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Abstract

Motivation: The discovery of thousands of long noncoding RNAs

(lncRNAs) in mammals raises a question about their functionality. It has
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been shown that some of them function post-transcriptionally via forma-

tion of inter-molecular duplexes. Sequence alignment tools are frequently

used for transcriptome-wide prediction of RNA-RNA interactions. How-

ever, such approaches have poor prediction accuracy since they ignore

RNA secondary structure and interaction energy. On the other hand, ap-

plication of the thermodynamics-based algorithms to long transcripts is

not computationally feasible on a large scale.

Results: Here we describe a new computational pipeline ASSA that com-

bines sequence alignment and thermodynamics tools for efficient predic-

tion of RNA-RNA interactions between long transcripts. ASSA outper-

forms four other tools in terms of the Area Under the Curve. ASSA

predictions for the lncRNA HOTAIR confirm that it binds to the chro-

matin through hybridization with the nascent transcripts. Analysis of the

49 murine lncRNA knockdown experiments reveals one transcript that

may regulate its targets via RNA-RNA interactions.

Availability: ASSA is available at http://assa.sourceforge.net/.

Contact: ivan.antonov@gatech.edu

1 Introduction

Due to the single strand nature of an RNA molecule its nucleotides are capable

of base pairing with the complementary nucleotides. Usually the hybridization

occurs between different regions of the same transcript producing the secondary

structure. However, a part of one RNA molecule can bind to a complementary

part of another RNA molecule forming inter-molecular duplex. Such RNA-RNA

pairing is called antisense interaction and the corresponding RNAs are known

as natural antisense transcripts or NATs [1].

Long noncoding RNAs (lncRNAs) are a large and diverse class of transcribed
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RNA molecules with a length of more than 200 nucleotides that do not encode

proteins. The discovery of thousands of lncRNAs expressed in the mammalian

cells raises a question about their functionality [2, 3]. The fact that the whole set

of lncRNAs transcription is regulated [4], indirectly supports their functionality.

Due to the functional diversity [5] the role and/or the molecular mechanism of

only a few hundred lncRNAs have been determined to date. Particularly, it has

been shown that some of them function post-transcriptionally via formation of

inter-molecular RNA-RNA duplexes [6, 7, 8].

The primary aim of this work is to bioinformatically address novel lncRNA

functions by predicting RNA-RNA interactions transcriptome-wide. Many large-

scale computational studies of mammalian NATs [9, 10, 11, 12] have utilized

sequence alignment tools (such as BLASTn [13] or LASTAL [14]) without tak-

ing into account the RNA secondary structure and the interaction energy, cru-

cial for the RNA binding. To compensate for this disadvantage one can use

a thermodynamics-based method to perform a co-folding of two RNAs (the

query RNA versus each RNA in the transcriptome) into the minimal free en-

ergy (MFE) structure.

The major disadvantage of a thermodynamics-based approach is the compu-

tational complexity that does not allow its application to a genome- or transcriptome-

wide analysis. Here we present a new pipeline, called ASSA (”AntiSense Search

Approach”), which reduces running time of a thermodynamics-based search by

fast identification of putative antisense sites using a sequence alignment tool

BLASTn [13] followed by verification of each potential interaction by a co-

folding tool bifold [15]. In this pipeline we (i) automate selection of the initial

set of the putative antisense sites (i.e. optimize the BLASTn search thresholds),

(ii) estimate the statistical significance (E-value) of the antisense interaction en-

ergy and (iii) optimize the length of the flanking sequences to the putative sites
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for the bifold run.

A similar idea has been used in a recent study by [16] where the local align-

ment tool LASTAL [14] has been applied to identify the initial set of ”seed”

sites followed by the calculation of the interaction energy by the IntaRNA tool

[17]. However, no statistical significance has been assigned to the obtained in-

teraction energies. This is an important issue since the ”background” energies

(the values produced by the random sequences) largely depend on the lengths

of the input transcripts (see our analysis below).

We evaluate the ASSA performance on a set of experimentally validated

functional NATs. Moreover, the comparison of our pipeline with several other

large-scale computational tools demonstrates that ASSA performance is more

accurate and less time consuming. Our analysis indicates that ASSA can poten-

tially be used to search for the lncRNAs functioning via short-trans antisense

duplexes.

