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Abstract

The most prevalent post-transcriptional RNA modification, pseudouridine (Ψ), also
known as the fifth ribonucleoside, is widespread in rRNAs, tRNAs, snRNAs, snoRNAs and
mRNAs. Pseudouridines in RNAs are implicated in many aspects of post-transcriptional
regulation, such as the maintenance of translation fidelity, control of RNA stability and
stabilization of RNA structure. However, our understanding of the functions, mechanisms as
well as precise distribution of pseudourdines (especially in mRNAs) still remains largely
unclear. Though thousands of RNA pseudouridylation sites have been identified by high-
throughput experimental techniques recently, the landscape of pseudouridines across the
whole transcriptome has not yet been fully delineated. In this study, we present a highly
effective model, called PULSE (PseudoUridyLation Sites Estimator), to predict novel Ψ

sites from large-scale profiling data of pseudouridines and characterize the contextual
sequence features of pseudouridylation. PULSE employs a deep learning framework, called
convolutional neural network (CNN), which has been successfully and widely used for
sequence pattern discovery in the literature. Our extensive validation tests demonstrated that
PULSE can outperform conventional learning models and achieve high prediction accuracy,
thus enabling us to further characterize the transcriptome-wide landscape of pseudouridine
sites. Overall, PULSE can provide a useful tool to further investigate the functional roles of
pseudouridylation in post-transcriptional regulation.
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Introduction
Pseudouridine is known as the most abundant and earliest modified ribonucleoside among
more than 100 types of RNA post-transcriptional modifications that have been discovered so
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far [1–3]. Because of its prevalence in cellular RNAs, it has also been considered as the fifth
ribonucleoside [1]. The properties, chemical structures and distribution of a pseudouridine are
quiet different from its parental base (i.e., uridine) [4, 5]. Compared to uridine, the chemical
conformation of a pseudouridine allows the formation of an extra hydrogen bond at its non-
Waston-Crick edge [6]. This fact indicates that a pseudouridine can form a more stable base
stacking conformation [7], which is believed to play an important role in stabilizing RNA
structure [8]. In ribosomal RNAs (rRNAs), it has been found that pseudouridines are required
for the maintenance of ribosome-ligand interactions and translational fidelity [9]. In addition,
pseudouridines in transfer RNAs (tRNAs) can reduce the conformational mobility of the structural
elements around the modified sites and thus affect the amino acid transfer efficiency [10].
Such a stabilization function of pseudouridines in anticodon stem-loop of tRNALys,3 has also
been validated by NMR spectroscopy [11]. Moreover, pseudouridines in spliceosomal RNAs
can be involved in the RNP assembling and pre-mRNA splicing processes [12]. The above
findings indicate that most likely pseudouridines are tightly related to RNA structure stabilization,
translation process and RNA stability. However, the underlying mechanisms of pseudouridines’
involvement in the aforementioned processes still remain poorly understood.

The conversion from a uridine to a pseudouridine is catalysed by pseudouridine synthases
(PUSs) through two distinct processes, including RNA-dependent and RNA-independent op-
erations [13]. The RNA-dependent pseudouridylation process depends on the box H/ACA
ribonucleoproteins (RBPs), which consist of a small box H/ACA RNA and four core proteins,
including centromere-binding factor 5 (Cbf5; also known as dyskerin in mammals), non-histone
protein 2 (Nhp2), glycine-arginine-rich protein 1 (Gar1) and nucleolar protein 10 (Nop10), to
form a pseudouridylation pocket for substrate recognition and catalytic activity [14, 15]. In the
RNA-independent pseudouridylation mechanism, a single synthase protein, such as PUS7, is
responsible for both substrate recognition and pseudouridylation catalysis [13]. Although notable
progress has been made in recent years in studying pseudouridylation in various types of RNAs,
the detailed underlying mechanisms of pseudouridylation are still not completely deciphered.
So far, about 13 types of PUSs in human have been identified [16], and generally it is difficult
to unveil the consensus catalytic laws of pseudouridylation. Moreover, it has been shown that
pseudouridylation in RNAs is highly dynamic and inducible [13], which makes it even harder
to characterize the properties of pseudouridylation. On the other hand, RNA modification is
mostly a sequence pattern recognition process, as it is heavily dependent on the sequence binding
preferences of catalytic proteins [17]. From this point of view, it is reasonable to speculate that
RNA pseudouridylation is determined by the sequence contexts of the sites being modified.

To characterize the properties of pseudouridines computationally, we need develop effi-
cient methods to accurately identify pseudouridines at single-base resolution and obtain a
transcriptome-wide map of pseudouridines. Traditional pseudouridine detection methods are
mainly based on the N3-CMC labeling and gel electrophoresis experiments [18], which are often
labourious and time-consuming. Recently, several high-throughput profiling techniques, includ-
ing Pseudo-seq, Ψ-seq, PSI-seq, and CeU-seq, have been proposed to map RNA pseudouridine
sites to reference transcriptomes [19–22]. These high-throughput experiments typically combine
CMC derivatives with next generation sequencing or deep sequencing techniques to detect
pseudouridine sites on a transcriptome-wide scale. However, these experiments are generally
costly and often require tremendous time and effort in deriving the positions of pseudouridine
sites. On the other hand, although plenty of pseudouridine sites in small cellular RNAs have
been identified, their sequence contexts have not been fully exploited to gain better insights
into understanding their functions. In addition, although recent high-throughput sequencing
techniques, such as Ψ-seq and CeU-seq, have been able to identify large-scale pseudouridylation
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sites in mRNAs, they may still miss numerous modification sites due to the limitations of current
experimental methods (e.g., the incompleteness of CMC-labelling or the read mappability issue).
Development of efficient machine learning approaches to capture the intrinsic sequence patterns
around pseudouridylation sites will enable us to better understand the sequence contexts of
pseudouridylation and predict novel pseudouridine sites that are missed by current experimental
methods. In addition, by fully exploiting the underlying sequence patterns of pseudouridylation,
computational prediction methods may also provide novel predictions of potential pseudouridines
in new cell types or species. Moreover, the computational prediction of transcriptome-wide
pseudouridylation sites and characterization of their sequence contexts may provide important
hints in understanding the functional roles of pseudouridylation in RNA regulation. Although
several computational approaches and web servers, such as PPUS [23] and iRNA-PseU [24], have
been developed to predict novel pseudouridine sites, they either can only be applied to predict
PUS specific sites or only use the handcrafted features derived from the chemical properties of
nucleotides.

Recently, deep learning techniques, especially convolutional neural networks (CNNs), have
been widely used in genomic data analysis for extracting accurate sequence features [25–29].
CNNs were first developed for handwriting recognition and face identification [30], and have
become one of the most famous and powerful learning models in the field of computer vision,
speech recognition and natural language processing [31–33]. Despite its powerful predictive
capacity, it remains unknown whether a CNN model can be used to effectively capture the
contextual sequence features of pseudouridylation and accurately predict new pseudouridine
sites.

