residues, and 

3D clustering using the atomic coordinates of structures when available.  
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Figure Legends 

Figure 1. The current size of structural interactomes. (a) The sources of pre-computed structural 
interactomes and their coverage of known high quality binary interactomes. (b) Interactions from the largest 
8 interactomes with experimentally solved structures, which can be used to train a classifier. 

Figure 2. ECLAIR prediction results. (a) Workflow for classifying interfaces for all interactions in 8 
species. Interactions without experimentally determined or homology modeled interfaces are classified by 
ECLAIR. (b) ROC and precision-recall curves comparing ECLAIR with other popular interface residue 
prediction methods. (c) Fraction of interactions disrupted by the introduction of random population variants 
in known and predicted interfaces. (* denotes significant (p < 0.05); n.s. denotes not significant by a Z-test) 

Figure 3. Flowchart showing the sources and computational workflow for calculating mutation and variant 
enrichment using the Interactome INSIDER web interface. Users may submit their own mutations or select 
sets of known disease and cancer mutations to assess their enrichment in interface domains and residues, 
or compute 3D atomic clusters of mutations in proteins and across interfaces. 

Figure 4. Functional properties of predicted interfaces. (a) Enrichment of disease mutations in predicted 
and known interfaces. (b) Enrichment of recurrent cancer mutations in predicted and known interfaces. (c) 
Enrichment of rare and common population variants in predicted and known interfaces. (d) Predicted 
deleteriousness of population variants in known and predicted interfaces (using PolyPhen-2). (e) Predicted 
effects of population variants in known and predicted interfaces (using EVmutation). (* denotes significant, 
p < 0.05 by a Z-test) 

Figure 5. Interaction partner specific interface prediction. (a) The TGF-β/BMP signaling pathway. Atomic 
clustering reveals a mutation hotspot for juvenile polyposis syndrome at the interface of SMAD8 and 
SMAD4. One of these mutations (Y353S) on SMAD4 is confirmed to selectively break the interaction with 
SMAD8. This mutation is not predicted by ECLAIR to be at the interface of SMAD4-RASSF5, and is 
shown to leave this interaction intact. (b) Superimposed docking results of two different partners with TK1. 
The differentially predicted interfaces of TK1 with each of its partners corresponds with the orientation of 
the docked poses. (c) Pairs of disease mutations across interaction interfaces tend to cause the same disease 
more often than pairs of mutations in other interfaces of the same proteins with different partners. (d) Pairs 
of disease mutations in different interfaces of the same protein tend to cause different diseases more often 
than pairs of mutations in the same interface. (* denotes significant, p < 0.05 by a Z-test) 

Figure 6. The hypertrophic cardiomyopathy pathway. Interactome INSIDER readily discovers the core 
components of this KEGG pathway known to be involved in the disease hypertrophic cardiomyopathy 
(HCM). Interfaces are noted for their enrichment of HCM mutations or, in the case of TNNI3-TNNC1, the 
presence of 3D atomic clusters. Through enrichment analyses, Interactome INSIDER also reveals an 
additional protein, CSRP3, which is not part of the known KEGG pathway, but is enriched for HCM 
mutations at predicted interfaces with known pathway members. Furthermore, TTN’s interface with 
ACTA1 is enriched for HCM mutations, but a separate interface of ACTA1 with its binding partner 
dystrophin is enriched with mutations causing a distinct disorder, actin myopathy, demonstrating 
Interactome INSIDER’s ability to discover cases of differentiable function mirroring differential interfaces. 
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