2 Materials and Methods

2.1 The ASSA algorithm

Several thermodynamics-based algorithms [18, 19, 20, 21], including bifold [15],

can be used to predict an antisense interaction with respect to the RNA sec-

ondary structure. Unfortunately it is not computationally feasible to apply

these tools to the long RNAs and complete transcriptomes due to the large

execution time (see Supplementary Figure 1). Thus, we develop an approxima-

tion approach, ASSA (”AntiSense Search Approach”), that identifies antisense

partners for a transcript of any length on a large scale using a co-folding algo-

rithm. To achieve this aim we perform several trainings to optimize the ASSA

parameters.
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As the first step of the ASSA pipeline we use the local sequence alignment

tool BLASTn (with the ”-strand minus” option) to identify the possible inter-

molecular duplexes. In this work, we refer to the produced local alignments as

the ”putative antisense sites”. We perform the BLASTn search with the only

threshold for the seed length (required by the BLASTn) but no threshold for the

E-value. By default, ASSA uses seed of the length 10 identifying all the local

alignments that contain at least one perfect antisense duplex of length ≥ 10

bp. Next, to select the putative sites that are likely to be reconstructed by the

bifold all the BLASTn hits were filtered by the alignment length, GC content

and percent complementarity.

Thus, the Training 1 is performed in order to optimize the thresholds for

the local alignment filtering (see Supplementary Text). For this purpose, we

simulate the input to the bifold in an ASSA run by generating special sequence

pairs. The middle part of each sequence in a pair represents a putative antisense

site (a BLASTn local alignment) with a particular length, GC content and

percent complementarity. The antisense site is flanked by the random sequences

of length 50 nt on both sides (see Supplementary Figure 2). In total, we produce

115,500 sequence pairs corresponding to ”pseudo”-BLASTn hits with various

length (from 10 bp to 50 bp), GC content (from 0% to 100%) and percent

complementarity (from 80% to 100%). We apply bifold to all the sequence pairs

and calculate the fraction of the original site length that is predicted by the co-

folding tool. For each specific set of GC content and percent complementarity

we selecte the site length that is reconstructed by the bifold in at least 75% of

cases. We use the linear regression to estimate the site length threshold (SLT )

depending on its GC content and percent complementarity (see Supplementary

Text).

In every ASSA run the putative antisense sites are selected according to the
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formula derived in the Training 1. The use of putative antisense sites signif-

icantly reduces the bifold execution time by applying the tool to the specific

sequence chunks rather than the full-length transcripts. Namely, to compute

the interaction energy of a putative site (∆∆G) bifold is applied to the regions

of two transcripts consisting of the BLASTn hit together with the flanking se-

quences of specific length on both sides.

We perform the Training 2 in order to study the dependance between the

lengths of the sequences submitted to the bifold and the produced interaction

energy (see Supplementary Text). In order to do that we apply bifold to the

1700 pairs of random sequences with various lengths (ranging from 200 nt to

1400 nt) and compute the distributions of the obtained interaction energies

(see Supplementary Figure 3). This analysis demonstrate that longer random

sequences produce stronger interaction energies. For example, the average inter-

action energy obtained from two random sequences of length 200 nt each is -9.8

kcal/mole, while the average ∆∆G value for sequences of length 1000 nt is -15.7

kcal/mole. Thus, in the ASSA pipeline the statistical significance of a ∆∆G

energy (P-value) is calculated with respect to the lengths of both sequences

submitted to the bifold (i.e. the lengths of the sequence chunks involved in the

local alignment plus the flank lengths). Next, for each transcript pair ASSA

computes the Interaction Score by combining the P-values from all the putative

sites found between the two RNAs. The statistical significance of the observed

score is estimated using E-value (see Training 2 in the Supplementary Text).

For optimization purposes, the calculation of the ∆∆G values in the ASSA

pipeline is performed by gradually increasing the length of the flanking sequences

and running bifold on each iteration. We perform the Training 3 to optimize

the lengths of the flanks used in this iterative process (see Supplementary text).

We use the TINCR pull-down experiment [22] to prepare a training set which
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consists of the top 200 transcripts identified in the experiment and the 600 ran-

domly chosen human RNAs. ASSA is applied to the training set with different

parameters for the bifold loop. After each iteration the prediction accuracy is

measured by the Area Under the Curve (AUC) value. Unexpectedly, usage of

the flanks longer than 50 nt frequently decreases the prediction accuracy (see

Supplementary Figure 4). Based on this analysis the default values for the

--flank min, --flank step and --flank max ASSA options are assigned to 25

nt, 25 nt and 50 nt, respectively. It should be noted that ASSA merges any

two adjacent putative sites that overlap by their flanks on both transcripts. If

putative sites overlap on one sequence only, they are considered to be separate

sites.