In this study, we have developed a computational framework, called PULSE (PseudoUridyLat-
ion Sites Estimator), to predict novel pseudouridine sites from large-scale profiling data of
pseudouridines based on the sequence contexts of target sites. To our knowledge, our study
is the first machine learning based attempt to characterize the contextual sequence features
of pseudouridylation by fully exploiting the currently available large-scale profiling data of
pseudouridines. PULSE employs a CNN model, which contains a number of alternatively-
stacked convolution and pooling layers responsible for local feature extraction from the input
contextual sequences and several fully-connected layers responsible for feature integration
and estimation of the pseudouridylation potential of a candidate site. Tests on both human
and mouse data have demonstrated that PULSE can achieve high prediction accuracy and
outperform a conventional machine learning approach called gkmSVM [34]. In addition, the
sequence features captured by PULSE are not only consistent with the recognized motifs of
known pseudouridylation synthases, but also match the binding patterns of several nucleotide-
binding proteins, which may provide useful hints for discovering new potential pseudouridylation
synthases.

Results

The PULSE framework
We have developed a convolutional neural network (CNN) based framework, called PULSE
(PseudoUridyLation Sites Estimator), to predict new pseudouridine sites from large-scale pseu-
douridylation profiling data (Fig. 1a). To encode the contextual sequence features of a potential
pseudouridine site of interest, we first extend the target site both upstream and downstream
by 50 nucleotides (nts) and then use a simple four-dimensional binary vector to encode each
nucleotide (Fig. 1a; Methods). Then, the encoded matrix of an input contextual sequence
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is fed into a particularly-designed CNN model to capture the latent features of the potential
sequence determinants of the pseudouridine site. In particular, our CNN model consists of two
convolution layers and two pooling layers, which are alternately stacked and then followed by a
fully-connected multilayer network (Fig. 1b; Methods). Generally speaking, the convolution-
pooling layers are responsible for local feature extraction, while the fully-connected layers are
mainly used for feature integration and final classification [27]. In particular, the convolution
kernels from the convolution layers scan the input matrix that encodes the input sequence profiles
and capture intrinsic hidden features about the local contextual patterns of the target site. The
last fully-connected layer (also called the output layer) employs a softmax function to perform
the classification task.

We used grid search with a cross-validation procedure [35] to calibrate the hyperparameters
of our CNN model (see Methods). In the final optimal setting of the hyperparameters for the first
and the second convolution layers, the numbers of local motif detectors were set to 64 and 32,
respectively, and the sizes of convolution kernels were set to 4 × 8 and 1 × 8, respectively. The
sizes of max-pooling kernels were set to 1 × 2 for both pooling layers. The number of hidden
layers (before the output layer) and the number of units in each hidden layer are set to 2 and 64
in the fully-connected network, respectively. For a given sequence l, the overall information flow
of PULSE can be abstracted into the following formulas:

lPPS (l) = so f tmax( f1),
f1 = acti(net( f2)),
f2 = acti(net( f3)),
f3 = pool(acti(conv( f4))),
f4 = pool(acti(conv(l))),

where lPPS (l) represents the final prediction score of the target site, and conv(), acti(), pool()
and net() stand for the convolution, neuron activation, pooling and full-connection operations,
respectively. In our framework, the length of the input sequence l is set to 101, as we extend the
target site both upstream and downstream by 50 nts.

Validating PULSE
To evaluate the prediction performance of PULSE, we applied a 10-fold cross-validation proce-
dure on both human and mouse data (see Methods). In our training process, the pseudouridine
sites identified by high-throughput profiling experiments and the corresponding flanking regions
of size 50 nts on both sides of individual pseudouridine sites were considered positive samples,
while uridine sites with flanking windows of 50 nts on both sides that are the closest to some
pseudouridine sites and do not have any overlap with the positive samples were considered as the
negative samples. We trained PULSE on human and mouse datasets separately, resulting in two
trained models called hPULSE and mPULSE, respectively. We also compared the prediction
performance of PULSE to that of a baseline approach, called gkmSVM, which is a classical
SVM-based classifier based on gapped k-mers [34]. Our 10-fold cross-validation tests showed
that both hPULSE and mPULSE can achieve high prediction accuracy, with the area under ROC
curve (AUC) scores 0.86 and 0.84, respectively, which were significantly better than those of
gkmSVM (Figs. 2a-2b and Figs. S1a-S1b).

To further validate the prediction accuracy of PULSE, we also tested it on three small but
relatively more reliable datasets of pseudouridine sites, including a dataset of high fidelity
pseudouridine sites that were identified by the SCARLET (site-specific cleavage and radioactive-
labeling followed by ligation-assisted extraction and thin-layer chromatography) technique [36],
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and two datasets of the conserved pseudouridine sites for both human and mouse [22]. In these
new validation tests, all overlapping sites were removed from the training data. Our validation
tests on these three additional datasets of high-fidelity pseudouridine sites showed that PULSE
can still achieve high classification accuracy, with the AUC scores between 0.86-0.91 (Fig. 2c).

Previous studies showed that the pseudouridylation profiles of transcriptome across human
and mouse were conserved to some extent despite the possible difference in the underlying mech-
anisms of pseudouridylation [22]. Thus, we speculated that the conservation of pseudouridine
sites between human and mouse can also be reflected by the prediction results of PULSE. To
test this speculation, we performed a cross-species test between human and mouse datasets, that
is, we used the PULSE model trained from human (mouse) pseudouridylation profiles to test
the mouse (human, respectively) data. As expected, such a cross-species test demonstrated a
strong conservation relationship between human and mouse in pseudouridyaltion (Fig. 2d and
Fig. S1c). In addition, this cross-species validation test also implied an impressive generalization
capacity of PULSE in predicting new pseudouridine sites.

In summary, the above validation tests implied that PULSE can effectively recognize the
underlying latent features of the sequence contexts of pseudouridylation and thus yield accurate
predictions of pseudouridine sites.

The motifs of pseudouridylation captured by PULSE
We further analysed and visualized the motifs of the sequence contexts of pseudouridylation
captured by the filters employed in the first convolution layer of PULSE, using the same
strategy as in the previous studies [25, 27, 37]. In particular, we focused on high confident
motifs that covered more than 1% (about 50) of the positive samples in the training data. As a
consequence, we obtained 300 and 272 sequence patterns identified by PULSE for human and
mouse, respectively (see Methods).

