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Abstract 

As interactions between the immune system and tumour cells are governed by a complex 

network of cell-cell interactions, knowing the specific immune cell composition of a solid 

tumour may be essential to predict a patient’s response to immunotherapy. Here, we analyse 

in depth how to derive the cellular composition of a solid tumour from bulk gene expression 

data by mathematical deconvolution, using indication- and cell type-specific reference gene 

expression profiles (RGEPs) from tumour-derived single-cell RNA sequencing data. We 

demonstrate that tumour-derived RGEPs are essential for the successful deconvolution and 

that RGEPs from peripheral blood are insufficient. We distinguish nine major cell types as 

well as three T cell subtypes. As the ratios of CD4+, CD8+ and regulatory T cells have been 

shown to predict overall survival, we extended our analysis to include the estimation of 

prognostic ratios that may enable the application in a clinical setting. Using the tumour 

derived RGEPs, we can estimate, for the first time, the content of cancer associated 

fibroblasts, endothelial cells and the malignant cells in a patient sample by a deconvolution 

approach. In addition, improved tumour cell gene expression profiles can be obtained by this 

method by computationally removing contamination from non-malignant cells. Given the 

difficulty around sample preparation and storage to obtain high quality single-cell RNA-seq 

data in the clinical context, the presented method represents a computational solution to 

derive the cellular composition of a tissue sample. 

Enhancing a patient’s immune response to cancer using immune checkpoint inhibitors is arguably 

the most exciting advance in the treatment of cancer in the past decade1,2. Unfortunately, only a 

subset of patients (typically ~20%) show long lasting responses post checkpoint blockade3. 

Combining prospective patient selection based on predictive response biomarkers (=precision 

medicine) and immunotherapy has the potential to further transform patient care. To date, it has 

been shown that location and abundance of immune cells are prognostic for predicting patient 

outcome on standard therapy4,5. In addition, for checkpoint inhibitors like anti-PD1, anti-PDL1 and 

anti-CTLA4 agents, the presence of relevant T cell populations correlates with treatment efficacy6. 
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Thus, it is likely that the key to predicting response to immunotherapy lies in the patient-specific 

immune cell composition at the site of the tumour lesion. 

In theory, it is possible to infer the immune, tumour, and stroma cell content of a solid tumour from 

its bulk gene expression profile if reference gene expression profiles (RGEPs) can be established 

for each tumour-associated cell type. Mathematically, this class of inverse problems is known as 

deconvolution7. To date, deconvolution of bulk gene expression has been described and validated 

for haematological malignancies8,9, where RGEPs can be established from peripheral blood 

mononuclear cells (PBMCs). This approach has been applied theoretically to solid tumours10, but 

until recently it has been impossible to validate this extrapolation experimentally. It has been 

difficult to obtain RGEPs for cell types that are not available in the peripheral blood, such as 

endothelial cells and cancer-associated fibroblasts and it remains unclear to which extent the gene 

expression profile of an immune cell changes upon tumour infiltration. With the advent of the 

single-cell RNA sequencing (scRNA-seq) technology, however, it is now possible to determine 

gene expression profiles for tumour-infiltrating immune cells, tumour-associated non-malignant 

cells, and individual tumour cells from the same solid tumour biopsy.  

We collected and investigated RNA-seq gene expression profiles of more than 11,000 single cells 

from three distinct primary human tissue sources: To characterize cells associated with the tumour 

microenvironment we accessed data from 19 melanoma patients11, to characterize the baseline 

immune cell gene expression we accessed data from PBMCs originating from four healthy 

subjects12 and last, we generated immune and tumour cell gene expression profiles from four 

ovarian cancer ascites samples in-house. In the following, we show that gene expression profiles 

from tumour-associated immune cells and from PBMCs differ substantially. Therefore, reference 

profiles obtained from PBMCs are insufficient to deconvolve the bulk profile of a melanoma 

tumour sample. We find that indication-specific immune cell RNA-seq profiles from different 

patients are sufficiently similar to each other to define a consensus profile for each cell type, and 

that these consensus profiles enable accurate deconvolution of bulk tumour profiles. Our results 

show that the generation of specific RGEPs is both necessary and sufficient to enable reliable 

estimation of tumour composition from bulk gene expression data. Our approach resolves tumour-

associated cell types with an unprecedented precision that considers subtle differences in the gene 

expression state of these cells. We can reliably identify nine different cell types including immune 

cells, cancer-associated fibroblasts, endothelial cells, ovarian carcinoma cells and melanoma cells. 