2.2 All-vs-all BLASTn search and repeat masking

Information about the genes expressed in the K562 cell line was taken from

the FANTOM5 database (sample id ”CNhs12334.10824-111C5”). All the genes

with non-zero expression value were considered. For the alternatively spliced

genes the longest transcript was selected only.

The ”all-vs-all” BLASTn search was performed in the antisense mode with

the seed length equal to 15 and without a threshold on the E-value. Thus, an

antisense interaction was recorded between ant two transcripts with at least one

perfectly complementary duplex of length 15 bp or more. This relatively strict

value for the BLASTn seed threshold was chosen taking into account that even

AT-rich duplexes of this length were frequently reconstructed by the bifold (see

Supplementary Fig.2). The number of the antisense partners for a given RNA

was defined as the number of the unique transcripts. Note, that several BLASTn

local alignments could be found between two sequences. Thus, the total number

of the antisense partners was less than the total number the BLASTn hits.
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We ran the RepeatMasker in a quick mode (the -qq option) to mask the

human-specific repeats (-species human) in all the sequences. Additionally,

the -alu option was used to restrict masking to the Alu repeats only.

2.3 Prediction of the RNA-RNA and RNA-DNA interac-

tions

To predict the RNA-RNA interactions we ran ASSA, RRP and LncTar with the

default parameters; LASTAL – with the custom substitution matrix and the

parameters from [12]: -a20 -b8 -s0 -e1; the IntaRNA – with the parameters

recommended by the authors [23]: -p 7 -w 150 -L 100. The RRP predictions

were sorted according to the ”SUMENERGY” values.

Triplexator was applied to search the whole human genome (hg19) with the

settings recommended at the official web-site: -l 15 -e 20 -c 2 -fr off -g

20 -fm 0 -of 0 -rm 2. The Triplexator score for each genomic region was

calculated as the sum of the scores of all the predictions inside the region.

2.4 Analysis of the lncRNA knockdown in murine cells

Since we are focusing on the RNA-RNA interactions it is reasonable to search

for the lncRNA antisense interactions only within the genes expressed in the

mESCs. To compile such a list we take advantage of the large number of the

various knockdown experiments performed by [24] – there are 187 experiments

in total (147 lncRNA and 40 transcription factor knockdowns). We hypothe-

size that a gene, which has never been down-regulated in a wide range of the

knockdown experiments, is probably not expressed in the corresponding cell

line. Thus, we select the genes that have been significantly down-regulated in

at least one (out of the 187) knockdown experiment performed in the study.

There are 3695 such genes represented by the 5451 transcripts.
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Among the 147 lncRNAs provided by [24] there are 100 sequences containing

”N” characters which can not be used as ASSA input. Thus, we used the

BLASTn (with the seed length = 40) to match the 147 transcripts with the

recent GENCODE annotation (release 19). We managed to resolve the 29 ”N”-

containing lncRNAs. The remaining 71 noncoding transcripts with ambiguous

nucleotide(s) were not used for further analysis. Additionally, we discarded 19

lncRNAs with less than 50 differentially expressed genes (among the 3695 genes)

as well as 8 Alu-containing sequences. This resulted in a final list of 49 lncRNAs.

ASSA was run without a threshold on E-value since we wanted to sort the

3695 genes by their ability to hybridize with the query sequence rather than

identify the top predictions only. The GSEA FDR value was computed using

the gsea2.jar tool with 10000 permutations. To obtain the random sequences, we

used the uShuffle tool [25] for di-nucleotide shuffling, while the mono-nucleotide

shuffling was performed using a custom Perl script.

3 Results

3.1 The ASSA pipeline

Here we present a new computational pipeline, called ASSA (”AntiSense Search

Approach”), developed for the thermodynamics-based prediction of the RNA-

RNA interactions on a transcriptome scale. The general idea of this approach

is to first identify putative antisense sites by the local sequence alignment tool

BLASTn [13], compute the interaction energy (∆∆G) for each site by the RNA

co-folding tool bifold [15] and using the obtained ∆∆G values estimate the

statistical significance of each predicted RNA-RNA interaction (see Fig.1).