As expected, we found that the previously-known sequence recognition motifs of pseu-
douridine synthases PUS4 and PUS7 [22, 38–40], i.e., ‘GUΨCNA’ and ‘UGΨAG’, appeared
repetitively in the sequence patterns identified by the filters of our CNN model for both human
and mouse (Figs. 3a-3b). We also used the RSAT tool [41] to cluster all these sequence patterns
identified by PULSE and obtained 70 and 69 clusters for human and mouse, respectively (Fig.
S2; Methods). These motif clusters may provide useful insight into understanding the underlying
mechanisms of pseudouridylation. Intriguingly, several novel motifs also appeared repetitively
in our visualization results. We hypothesize that these motifs may correspond to other pseudouri-
dine synthases or recognition proteins. Thus, we mapped our discovered motifs to the known
binding motifs of RNA binding proteins (RBPs) from the CIS-BP database [42] and transcription
factors (TFs) from the HOCOMOCO database [43] (see Methods). As a result, several of the
newly discovered sequence motifs of pseudouridylation significantly match the known binding
motifs of both human and mouse (P < 10−4; Figs. 3c-3d). We found that these matching motifs
were highly related to important RBPs and TFs, e.g., PCBP1, an RBP involved in the regulation
of alternative splicing [44], and FOXO3, a TF acting as a trigger of apoptosis [45]. These
discovered novel motifs that matched the known binding sequence patterns of RBPs implied
that the RBPs may play important functional roles in the pseudouridylation process, which thus
may also provide new candidate molecules of pseudouridine synthases for further experimental
studies. Since previous studies showed that RNAs can also be co-transcriptionally modified [46],
the TFs with matching sequence motifs may be related to the triggers of pseudouridylation
during RNA transcription.
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Transcriptome-level characteristics of the detected pseudouridine sites
The trained PULSE model allow us to unveil the landscape of pseudouridylation across the either
(human and mouse) transcriptome. As mentioned above, each uridine in a transcript can be
characterized by a local pseudouridylation potential score (lPPS) derived from PULSE based
on its corresponding sequence context. Basically, this lPPS value measures the probability that
a uridine can be converted into a pseudouridine. Based on the distribution of uridines on a
transcript and the corresponding lPPS profiles, we derived a new metric, called the transcript
pseudouridylation potential score (tPPS; see Methods), to estimate the overall pseudouridylation
level of this transcript. Based on the lPPS and tPPS profiles derived from PULSE, we are able to
study the nucleotide- and transcript-level landscapes of pseudouridylation, respectively.

Modifications in different regions of mRNAs may play distinct roles in determining their
fates. For example, N6-methyladenosine (m6A) in the coding sequence (CDS) and the 3′UTR of
an mRNA can modulate its translation efficiency [47], while m6A in specific intronic regions
can influence the splicing results [48, 49]. To examine the transcriptome-wide distribution
of pseudouridylation across different genomic regions, we compared the percentages of pseu-
douridylation predicted by PULSE among different types of regions, including 5′UTRs, CDSs
and 3′UTRs. Our comparison showed that pseudouridines appear primarily in the CDS regions
(about 50%) and the 3′UTRs (about 40%) of both human and mouse mRNAs (Fig. 4a), which
was consistent with the previous reports [22, 40]. As the 3′UTRs of mRNAs are tightly as-
sociated with RNA stability and translational control [50, 51] and the CDS regions contain
the core genomic contents that are translated into proteins, it is reasonable to hypothesize that
the pseudouridylation activities in the 3′UTRs and CDS regions are involved in RNA stability
modulation and translational regulation.

GO enrichment analysis
Gene ontology (GO) enrichment analysis can highlight the consensus functions of a particular
gene set, which may help reveal the latent features of the genes in the set [52]. To further
elucidate the potential functional roles of pseudouridylation in mRNAs, we performed GO
enrichment analysis for the top 500 genes with the highest transcript-level pseudouridylation
potential scores (tPPSs) for both human and mouse. We found that genes associated with high
tPPS values predicted by PULSE are mainly distributed in the nucleus and contribute to DNA
or RNA binding (Figs. 8a-8b). This phenomenon implied that pseudouridines in mRNAs may
also serve as molecular glues between nucleotide-binding proteins and RNAs by increasing their
interaction strength and forming more stable complex conformations. This hypothesis is in line
with the previous results about the potential functions of pseudouridylation in RNA secondary
structure and translational regulation [5, 7, 53]. Of course, we will need extensive experimental
studies and more experimental data to further validate the hypothesis in the future.

Discussion
Although numerous studies have revealed that pseudouridines in small cellular RNAs are im-
portant for maintaining their structures [5, 7, 11], the functional roles of pseudouridylation in
mRNA translation and its contextual sequence features still remain largely unclear. Several
high-throughput experimental techniques of characterizing pseudouridines across transcriptome
have been developed recently [19–22], detailed transcriptome-wide landscape, functions and
molecular mechanisms of pseudouridines in post-transcriptional regulation are still to be revealed.
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In this study, we developed an effective convolution neural network (CNN) model to detect
pseudouridine sites, based on which we further analysed the landscape of pseudouridines across
the human and mouse transcriptomes. Our model can not only capture the known motifs of
pseudouridylation that were consistent with previous studies, but also reveal novel motifs that
may help uncover potential new pseudouridylation synthases. Moreover, the GO enrichment
analysis of genes with high pseudouridylation scores predicted by our model may provide a wide
vision on the potential functions of pseudouridylation.

RNA pseudouridylation is obviously crucial to RNA regulation simply by its prevalence in
transcriptome and its high conservation across different species. Therefore, a comprehensive
understanding of RNA pseudouridylation will be conducive to the consummate studies of RNA
modifications and RNA epigenetics. The studies of RNA pseudouridylattion especially in
mRNAs may help understand its functional roles in post-transcriptional regulation. On the other
hand, currently, numerous aspects of RNA pseudouridylation including its functions in RNA
stability, alternative splicing, RNA localization and protein binding, still remain largely unknown.
Our model in this study may provide a new avenue for further exploration in the aforementioned
fields. In addition, our proposed deep learning model may provide a new paradigm for analysing
other types of RNA modifications, such as 5-methylcytidine (m5C) and N1-methyladenosine
(m1A) [54–56], which can also help decipher the RNA modification code and understand their
regulatory functions in gene activities.

Methods

Data collection and preprocessing
The pseudouridine modification site data were downloaded from the RMBase database [57]
which includes the high-throughput profiling data of pseudouridines collected from three recent
experimental strudies [19, 20, 22]. All the labelled pseudouridine sites were separated into a
human dataset and a mouse dataset. In addition, the overlap between human and mouse datasets
which represents the conserved pseudouridine sites was considered a relatively reliable dataset
for further model validation. Moreover, the pseudouridylation sites identified by SCARLET
curated from [22] were also used for assessing the prediction accuracy of PULSE. All of the
above modification sites were mapped to the reference genome (human: hg19; mouse: mm10)
and those that cannot be mapped to thymines were discarded. A sequence of length 101 that
covers the pseudouridine site and has a 50-nt window flanking on its both sides was labelled as
a positive sample, while the sequence of the same length that is centered at a thymine that is
closest to a corresponding Ψ site and does not have any overlap with any positive sample was
labelled as a negative sample. In the end, we collected 7720 and 6166 samples in total for human
and mouse, respectively.