In addition, RGEPs for immune cells can be used to estimate the unknown gene expression profiles 

of tumour cells from bulk gene expression data patient specifically. 
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Results 

Microenvironment dependent modulation of gene expression profiles 

of tumour-associated cells 

First, to investigate the extent to which gene expression profiles change as immune cells move 

from peripheral blood to the tumour microenvironment, we compared immune cell scRNA-seq 

profiles across three human data-sets: 1) data-set of 4000 single cells derived from peripheral blood 

of four healthy subjects13; 2) data-set of 4645 tumour-derived single cells from 19 melanoma 

patient samples11 and an unpublished data-set of 3114 single cells from four ovarian cancer ascites 

samples. Single-cell RNA-seq data requires careful data processing and normalization particularly 

when comparing data originating from different sources and sequencing technologies. To 

characterize the single cells and to illustrate genome wide similarities and differences in their gene 

expression profiles, we applied the dimensionality reduction technique t-distributed stochastic 

neighbour embedding (t-SNE)14. This is an unsupervised machine learning algorithm that places 

each single cell into a two-dimensional plane. Cells with gene expression profiles that are similar 

are placed close to each other and farther apart if they are more different. Fig. 1a shows that clusters 

associated with specific cell types and from different data sources emerge spontaneously. Using 

the aggregated single-cell data-set, we developed a classification approach that can identify cell 

types irrespective of the data source. We can identify and classify nine major cell types: T cells, B 

cells, macrophages/monocytes, natural killer (NK) cells, dendritic cells (DCs), cancer-associated 

fibroblasts (CAFs), endothelial cells (ECs), ovarian carcinoma cells and melanoma cells. All 

remaining cells that fail to pass the classification threshold for any specific cell type are assigned 

as “unknown”. Interestingly, the “unknown” cells are mostly located in the T cell clusters, 

suggesting that some T cells are more difficult to classify than cells from other cell types. However, 

the percentage of “unknown” cells per sample is generally very low (<0.03 %). Further, we could 

classify T cells into three subtypes: CD4+, CD8+ and regulatory T cells (Treg). The ratios of CD4+ 

or CD8+ T cells and immune suppressive Tregs were suggested as markers for immunologically 

active vs. inactive tumours6. Although our methods can easily be extended to include additional 

cells and further subdivisions, we limited ourselves to the nine major cell types to benchmark our 

classification algorithm. As previously reported11 and shown in Extended Data Fig. 3, malignant 

tumour cells and associated fibroblasts cluster by patient and non-malignant cells cluster by cell 

type. Tumour biopsies should contain immune cells from tumour blood vessels and from recently 

extravasated immune cells. Therefore, a partial overlap between PBMC and tumour-associated 

immune cells is expected. We analysed pair-wise similarities between the averaged gene 

expression profiles of each identified cluster. This analysis is more quantitative and robust to noise 

as the single cell comparisons. The results shown in Fig. 1b indicate that most clusters, while 

distinct, are most closely associated with clusters from the same cell types. This is an important 

quality control step that confirms that potential batch effects are successfully alleviated by the data 

processing and normalization strategy (see Methods Section). Tregs seem to be most distinct across 

the three different data-sets potentially indicating different context-dependent subsets15. However, 

the microenvironment has a clear and quantifiable impact on gene expression. In the following, we 
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will address the question if gene expression profiles based on PBMCs are good approximations for 

what is observed in the tumour microenvironment and how the PBMC-derived gene expression 

profiles impact the quality of deconvolution of bulk expression data.  

First, we observed that the frequency of each cell type appears to be distinct for each sample as 

depicted in Fig. 1c. The cellular composition of the PBMC samples from different donors is more 

similar to each other compared to the cellular composition across the ascites or melanoma samples. 

We validated the predicted cellular composition based on our scRNA-seq based classification with 

previously reported results for all melanoma samples 11. Also, we compared the predicted cellular 

composition for all ascites samples experimentally with Fluorescence Activated Cell Sorting 

(FACS). As depicted in Extended Data Fig. 2 our classification is in line with previously published 

results and our measurements. 
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Figure 1: Comparison of gene expression profiles of single cells from different data sources.  

(a) Single cells were arranged in two dimensions based on similarity of their gene expression profiles by 

the dimensionality reduction technique t-SNE. The clusters that emerge spontaneously can be associated 

with cell types (colours) and data source (symbol types: squares for PBMC-, triangles for the melanoma-, 

and diamonds for ascites data-sets). (b) Pair-wise correlation of averaged gene expression profiles of 

clusters encoding cell type and origin as identified in a) visualised as dendrogram. (c) Number of cells and 

cellular composition per sample. 
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Using single-cell data as a benchmark for deconvolution accuracy 