ASSA takes two sets of nucleotide sequences as input (the query and the

target transcripts). On the first step, the antisense mode of the BLASTn is
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Query	RNA	
(e.g.	lncRNA)	

Target	RNAs	(e.g.	transcriptome)	

Cut	off	site	
sequences	with	

flanks	of	length	FL	

FL	 FL	

FL	 FL	

bifold	

Discard	the	interac>on	

Compute	site	P-values	
normalized	to	flank	length	

YES	

NO	

Increase	FL	by	
25	nt*	

YES	

The	interac>on	been	validated	
(ASSA	output)	

NO	

Predict	puta>ve	an>sense	sites	by	BLASTn	(seed	length	=	10*)	

Flank	Length,	
FL	=	25	nt*	

E-value	<	1*	

FL	 FL	 FL	 FL	

FL	 FL	 FL	 FL	

FL	 FL	

FL	 FL	

Compute	interac>on	E-value	
normalized	to	transcript	lengths	

Filter	puta>ve	sites	by	length,	GC	content	and	%	complementarity	

FL	≤	50	nt*	

Figure 1: The ASSA pipeline. *The parameters can be adjusted by the ASSA
options (the default values are shown on the figure).
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used to search all the query RNAs versus all the targets. The obtained local

alignments are filtered by the length, GC content and percent complementarity

producing a set of putative antisense sites (see Material and Methods).

On the next step, ASSA uses the bifold tool to compute the interaction

energies (∆∆G) for all the sites. It should be noted that the ∆∆G values are

computed from the transcript regions containing the putative sites together with

the flanking sequences on both sides. The obtained energies are used to estimate

the statistical significance (measured by E-value) of the interaction between any

two transcripts that have at least one putative antisense site. Transcript pairs

that do not have antisense sites or with E-values that do not satisfy the user-

defined threshold are discarded.

The length of the flanks that are added to the putative antisense sites is

an important parameter of the ASSA pipeline. On the one hand, longer flanks

allow to take into account more elements of the RNA secondary structure. On

the other hand, the bifold execution time increases with the length of the flank-

ing sequences. Thus, in the ASSA pipeline we iteratively increase the value of

the flank length parameter and perform the ∆∆G calculation and the hits fil-

tering on every iteration (see Fig.1). The default values of the iteration process

parameters were chosen based on the ASSA application to a training set (see

Materials and Methods). By default, the flank length is increased from 25 nt to

50 nt in two iterations.

ASSA outputs a list of predicted RNA-RNA interactions sorted by E-value.

It should be noted that the HTML-based output which conveniently visualizes

the location of the predicted antisense duplexes can also be produced (installa-

tion of additional Perl modules is required to enable this option).

ASSA execution time depends on the query transcript length, the size of the

target database and the length of the flanking sequences. The RNA co-folding
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is the most time consuming step of the pipeline. Since bifold is independently

applied to each putative site, this process could easily be distributed between

several CPUs (using the --num threads option) to speed up the ASSA run.

3.2 Classification of the antisense interactions

Our literature search for the published cases of the biologically active duplexes

formed between long RNAs (i.e. mRNA-mRNA, lncRNA-mRNA or lncRNA-

lncRNA) in mammals prompted us to expand the classical ”cis-trans” classifi-

cation of the natural antisense transcripts.

Antisense interactions are usually classified into two groups – cis and trans.

The interactions of the first type occur between the products of the overlapping

genes that are transcribed in opposite directions. The resulting RNAs have one

or several (due to splicing) sites that are perfectly complementary to each other.

All other interactions are classified as trans (”not-cis ”) since they are formed

between the transcripts of genes located in different genomic regions.

A special type of the trans RNA-RNA binding occurs when one of the over-

lapping genes has an expressed copy (ortholog) at another locus. The duplicate

of the gene harbors a sequence highly complementary to a part of the other gene

in the overlap and thus can form trans-antisense duplexes with it. This scenario

has been observed in the case of expressed pseudogenes [26]. Moreover, it has

been shown that such pseudogene related duplexes can be recognized by RNAi

machinery and produce functional siRNAs in mouse oocytes [27]. Inversion of

a genomic region during gene duplication is another possible scenario for such

NATs formation [28]. So, we refer to these interactions as ”pseudo-cis” because

the transcript regions that form the inter-molecular duplex share a common

ancestral sequence.

Sequence repeats of several types occupy a significant portion of the mam-
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Figure 2: Alu repeats are the major contributors of the repeat-based antisense
interactions between human transcripts. Dependence between the query tran-
script length and the number of antisense partners is shown for three types of
masking: (A) no masking, (B) masking of the Alu-repeats only and (C) mask-
ing of all repeats (as identified by the RepeatMasker). Each dot on the graph
corresponds to one transcript. The transcripts without Alu repeats are blue;
the transcripts with all Alu(s) in one orientation are red; the transcripts with
at least one Alu repeat in the direct orientation and at least one Alu repeat in
the reverse orientation are green.
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malian genomes. It is a common practice in the large scale computational

studies to mask repeats of all types prior to the antisense search [11, 9, 10]

in order to avoid the prediction of the large number of interactions based on

sequence repeats. To study the contribution of different repeat types to the

total number of possible antisense partners of a given transcript we performed

”all-vs-all” BLASTn search for the 10664 genes expressed in the K562 cell line.