Feature encoding of the sequence profiles
We use the following scheme to encode individual nucleotides in a given input sequence S ,

A = [1., 0., 0., 0.],

T = [0., 1., 0., 0.],

G = [0., 0., 1., 0.],

C = [0., 0., 0., 1.],
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N = [0.25, 0.25, 0.25, 0.25],

where ‘N’ stands for any nucleotide. Then a given sequence can be encoded into a matrix. For
example, sequence S = ‘ATGCAN’ can be encoded as

matrix(S ) =


1. 0. 0. 0. 1. 0.25
0. 1. 0. 0. 0. 0.25
0. 0. 1. 0. 0. 0.25
0. 0. 0. 1. 0. 0.25

 .
Model construction and training
The core of PULSE is a convolutional neural network (CNN), which has become a power-
ful deep learning model in various data science fields, such as computer vision [31], speech
recognition [32] and natural language processing [33]. Recently, CNNs have also been suc-
cessfully applied to capture the latent features of genomic data, e.g., estimation of sequence
specificities of DNA or RNA binding proteins [27], prediction of functional effects of non-coding
variants [28] and characterization of splicing codes [29]. A CNN model typically consists of
several alternately-stacked convolution and pooling layers which basically act as motif detectors.
During convolution, the input matrices of dimension L × 4 (where L stands for the length of the
input sequences) are first cross-correlated with several convolution filters and then the convolved
outputs are rectified by a particular activation function (e.g., sigmoid or ReLU activation). In the
pooling stage, the pooling operators are applied to the previous convolution and activation results
for further motif extraction. After that, the pooled results are flattened to a vector which is then
fed to a fully-connected neural network for final classification. In particular, our computational
pipeline PULSE is composed of two alternate convolution and pooling layers, which are then
stacked with a fully-connected neural network consisting of three hidden layers (Fig. 1b).

More specifically, given an RNA sequence of length L and the corresponding feature-encoding
matrix S , the convolution result X = conv(S ) is an (L − mc + 1) × n array, and can be written as

Xi,k =

mc∑
j=1

4∑
t=1

Wk, j,tS i+ j,t,

where n and mc stand for the number and the size of convolution operators, respectively, 1 ≤
i ≤ L − mc + 1, 1 ≤ k ≤ n, and W represents the weight matrix of the n convolution operators,
i.e., Wk, j,l represents the value at the j-th row and the l-th column of the k-th kernel. In the
rectification stage, the parametric rectified linear activation function (PReLU) [58] is applied to
the previous convolved result X, that is,

Y = PReLU(x) =

{
x, if x > 0;
αx, otherwise,

where α ≥ 0 stands for the slope of the negative part which can be learned in the model training
process.

In the pooling stage, the dimension of Y is reduced by a max-pooling operator of size mp.
Suppose that the pooling result is defined as Z = max_pool(Y). Then we have

Zk = max(Y j,k,Y j+1,k, ...,Y j+mp−1,k),

where 1 ≤ k ≤ n stands for the index of the pooling operator and j stands for the start position of
pooling.
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Next, the output matrix Z of max-pooling is PReLU rectified, flattened to a high-dimensional
vector and then fed to a fully-connected neural network, which can be formulated as Znet =

Wnet · PReLU(Z), where Wnet represents the weight matrix of the fully-connected network. For
final classification, a softmax layer is employed in the last layer of the fully-connected network,
that is,

Prediction = so f tmax(Ws · Znet) =
exp(Zk

s )∑i=K
i=1 exp(Zi

s)
,

where Ws stands for the weight matrix of the softmax layer, Znet stands for the output of the
proceeding layer in the fully-connected network, and K stands for the length of Zs.

We applied a grid search like procedure to scan the possible ranges and calibrate those
hyperparameters related to the network structure, such as the size and the number of convolution
operators. In the final setting of PULSE, the sizes of the first and the second convolution layers
were set to 4×8 and 1×8, respectively, and the sizes of both pooling layers were set to 1×2. The
numbers of convolution operators in the first and second layers were set to 64 and 32, respectively,
and the numbers of units in the hidden layers of the fully-connected neural network were set to
64-64-1. We then applied a 10-fold cross-validation procedure to train PULSE (i.e., estimating
the weighting parameters in the model) and then evaluate its prediction performance. We first
held out about 1/10 of samples as an independent validation dataset to choose the optimal setting
of those hyperparameters related to the training process, such as the learning rate and the number
of training epoches. We then split the remaining data into 10 parts, and in each fold, one part was
used for testing and the others for training. Next, the average values of hyperparameters, e.g.,
the number of training epoches, over 10 folds were chosen. After that, the previous validation
data were merged and the 10-fold cross-validation procedure was performed on all data again
to train the model and evaluate its prediction performance based on the previously determined
hyperparameters. The human and mouse datasets were used independently to train two separate
PULSE models, unless specifically described.

PULSE is implemented based on the Keras library [59] in python. Back propagation is
applied in the training process for efficiently updating the parameters [60]. In addition, several
optimization techniques, including stochastic gradient descent (SGD), dropout, batch normal-
ization, early stopping and momentum [61–63] are used to improve the training process (e.g.,
reducing the likelihood of overfitting).

Motif visualization and analysis
We applied the filters embedded in the first convolution layer of our CNN model to generate
the sequence motifs of pseudouridylation, using the same strategy as in [25, 27, 37]. More
specifically, we used a window of the size equal to the length of the filters (i.e., 8) to scan the
flanking regions on both sides of a pseudouridine site. During this scanning process, those
sequence segments (of length 8) with activation values more than half of the maximum score
were output. Then these detected sequence segments were converted into the position weight
matrix (PWM) form to generate the corresponding motifs representing the sequence contexts of
pseudouridylation. To compare these obtained motifs to those known binding patterns of RNA
binding proteins (RBPs) and transcription factors (TFs), we searched over the CIS-BP [42] and
HOCOMOCO [43] databases (version 2016 for both) using the Tomtom tool [64], respectively,
and then clustered all the motifs using RSAT [41] with default parameter settings. The final
sequence motifs were visualized using seq2logo [65].
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Transcriptome-wide detection of Ψ sites
We further applied PULSE to detect potential Ψ sites on each transcript along the genome. All
the RNA sequences of human and mouse were downloaded from Ensembl [66] by Biomart [67]
under references hg19 and mm10, respectively. For each transcript, every thymine site and
the flanking 50-nt regions on its both sides were extracted as the input sequence profile to
PULSE (‘N’s were padded if the flanking windows were out of the transcripts). Then PULSE
computed the local pseudouridylation potential score (lPPS) for each thymine, which measured
its pseudouridylation probability.