As expected the number of the predicted antisense partners linearly depended

on the query length. Surprisingly, we observed three types of RNAs on the Fig.

2A. We were curious whether the origin of this observation could be related to

a specific repeat family.

The Alu-repeats are up to 350 nt long and have relatively high percent

identity (> 70%). They are localized in the human transcripts either in the

direct or in the reverse-complement orientation. It has been shown that a pair of

RNAs with Alu repeats in opposite directions are able to interact with each other

and trigger Staufen Mediated Decay [29, 30] and/or regulate mRNA translation

[31]. We hypothesized that the three groups of transcripts observed on Fig.2A

were related to the Alu-contaning transcripts.

To check this hypothesis we applied the RepeatMasker [32] to the 10664

transcripts and identified 2212 Alu-containing sequences. Thus, on Fig.2 we

used different colors for (i) the 8452 transcripts without Alu repeats, (ii) the

1807 RNAs with Alu(s) in one direction only and (iii) the 405 RNAs with at

least one Alu repeat in the direct and at least one repeat in the opposite ori-

entation. This color-scheme matched well with the three groups (see Fig.2A).

Indeed, the transcripts with two or more Alu-repeats in different directions are

able to form inter-molecular duplexes with any other Alu-containing transcript.

RNAs with Alu(s) in one orientation can only hybridize with transcripts con-

taining complementary repeat sequence. Clearly, transcripts without Alu’s have
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the lowest antisense potential since they can not participate in the Alu-based

interactions.

To further confirm the observed role of the Alu repeats we masked them in

the 2212 sequences and repeated the ”all-vs-all” search for all the 10664 tran-

scripts. The same linear dependence was observed for all the queries (Fig. 2B)

proving that the presence of an Alu repeat(s) in a query significantly increased

its antisense potential.

Finally, we used the RepeatMasker once again to mask repeats of all types

(7.8% of the total sequence length) and repeated the ”all-vs-all” search. We did

not observe a significant change of the graph (Fig. 2C). This results suggests

that the Alu repeats play the major role in the repeat-based interactions in the

human cells. We, thus, define yet another type of trans-antisense interactions –

the ”Alu-based”.

We call short-trans any interaction that is not cis and does not have pseudo-

cis or Alu-based duplexes. Thus, we define four types of NATs – cis, pseudo-cis,

Alu-based and short-trans.

3.3 ASSA predictions for the functional NATs

In order to evaluate ASSA performance we applied it to the 34 functional natural

antisense transcripts (NATs) collected from the literature – 11 cis, 4 pseudo-cis,

10 Alu-based and 9 short-trans cases (see Supplementary Table 1). ASSA pre-

dictions for cis, pseudo-cis and Alu-based interactions were very strong due to

the existence of long (>100 bp) duplexes with high percent of complementarity.

By contrast, only 6 out of the 9 short-trans interactions were identified by

ASSA and only 3 out of 6 had E-value < 0.01. The inability of ASSA to iden-

tify some of the short-trans cases could be due to our approach to apply bifold

to the regions containing putative antisense sites instead of analyzing the full
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length transcripts. To test this possibility we applied bifold directly to the

full-length sequences from the four short-trans antisense pairs with weak ASSA

E-values (lncRNA-ATB::IL11, GAS5::MYC, lincRNA-p21::JUNB and lincRNA-

p21::CTNNB1). Additionally, each lncRNA was used to generate 20 random se-

quences via mono-nucleotide shuffling and the bifold was applied to predict the

interactions between the random lncRNAs and the corresponding mRNAs. For

each of the four short-trans interactions the predicted duplex lengths and the

∆∆G values obtained for the random sequences were similar to what was ob-

served for the actual lncRNAs (Supplementary Figure 5). This result indicates

that the inability of ASSA to detect the interactions between these short-trans

pairs was not due to the restriction to run bifold on the putative site containing

regions only. Thus, all four functional short-trans NATs did not produce sta-

tistically significant energies even if the full-length transcripts were used. This

may indicate that the spontaneous hybridization of the corresponding RNAs is

unlikely and the mediator proteins may be required to facilitate their binding.

According to the obtained results ASSA is suitable to predict all types of

antisense interactions between long RNAs. However, the identification of the

short-trans interactions is the most challenging task.

3.4 Comparison of ASSA with other tools

We compared ASSA performance with the four RNA-RNA prediction tools –

IntaRNA [17], RRP [16], LASTAL [14, 12] and LncTar [33]. To evaluate the

ability of the tools to predict the short-trans interactions we used the data

from the ”RIA-Seq” experiment (RNA interactome analysis, followed by deep

sequencing) performed for the lncRNA TINCR [22]. The authors have demon-

strated that TINCR is bound to the transcripts of 1794 genes in the cytoplasm

of human keratinocytes. Additionally it has been shown that at least some
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Table 1: Performance of different tools on the full TINCR test set (4796 tran-
scripts in total) and the subset consisting of the sequences with the length ≤
3kb (2846 transcripts).

Tool Time (min) # predictions AUC (full) AUC (≤3kb)
ASSA 430 (94*) 4431 0.646 0.620
IntaRNA 23901** 2846** - 0.612
RRP 1135 4796 0.636 0.587
LASTAL 0.07 3979 0.605 0.553
LncTar 2535 4708 0.464 0.534

of the identified RNAs are associated with TINCR through direct short-trans

antisense duplexes.

From the 1794 genes we removed transcripts with Alu repeats (since we were

focusing on the short-trans interactions) as well as 200 RNAs from the training

set that was used for flank length optimization (see Materials and Methods).

The remaining 1199 TINCR pull-down transcripts were used to prepare a test

set containing 4796 sequences – the 1199 pull-down RNAs and 3597 (3 ∗ 1199)

randomly selected human transcripts.

Each of the five tools was used to rank the sequences from the test set accord-

ing to their ability to hybridize with the 3.7 kb TINCR transcript (NR 027064).

It should be noted that the IntaRNA required more than 8 Gb of RAM to

predict TINCR interactions with transcripts longer than 3 kb. Due to the hard-

ware restrictions we were able to apply IntaRNA to the subset of sequences not

exceeding 3 kb in length (2846 transcripts). ASSA outperformed all the tools

in terms of the Area Under the Curve (AUC) on the full test set as well as on

the ”≤ 3 kb” subset (see Table 1 and Fig. 3A).

It should be noted that ASSA was faster than the other thermodynamics-

based tools (IntaRNA, RRP and LncTar). The sequence alignment algorithm

LASTAL had the lowest execution time. Interestingly, the nucleotide substitu-

tion parameters optimized for predicting RNA-RNA interactions [12] allowed

LASTAL to outperform LncTar.
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Figure 3: (A) The ROC curves produced by five tools for the TINCR 3kb-
test set. (B,C) ASSA results support the RNA-RNA based mechanism of the
lncRNA HOTAIR chromatin targeting. ASSA outperforms Triplexator in the
accuracy of genome-wide ChIRP-seq peaks prediction for the lncRNA HOTAIR
(B), but not for the MEG3 (C).

To estimate the dependence between the predicted interaction strength (mea-

sured by the −log10(ASSA E-value)) and the transcript enrichment observed

in the pull-down experiment (as reported by [22]) the Pearson correlation coef-

ficient was computed. We observed small, but statistically significant positive

correlation (r = 0.142; p < 10−5 – see Supplementary Figure 6).

Moreover, we analyzed another pull-down experiment performed for the

lncRNA-ATB [34]. The four fastest tools failed to produce reasonable ROC-

curves (the best AUC value of 0.538 was produced by the LncTar – see Sup-

plementary Figure 7), suggesting that the RNA-RNA binding observed in the

experiment could be non-specific or indirect.

Our analysis demonstrates that ASSA outperforms other tools in predicting

short-trans RNA-RNA interactions.

3.5 ASSA was able to discriminate different mechanisms

of RNA-chromatin interactions

It has been reported that many human long noncoding RNAs are localized in

the nucleus where they can bind to various protein complexes and/or participate
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in chromatin remodeling [35]. The lncRNA HOTAIR is one of the best studied

transcripts of this type [36]. It has been demonstrated that the HOTAIR plays

a crucial role in promoting breast cancer metastasis by binding to the Polycomb

repressive complex 2 (PRC2) and directing it to specific genomic loci [37]. Even

though, the HOTAIR genome-wide target sites have been known for some time

[38], the underlying binding mechanism remained unclear until the recent study

by [39]. The authors have demonstrated that the HOTAIR forms short-trans

RNA-RNA interactions with nascent transcripts and that the RNA matchmaker

protein A2/B1 is required for this process. The direct hybridization between

the HOTAIR and a region of the JAM2 RNA has been validated in vitro.