Transcript pseudouridylation potential scores (tPPSs)
To evaluate the pseudouridylation potential of a particular transcript, i.e., the estimation of the
overall pseudourdylation level of a complete transcript, we defined a new metric called the
transcript pseudouridylation potential score (tPPS). In particular, for a transcript s, its tPPS value
can be defined as follows:

tPPS (s) =
num(Ψ)/num(U)
num(Ψ + U)/L

,

where

num(Ψ) =

K∑
k=1

I(lPPS k > 0.5),

num(U) =

K∑
k=1

I(lPPS k ≤ 0.5),

in which num(·) represents a count function, I(·) represents a binary indicator function, lPPS k

stands for the local pseudouridylation potential score of the k-th pseudouridine site in s, K
represents the total number of thymines in s, and L stands for the length of s. In the above
formula, the numerator represents the ratio between pseudouridines and thymines, which thus
measures the relative abundance of possible pseudouridines in a transcript. However, this value
may bias to those uridine-enriched transcripts. In order to eliminate such bias, the ratio in the
numerator is further normalized by the abundance of both thymines and pseudouridines in the
transcript.

GO enrichment analysis
For gene ontology (GO) analysis, we first selected top 500 mRNA transcripts with the highest
tPPS values. Then we uploaded the gene names of these 500 transcripts to DAVID [68, 69], and
ran the functional annotation clustering module with the default parameters for GO enrichment
analysis. During the analysis, the P values were calculated based on the binomial distribution
and the Benjamini corrected P values were used for selecting out the final significant GO terms.

Acknowledgments
This work was supported in part by the National Basic Research Program of China Grant2011CBA00300,
2011CBA00301, the National Natural Science Foundation of China Grant 61033001, 61361136003
and 61472205, the US National Science Foundation grants DBI-1262107 and IIS-1646333 and
China′s Youth 1000-Talent Program, the Beijing Advanced Innovation Center for Structural
Biology.

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2017. ; https://doi.org/10.1101/126979doi: bioRxiv preprint 

https://doi.org/10.1101/126979
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author contributions
X.H.and J.Z. conceived the research project. J.Z. supervised the research project. X.H. prepro-
cessed raw data, designed and implemented PULSE, and carried out model training, validation
and data analysis tasks. Y.Z. helped integrate the data. X.H., S.Z., T.J. and J.Z. fine-tuned the
model and performed all the statistical analyses. X.H., T.J. and J.Z. wrote the manuscript. All
the authors discussed the results and commented on the manuscript.

Competing financial interests
The authors declare no competing financial interests.

References
[1] Waldo E. Cohn. Some results of the applications of ion-exchange chromatography to

nucleic acid chemistry. J. Cell. Comp. Physiol., 38(S1):21–40, jul 1951.

[2] M. A. Machnicka, K. Milanowska, O. Osman Oglou, E. Purta, M. Kurkowska, A. Olchowik,
W. Januszewski, S. Kalinowski, S. Dunin-Horkawicz, K. M. Rother, M. Helm, J. M.
Bujnicki, and H. Grosjean. MODOMICS: a database of RNA modification pathways–2013
update. Nucleic Acids Research, 41(D1):D262–D267, oct 2012.

[3] W. E. Cohn. Pseudouridine, a carbon-carbon linked ribonucleoside in ribonucleic acids:
isolation, structure, and chemical characteristics. J Biol Chem, 235:1488–1498, May 1960.

[4] Michael W. Gray Michael Charette. Pseudouridine in RNA: What, where, how, and
why. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life),
49(5):341–351, may 2000.

[5] E. Kierzek, M. Malgowska, J. Lisowiec, D. H. Turner, Z. Gdaniec, and R. Kierzek. The
contribution of pseudouridine to stabilities and structure of RNAs. Nucleic Acids Research,
42(5):3492–3501, dec 2013.

[6] R. K. Nanda, R. Tewari, G. Govil, and Ian C. P. Smith. The conformation of β-pseudouridine
about the glycosidic bond as studied by 1H homonuclear overhauser measurements and
molecular orbital calculations. Canadian Journal of Chemistry, 52(3):371–375, 1974.

[7] D. R. Davis. Stabilization of RNA stacking by pseudouridine. Nucleic Acids Res,
23(24):5020–5026, Dec 1995.

[8] John G. Arnez and Thomas A. Steitz. Crystal structure of unmodified tRNAGln complexed
with Glutaminyl-tRNA synthetase and ATP suggests a possible role for Pseudo-Uridines in
stabilization of RNA structure. Biochemistry, 33(24):7560–7567, jun 1994.

[9] Karen Jack, Cristian Bellodi, Dori M. Landry, Rachel O. Niederer, Arturas Meskauskas,
Sharmishtha Musalgaonkar, Noam Kopmar, Olya Krasnykh, Alison M. Dean, Sunnie R.
Thompson, Davide Ruggero, and Jonathan D. Dinman. rRNA pseudouridylation defects af-
fect ribosomal ligand binding and translational fidelity from yeast to human cells. Molecular
Cell, 44(4):660–666, nov 2011.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2017. ; https://doi.org/10.1101/126979doi: bioRxiv preprint 

https://doi.org/10.1101/126979
http://creativecommons.org/licenses/by-nc-nd/4.0/


[10] Pascal Auffinger and Eric Westhof. Effects of pseudouridylation on tRNA hydration and
dynamics: a theoretical approach. In Modification and Editing of RNA, pages 103–112.
American Society for Microbiology, 1998.

[11] Philippe C Durant and Darrell R Davis. Stabilization of the anticodon stem-loop of
tRNALys,3 by an A+-C base-pair and by pseudouridine. Journal of molecular biology,
285(1):115–131, 1999.

[12] Andrew T. Yu, Junhui Ge, and Yi-Tao Yu. Pseudouridines in spliceosomal snRNAs. Protein
Cell, 2(9):712–725, sep 2011.

[13] John Karijolich, Chengqi Yi, and Yi-Tao Yu. Transcriptome-wide dynamics of RNA
pseudouridylation. Nature Reviews Molecular Cell Biology, 16(10):581–585, aug 2015.

[14] Philippe Ganot, Marie-Line Bortolin, and Tamás Kiss. Site-specific pseudouridine forma-
tion in preribosomal RNA is guided by small nucleolar RNAs. Cell, 89(5):799–809, may
1997.

[15] Denis L.J. Lafontaine, Cécile Bousquet-Antonelli, Yves Henry, Michèle Caizergues-Ferrer,
and David Tollervey. The box H+ACA snornas carry Cbf5p, the putative rRNA pseudouri-
dine synthase. Genes & Development, 12(4):527–537, 1998.