First, we used ASSA to predict the interaction between the HOTAIR and

the full-length pre-mRNA of the JAM2 gene. Even though the exact duplex

reported by Meredith et al. was not predicted (probably, due to the seed length

threshold in the BLASTn step of ASSA), another region of inter-molecular bind-

ing was found in the 5’ end of the JAM2 transcript. Thus, a statistically sig-

nificant interaction (E-value = 0.00088) was predicted.

Next, we used ASSA to identify the RNA-RNA interactions of the lncRNA

HOTAIR on the genome scale. For this purpose we analyzed the 832 sites of HO-

TAIR-chromatin interactions (peaks) identified in the ChIRP-seq experiment

[38]. To run ASSA, the whole human genome was split into non-overlapping

regions (”bins”) of length 3 kb. Bins corresponding to the poorly mappable

genomic regions or areas with ambiguous ”N” characters were discarded. This

resulted in the 322,959 genomic bins (429 of them contained HOTAIR interac-

tion sites). ASSA was used to search the HOTAIR transcript against the 322,959

bins producing predictions for 267,279 bins (412 of them contained HOTAIR in-

teraction sites). It should be noted that ASSA searched both strands of every

bin and the best E-value was selected. The obtained results were visualized as a
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ROC-curve (Fig.3B). The obtained AUC value (0.643) was similar to what was

observed for the TINCR RIA-seq dataset supporting the RNA-RNA interaction

mechanism for the HOTAIR on the genome-wide scale.

Formation of the RNA-DNA triplexes is another common mechanism that

is utilized by lncRNAs to direct chromatin modifying complexes to specific ge-

nomic locations [40]. Up until now, the HOTAIR was not reported to form

triplexes with DNA. To check whether the ASSA predictions were mechanism-

specific, we used the Triplexator tool [41] to predict the RNA-DNA interactions

between the HOTAIR and the 267,279 genomic regions according to the Hoog-

steen and reverse Hoogsteen base pairing rules. The AUC value (0.529) calcu-

lated based on the Triplexator output was very close to the value of random

model (0.5) suggesting the absence of triplexes between the HOTAIR and its

target genomic regions.

As a negative control for the ASSA predictions we analyzed the ChIRP-seq

peaks of the lncRNA MEG3 which is known to hybridize with the DNA via

triplex structures [42]. For the MEG3 transcript ASSA produced predictions

for 279,507 bins. As expected, Triplexator outperformed ASSA in terms of the

AUC value (0.629 vs 0.549) when it was applied to the same set of genomic

regions (Fig.3C).

Thus, we demonstrated that analysis of ChIRP-seq data by ASSA and

Triplexator could be used to reveal the underlying molecular mechanism of

RNA-chromatin interactions.

3.6 Predicting regulatory trans-NATs from knockdown

experiments

Gene knockdown experiments followed by transcriptome-wide identification of

differentially expressed genes (either by microarray or RNA-seq) are frequently
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used to study various aspects of gene regulation. Such analyses have been ap-

plied to a number of human and murine lncRNAs. In each experiment genes

that significantly changed their expression upon lncRNA knockdown have been

identified. It is reasonable to assume that at least some of the differentially ex-

pressed genes are directly regulated by the corresponding lncRNA. Particularly,

[24] has performed knockdown of the 147 lncRNA in the mouse embryonic stem

cells (mESCs). In each experiment the genes that changed their expression by

at least 2-fold have been identified using microarrays. However, for the majority

of the noncoding transcripts the molecular mechanism of the observed regula-

tion has remained unclear and no analysis has been performed with respect to

the possible antisense interactions.

We used ASSA in order to find the lncRNAs that could regulate target genes

via short-trans antisense interactions. For this analysis we selected 49 out of

the 147 noncoding transcripts (see Material and Methods) and used ASSA to

search each of them against 3695 genes expressed in mESCs. After each ASSA

run all the genes were sorted by the E-value. The statistical significance of the

enrichment of the differentially expressed genes at the top of the sorted gene list

was estimated using GSEA [43]. As a negative control, we applied mono- and di-

nucleotide shuffling to the 49 lncRNAs generating two sets of random sequences

and repeated the above analysis for them (Supplementary Table 3). Only one

noncoding RNA demonstrated statistically significant enrichment – the GSEA

FDR value for the linc1607 (the corresponding RefSeq gene is 1700001G11Rik)

was < 0.0005 (Supplementary Figure 8) while the lowest GSEA FDR value

observed among all the shuffled sequences was much weaker (0.01345). This

result suggests that the linc1607 may regulate its targets via direct short-trans

antisense interactions.
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4 Discussion

In this work we present a new computational pipeline ASSA that uses the ther-

modynamics algorithm bifold for a transcriptome-wide prediction of RNA-RNA

interactions.