[16] S. Hunter, P. Jones, A. Mitchell, R. Apweiler, T. K. Attwood, A. Bateman, T. Bernard,
D. Binns, P. Bork, S. Burge, E. de Castro, P. Coggill, M. Corbett, U. Das, L. Daugherty,
L. Duquenne, R. D. Finn, M. Fraser, J. Gough, D. Haft, N. Hulo, D. Kahn, E. Kelly,
I. Letunic, D. Lonsdale, R. Lopez, M. Madera, J. Maslen, C. McAnulla, J. McDowall,
C. McMenamin, H. Mi, P. Mutowo-Muellenet, N. Mulder, D. Natale, C. Orengo, S. Pesseat,
M. Punta, A. F. Quinn, C. Rivoire, A. Sangrador-Vegas, J. D. Selengut, C. J. A. Sigrist,
M. Scheremetjew, J. Tate, M. Thimmajanarthanan, P. D. Thomas, C. H. Wu, C. Yeats, and
S.-Y. Yong. InterPro in 2011: New developments in the family and domain prediction
database. Nucleic Acids Research, 40(D1):D306–D312, nov 2011.

[17] Cole J.T. Lewis, Tao Pan, and Auinash Kalsotra. RNA modifications and structures
cooperate to guide RNA-protein interactions. Nature Reviews Molecular Cell Biology,
18(3):202–210, Feb 2017.

[18] Andrey V. Bakin and James Ofengand. Mapping of pseudouridine residues in RNA to
nucleotide resolution. In Protein Synthesis, pages 297–310. Springer Science Business
Media.

[19] Thomas M. Carlile, Maria F. Rojas-Duran, and Wendy V. Gilbert. Pseudo-Seq. In Methods
in Enzymology, pages 219–245. Elsevier BV, 2015.

[20] Schraga Schwartz, Douglas A. Bernstein, Maxwell R. Mumbach, Marko Jovanovic, Re-
becca H. Herbst, Brian X. León-Ricardo, Jesse M. Engreitz, Mitchell Guttman, Rahul
Satija, Eric S. Lander, Gerald Fink, and Aviv Regev. Transcriptome-wide mapping reveals
widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell, 159(1):148–
162, sep 2014.

[21] Alexander F. Lovejoy, Daniel P. Riordan, and Patrick O. Brown. Transcriptome-wide map-
ping of pseudouridines: Pseudouridine synthases modify specific mRNAs in S. cerevisiae.
PLoS ONE, 9(10):e110799, oct 2014.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2017. ; https://doi.org/10.1101/126979doi: bioRxiv preprint 

https://doi.org/10.1101/126979
http://creativecommons.org/licenses/by-nc-nd/4.0/


[22] Xiaoyu Li, Ping Zhu, Shiqing Ma, Jinghui Song, Jinyi Bai, Fangfang Sun, and Chengqi Yi.
Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome.
Nature Chemical Biology, 11(8):592–597, jun 2015.

[23] Yan-Hui Li, Gaigai Zhang, and Qinghua Cui. PPUS: a web server to predict PUS-specific
pseudouridine sites. Bioinformatics, 31(20):3362–3364, jun 2015.

[24] Wei Chen, Hua Tang, Jing Ye, Hao Lin, and Kuo-Chen Chou. iRNA-PseU: Identifying
RNA pseudouridine sites. Molecular Therapy-Nucleic Acids, 5(7):e332, 2016.

[25] Sai Zhang, Jingtian Zhou, Hailin Hu, Haipeng Gong, Ligong Chen, Chao Cheng, and
Jianyang Zeng. A deep learning framework for modeling structural features of RNA-
binding protein targets. Nucleic Acids Res, 44(4):e32–e32, oct 2015.

[26] Sai Zhang, Hailin Hu, Tao Jiang, Lei Zhang, and Jianyang Zeng. TIDE: predicting
translation initiation sites by deep learning. Jan 2017.

[27] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting
the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat
Biotechnol, 33(8):831–838, jul 2015.

[28] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep
learning–based sequence model. Nature Methods, 12(10):931–934, aug 2015.

[29] M. K. K. Leung, H. Y. Xiong, L. J. Lee, and B. J. Frey. Deep learning of the tissue-regulated
splicing code. Bioinformatics, 30(12):i121–i129, jun 2014.

[30] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[31] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–
444, may 2015.

[32] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling
in speech recognition: The shared views of four research groups. IEEE Signal Processing
Magazine, 29(6):82–97, November 2012.

[33] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine
Learning Research, 12(Aug):2493–2537, 2011.

[34] Mahmoud Ghandi, Dongwon Lee, Morteza Mohammad-Noori, and Michael A Beer. En-
hanced regulatory sequence prediction using gapped k-mer features. PLoS computational
biology, 10:e1003711, Jul 2014.

[35] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. J.
Mach. Learn. Res., 13:281–305, February 2012.

[36] Nian Liu, Marc Parisien, Qing Dai, Guanqun Zheng, Chuan He, and Tao Pan. Probing
N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and
long noncoding RNA. RNA (New York, N.Y.), 19:1848–1856, Dec 2013.

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2017. ; https://doi.org/10.1101/126979doi: bioRxiv preprint 

https://doi.org/10.1101/126979
http://creativecommons.org/licenses/by-nc-nd/4.0/


[37] David R. Kelley, Jasper Snoek, and John L. Rinn. Basset: learning the regulatory code
of the accessible genome with deep convolutional neural networks. Genome Research,
26(7):990–999, May 2016.

[38] H. Becker. The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing
the formation of psi55 in both mitochondrial and cytoplasmic tRNAs. Nucleic Acids
Research, 25(22):4493–4499, Nov 1997.

[39] I. BEHM-ANSMANT. The Saccharomyces cerevisiae U2 snRNA:pseudouridine-synthase
Pus7p is a novel multisite-multisubstrate RNA: -synthase also acting on tRNAs. RNA,
9(11):1371–1382, Nov 2003.

[40] Thomas M. Carlile, Maria F. Rojas-Duran, Boris Zinshteyn, Hakyung Shin, Kristen M.
Bartoli, and Wendy V. Gilbert. Pseudouridine profiling reveals regulated mRNA pseu-
douridylation in yeast and human cells. Nature, 515(7525):143–146, Sep 2014.

[41] Alejandra Medina-Rivera, Matthieu Defrance, Olivier Sand, Carl Herrmann, Jaime A
Castro-Mondragon, Jeremy Delerce, SÃl’bastien Jaeger, Christophe Blanchet, Pierre Vin-
cens, Christophe Caron, Daniel M Staines, Bruno Contreras-Moreira, Marie Artufel, Lucie
Charbonnier-Khamvongsa, Céline Hernandez, Denis Thieffry, Morgane Thomas-Chollier,
and Jacques van Helden. RSAT 2015: Regulatory sequence analysis tools. Nucleic acids
research, 43:W50–W56, Jul 2015.