For the accurate prediction of an RNA-RNA interaction, the sequence align-

ment is not enough. Relative free energy of the antisense duplex (∆∆G) con-

tributes to the predictive power of the algorithm a lot due to the existence of

the RNA secondary structures. In our pipeline we use the RNA co-folding algo-

rithm bifold that takes two RNA sequences and folds them simultaneously (”co-

folding”) into the minimal free energy (MFE) structure allowing inter-molecular

base-pairing. The ∆∆G value is obtained by comparing the energies of the ini-

tial (two separate RNA molecules with their own secondary structures) and the

final (two RNAs with both inter-molecular duplexes and secondary structure

regions) states of the system.

ASSA computes the ∆∆G value to measure the strength of the hybridization

between two RNAs and estimates its statistical significance with respect to the

lengths of both transcripts using E-value. Sorting the interactions by the E-

value rather than the free energy allowed ASSA to outperform other tools in

the accuracy to predict short-trans RNA-RNA interactions. Moreover, ASSA is

> 50 times faster than the IntaRNA and > 2 times faster than the RRP. This

made it possible to use ASSA for the genome-wide analysis of the ChIRP-seq

data and for the transcriptome-wide analysis of the 49 murine lncRNAs.

Clearly, ASSA pipeline is still a simplification of the actual process that hap-

pens in the cell. In fact, the ”co-folding” approaches, such as the bifold , may

produce prediction errors predicting trans-interactions. The reason for this is

that a trans-RNA-RNA interaction occurs between two transcripts with already

established secondary structures. Thus, this is a dynamic process that requires
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unfolding of specific transcripts’ regions followed by formation of inter-molecular

duplexes. This simulation can be performed by the methods of molecular dy-

namics. However, such approaches are even more time consuming than the RNA

co-folding tools and at the moment we do not see a way to use them for the

large scale analyses. Another source of errors in ASSA predictions may arise

from the fact that only specific regions of the transcripts are analyzed. Indeed,

it is known that RNAs include a number of long-range secondary structure

interactions that are ignored by ASSA [44].

Nevertheless, our analysis of the TINCR RIA-seq and the HOTAIR ChIRP-

seq datasets demonstrates that even this simplified approach is able to produce

meaningful results. Interestingly, none of the bioinformatics tools managed

to detect direct RNA-RNA interactions in another pull-down experiment per-

formed for the lncRNA-ATB. Thus, even if a pull-down experiment identifies

transcripts bound to an RNA of interest, it still remains unclear whether the ob-

served binding is direct (RNA-RNA interaction) or indirect (e.g. occurs via an

RNA binding protein). Our analysis indicates that this question can be clarified

by applying RNA-RNA prediction tool(s) to the produced data and visualizing

the obtained predictions as an ROC-curve.

In this work, we also suggest a classification for the NATs based on the origin

of the hybridizing sequences. Namely, we define four types of antisense inter-

actins – cis, pseudo-cis, Alu-based and short-trans. Importantly, we demon-

strate that among all types of sequence repeats in the human genome, only Alu

repeats have a striking influence on the ability of a transcript to base pair with

other RNAs in the transcriptome [29, 30]. It should be noted, however, that two

opposite direction Alu repeats that are located on the same RNA may interact

with each other (intra-molecular hybridization) producing a special secondary

structure element called ”inverted repeat Alu elements” or IRAlus [45]. Such
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transcripts are unlikely to form inter-molecular Alu-based interactions. Since

we did not take this into account in our analysis of repeat-based interactions the

number of antisense partners for some IRAlus transcripts could be incorrect.

LncRNA-RNA hybridization may form yet another layer in the gene regu-

latory network. It should be noted that the prediction of ASSA or any other

computational tool alone is not sufficient to make conclusions about the func-

tionality of the interaction. There are many other factors that are critical for

the predicted binding, including the cellular localization of the RNAs as well as,

in some cases, the presence of specific RNA binding proteins. Thus, the search

for new biologically active NATs is a more complex task than just prediction

of antisense partners. Nevertheless, we believe that the improvement of the

RNA-RNA interaction prediction methods is a necessary step in this direction.
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