[42] Matthew T. Weirauch, Ally Yang, Mihai Albu, Atina G. Cote, Alejandro Montenegro-
Montero, Philipp Drewe, Hamed S. Najafabadi, Samuel A. Lambert, Ishminder Mann, Kate
Cook, and et al. Determination and inference of eukaryotic transcription factor sequence
specificity. Cell, 158(6):1431–1443, Sep 2014.

[43] I. V. Kulakovskiy, Y. A. Medvedeva, U. Schaefer, A. S. Kasianov, I. E. Vorontsov, V. B.
Bajic, and V. J. Makeev. HOCOMOCO: a comprehensive collection of human transcription
factor binding sites models. Nucleic Acids Research, 41(D1):D195–D202, Nov 2012.

[44] Tong Zhang, Xian-Hong Huang, Lan Dong, Deqing Hu, Changhui Ge, Yi-Qun Zhan,
Wang-Xiang Xu, Miao Yu, Wei Li, Xiaohui Wang, and et al. PCBP-1 regulates alternative
splicing of the CD44 gene and inhibits invasion in human hepatoma cell line HepG2 cells.
Molecular Cancer, 9(1):72, 2010.

[45] T P Das, S Suman, H Alatassi, M K Ankem, and C Damodaran. Inhibition of AKT promotes
FOXO3a-dependent apoptosis in prostate cancer. Cell Death and Disease, 7(2):e2111, Feb
2016.

[46] David L. Bentley. Coupling mRNA processing with transcription in time and space. Nature
Reviews Genetics, 15(3):163–175, Feb 2014.

[47] Xiao Wang, Boxuan Simen Zhao, Ian A. Roundtree, Zhike Lu, Dali Han, Honghui Ma,
Xiaocheng Weng, Kai Chen, Hailing Shi, and Chuan He. N6-methyladenosine modulates
messenger RNA translation efficiency. Cell, 161(6):1388–1399, jun 2015.

[48] Xu Zhao, Ying Yang, Bao-Fa Sun, Yue Shi, Xin Yang, Wen Xiao, Ya-Juan Hao, Xiao-
Li Ping, Yu-Sheng Chen, Wen-Jia Wang, and et al. FTO-dependent demethylation of
N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell
Research, 24(12):1403–1419, Nov 2014.

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2017. ; https://doi.org/10.1101/126979doi: bioRxiv preprint 

https://doi.org/10.1101/126979
http://creativecommons.org/licenses/by-nc-nd/4.0/


[49] S. Geula, S. Moshitch-Moshkovitz, D. Dominissini, A. A. Mansour, N. Kol, M. Salmon-
Divon, V. Hershkovitz, E. Peer, N. Mor, Y. S. Manor, and et al. m6A mRNA methylation
facilitates resolution of naive pluripotency toward differentiation. Science, 347(6225):1002–
1006, Jan 2015.

[50] John Hesketh. 3’UTRs and Regulation. Encyclopedia of Life Sciences, Sep 2005.

[51] Flavio Mignone and Graziano Pesole. mRNA untranslated regions (UTRs). eLS, Aug 2011.

[52] Michael Ashburner, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler,
J. Michael Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T. Eppig, and
et al. Gene ontology: tool for the unification of biology. Nature Genetics, 25(1):25–29,
May 2000.

[53] Katalin Karikó, Hiromi Muramatsu, Frank A Welsh, János Ludwig, Hiroki Kato, Shizuo
Akira, and Drew Weissman. Incorporation of pseudouridine into mRNA yields superior
nonimmunogenic vector with increased translational capacity and biological stability.
Molecular Therapy, 16(11):1833–1840, sep 2008.

[54] J. E. Squires, H. R. Patel, M. Nousch, T. Sibbritt, D. T. Humphreys, B. J. Parker, C. M.
Suter, and T. Preiss. Widespread occurrence of 5-methylcytosine in human coding and
non-coding RNA. Nucleic Acids Research, 40(11):5023–5033, Feb 2012.

[55] Sarit Edelheit, Schraga Schwartz, Maxwell R. Mumbach, Omri Wurtzel, and Rotem Sorek.
Transcriptome-wide mapping of 5-methylcytidine rna modifications in bacteria, archaea,
and yeast reveals m5C within archaeal mrnas. PLoS Genetics, 9(6):e1003602, Jun 2013.

[56] Dan Dominissini, Sigrid Nachtergaele, Sharon Moshitch-Moshkovitz, Eyal Peer, Nitzan
Kol, Moshe Shay Ben-Haim, Qing Dai, Ayelet Di Segni, Mali Salmon-Divon, Wesley C.
Clark, and et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger
RNA. Nature, 530(7591):441–446, Feb 2016.

[57] Wen-Ju Sun, Jun-Hao Li, Shun Liu, Jie Wu, Hui Zhou, Liang-Hu Qu, and Jian-Hua
Yang. RMBase: a resource for decoding the landscape of RNA modifications from high-
throughput sequencing data. Nucleic Acids Res, 44(D1):D259–D265, oct 2015.

[58] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification. In Proc. IEEE Int. Conf. Computer Vision (ICCV),
pages 1026–1034, December 2015.

[59] Keras. https://github.com/fchollet/keras. Accessed: 2016.

[60] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. Backpropagation applied to handwritten zip code recognition. Neural Computation,
1(4):541–551, December 1989.

[61] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res., 15(1):1929–1958, January 2014.

[62] Christian Szegedy Sergey Ioffe. Batch normalization: Accelerating deep network training
by reducing internal covariate shift., 2015.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2017. ; https://doi.org/10.1101/126979doi: bioRxiv preprint 

https://github.com/fchollet/keras
https://doi.org/10.1101/126979
http://creativecommons.org/licenses/by-nc-nd/4.0/


[63] N. Morgan and H. Bourlard. Advances in neural information processing systems 2. chapter
Generalization and Parameter Estimation in Feedforward Nets: Some Experiments, pages
630–637. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[64] Shobhit Gupta, John A Stamatoyannopoulos, Timothy L Bailey, and William Noble.
Quantifying similarity between motifs. Genome Biology, 8(2):R24, 2007.

[65] M. C. F. Thomsen and M. Nielsen. Seq2Logo: a method for construction and visualization
of amino acid binding motifs and sequence profiles including sequence weighting, pseudo
counts and two-sided representation of amino acid enrichment and depletion. Nucleic Acids
Research, 40(W1):W281–W287, May 2012.

[66] Bronwen L. Aken, Sarah Ayling, Daniel Barrell, Laura Clarke, Valery Curwen, Susan
Fairley, Julio Fernandez Banet, Konstantinos Billis, Carlos García Girón, Thibaut Hourlier,
and et al. The Ensembl gene annotation system. Database, 2016:baw093, 2016.

[67] R. J. Kinsella, A. Kahari, S. Haider, J. Zamora, G. Proctor, G. Spudich, J. Almeida-King,
D. Staines, P. Derwent, A. Kerhornou, and et al. Ensembl BioMarts: a hub for data retrieval
across taxonomic space. Database, 2011(0):bar030–bar030, Jul 2011.

[68] Da Wei Huang, Brad T Sherman, and Richard A Lempicki. Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nature protocols,
4:44–57, 2009.

[69] Da Wei Huang, Brad T Sherman, and Richard A Lempicki. Bioinformatics enrichment
tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic acids
research, 37:1–13, Jan 2009.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2017. ; https://doi.org/10.1101/126979doi: bioRxiv preprint 

https://doi.org/10.1101/126979
http://creativecommons.org/licenses/by-nc-nd/4.0/


a
Ψ

ΨΨ
Ψ

Ψ5’ 3’

+CMC

RNAs

CMC
CMC

CMC

CMC 5’
cDNAs5’

5’

positions

R
ea

d
s 

U UA G U AC GC G U C GAC C AC UA CG

*

**
AUCGAU…Ψ…AUCGAU
AUCGAU…Ψ…AUCGAU
AUCGAU…Ψ…AUCGAU
AUCGAU…Ψ…AUCGAU
AUCGAU…Ψ…AUCGAU
AUCGAU…Ψ…AUCGAU

Ψ

100010…0…100010
010001…1…010001
001000…0…001000
000100…0…000100

Ψ

• Detect the Ψ sites of a particular sequence 

• Estimate the distribution of Ψ sites on a
transcript

AAAAA5’CAP

• Analyze the transcriptome-wide landscape 
of Ψ sites

Pseudouridine sequencing

Profiles of Ψ sites The extracted sequence 
profiles of Ψ sites

The encoded binary 
features of Ψ sites

Convolution neural network

Ψ Ψ

b

…
…

…
… …
…

…
…

…
…

Feature encoding

Convolution Pooling Convolution 

Pooling Flattened vector

Fully-connected network

Figure 1: Overview of the PULSE pipeline. (a) The schematic flow diagram of PULSE. The pseudouridine
(Ψ) sites can be experimentally profiled by high-throughput sequencing techniques, such as Ceu-Seq, Pseudo-
Seq, Ψ-seq and PSI-Seq. PULSE first extracts the sequence profiles of a potential Ψ site (i.e., the region
within 50nts upstream and downstream of the target site of interest) and encodes them into binary features,
which are then fed as input data to a particularly designed convolutional neural network (CNN) model. After
parameter learning, the trained model is used for downstream analysis, such as detecting the Ψ sites of a given
RNA sequence, estimating the distribution of Ψ sites on a transcript and elucidating the transcriptome-wide
landscape of Ψ sites. (b) The convolution neural network architecture used in PULSE. Two convolution layers
and two pooling layers are first alternately stacked and used for feature detection, and then a fully-connected
network with three hidden layers is added for global feature evaluation and Ψ potential estimation. Given a
uridine site of interest and its sequence context, PULSE outputs a Ψ potential score which basically represents
the likelihood of pseudouridylation for this target site.
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Figure 2: Performance evaluation of PULSE. (a-b) The ROC (receiver operating characteristic) curves and
the corresponding AUC (area under the ROC curve) scores reported in 10-fold cross-validation for human
and mouse, respectively. The terms ‘hPULSE’ and ‘mPULSE’ represent the PULSE models trained based on
human and mouse datasets, respectively. gkm-SVM, which is a classical model for sequence classification
based on the gapped k-mers [34], was used as a baseline method for comparison. (c) The validation results
on the conserved pseudouridine sites across human and mouse [22] and a set of the pseudouridine sites in
human [22] that were identified by the SCARLET (site-specific cleavage and radioactive-labeling followed by
ligation-assisted extraction and thin-layer chromatography) technique [36]. During the evaluation process, for
both hPULSE and mPULSE models, the overlapping pseudouridine sites were removed from training data.
(d) The results on the cross-species test between human and mouse. Green and red curves represent the test
results on the hPULSE model (which was trained from human data) over mouse data and the mPULSE model
(which was trained from mouse data) over human data, respectively.

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2017. ; https://doi.org/10.1101/126979doi: bioRxiv preprint 

https://doi.org/10.1101/126979
http://creativecommons.org/licenses/by-nc-nd/4.0/


a

PUS4

Pus4Pus7

PUS7

Human

Mouseb

PUS4

Pus4Pus7

PUS7

Human

Mouse

c

PCBP1

filter61_04

Human

ROD1

filter48_05 filter32_07

TIA1
RBPs

ZN524

filter42_04

FOXO3

filter61_05

FUBP1

filter48_01
TFs

P = 5.40 x 10−6

P = 9.20 x 10−6P = 5.24 x 10−6P = 1.66 x 10−6

P = 1.22 x 10−5P = 7.01 x 10−6

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 12, 2017. ; https://doi.org/10.1101/126979doi: bioRxiv preprint 

https://doi.org/10.1101/126979
http://creativecommons.org/licenses/by-nc-nd/4.0/


d Mouse

RBPs 

TFs 

Pcbp2

filter61_05

Elavl2

filter56_09

Hnrnpc

filter51_09

FUBP1

filter04_03

NKX31

filter48_05

ELF3

filter40_01

P = 7.01 x 10−6

P = 1.48 x 10−5P = 1.85 x 10−6P = 5.67 x 10−7

P = 3.56 x 10−5P = 1.41 x 10−5

Figure 3: Examples of the sequence motifs of pseudouridylation identified by PULSE. (a-b) The sequence
motifs of pseudouridylation detected by PULSE corresponding to the known motifs of Ψ sythases PUS4
(‘GUΨCNA’) and PUS7 (‘UGΨAG’) for human and mouse, respectively. (c-d) The comparisons between
the motifs of the sequence contexts of pseudouridylation identified by PULSE and the closest matched
motifs of RNA binding proteins (RBPs) and transcription factors (TFs) for human and mouse, respectively.
Top and bottom show the known binding motifs of RBPs or TFs and the contextual sequence features of
pseudouridylation identified by PULSE (the filter IDs are also showed), respectively.
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Figure 4: The gene ontology (GO) enrichment analysis of mRNAs with high tPPS values (top 500) carried
out by DAVID for human (a) and mouse (b), respectively.
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Figure S1: The precision-recall (PR) curves and the corresponding area under the precision-recall curve
(AUPR) scores in the cross-validation results. (a-b) Comparisons of the 10-fold cross-validation results
between PULSE and the baseline approach gkm-SVM for human and mouse, respectively. (c) The results on
cross-species test between human and mouse. The legends are the same as in Fig. 2.
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b

Figure S2: The clustering heatmaps of the sequence motifs of pseudouridylation identified by PULSE for
human (a) and mouse (b). The sequence motifs of human and mouse had 70 and 69 clusters, respectively. The
clusters are labelled by different colors.
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