The microenvironment-specific gene expression profiles of immune cells as well as the true 

composition of a given sample can be obtained by scRNA-seq and can serve as ground truth to 

benchmark deconvolution approaches. We studied how the deconvolution results of bulk gene 

expression data, for instance of a melanoma sample, are affected by microenvironment-specific 

changes and by patient-to-patient variation. As benchmark for the deconvolution, we constructed 

“bulk” gene expression data by aggregating all single-cell gene expression data for each of the 27 

samples as well as different sets of REGPs by different strategies for averaging over tissue sources 

and patients. We compare the inferred, a priori known cellular composition of a given sample using 

five different RGEPs (see Extended Data Fig. 4 for illustration): The first, RGEP1 is derived from 

the PBMC data-set only. Therefore, estimates for tumour-associated cell types will not be available 

in this case. The second, RGEP2, is derived for each cell type across the three data-sets (PBMC, 

melanoma and ascites). The third, RGEP3 is data-set/indication- and cell type-specific. As 

additional benchmarks, we set up two control scenarios (CNTR1 and CNTR2) that are extensions 

of RGEP3 and include patient-specific information. These scenarios are, of course, not applicable 

in the real world, but serve to evaluate the relative importance of patient-specific information. 

CNTR1 uses patient-specific profiles for the malignant cells only and consensus profiles for each 

non-malignant cell type. CNTR2 uses patient-specific profiles for all cell types. In principle, 

CNTR2 serves as the upper limit on what is technically possible using deconvolution approaches. 

Origin and quality of RGEP determine deconvolution results 

To compare the five possible RGEPs and their impact on deconvolution accuracy, we estimated 

the cellular composition from the 27 constructed bulk expression datasets using the CIBERSORT 

deconvolution method8. This method is designed to be more robust against noise, unknown mixture 

content and closely related cell types. CIBERSORT has been shown to outperform other methods 

based on in vitro cell mixture benchmarks. All deconvolutions were performed using a collection 

of genes, which comprises 1076 signature genes that were found to maximally differentiate various 

cell types8,11. For each cell type, the estimated proportion was compared to the true proportion in 

the 27 constructed samples (Fig. 2a). The Pearson correlation coefficients between estimated and 

true cellular composition were used as a measure of prediction accuracy (Fig. 2b). The different T 

cell subsets are considered later in Fig. 3. Overall, estimations based on RGEP1 were less accurate 

(ρ=0.82) than for RGEP2 and RGEP3 or for CNTR1 and CNTR2 (ρ≥0.98). For RGEP1, due to the 

unavailable reference profiles for tumour-associated cell types the true proportion of unknown cells 

is larger than for the other RGEPs and the estimation quality is mediocre (ρ=0.65). For RGEP2 and 

RGEP3 as well as for CNTR1 and CNTR2, the true proportion of unknown cells is negligibly 

small. Correlation is not a good measure of accuracy in case the true proportion of cells is small. 

For RGEP1 the estimation performs well for T cells (ρ=0.88, not distinguished into subtypes here), 

B cells (ρ=0.99) and macrophages/monocytes (ρ=0.99). However, the accuracy improves further 

for all other settings (ρ≥0.99). For RGEP1 the estimation for DCs (ρ=-0.04) is poor and mediocre 

for NK cells (ρ=0.78). The estimation for DCs improves considerably for RGEP2 (ρ=0.82) and 
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RGEP3 (ρ=0.95). The estimation for DCs still improves slightly for CNTR1 (ρ=0.97) but reaches 

its maximum only for CNTR2 (ρ=1.00), indicating that gene expression of DCs is heavily 

dependent on the source of isolation which is in agreement with the evidence that distinct subsets 

of DCs are highly specialized in the generation of immunity16. The estimation for NK cells 

improves slightly for RGEP2 (ρ=0.82) and reaches close to optimal in RGEP3 (ρ=0.95) compared 

to CNTR1 (ρ=0.96) and CNTR2 (ρ=1.00). For RGEP2 to CNTR2, estimates for the tumour-

associated cell types (CAFs, ECs and the malignant cells) become available and are estimated 

accurately (ρ≥0.95). Interestingly, the estimation for the malignant cells does not improve much 

upon inclusion of patient-specific information, suggesting that deconvolution using consensus 

profiles is feasible. This is possible because the tumour cells are in general very different from the 

non-malignant cells which make their deconvolution easier (see Fig. 1b). For CNTR2, ECs and 

CAFs have an increased accuracy (ρ=1.00) compared to the other settings (ρ~0.95), indicating that 

gene expression of those cell types is influenced by patient-specific microenvironment. 

Figure 2: Estimation accuracy of cellular composition is dependent on the origin and quality of 

RGEPs. 

(a) Scatter plot of true and estimated cell proportions for all 27 patient samples. Each dot represents one 

patient sample. Values close to the diagonal correspond to high deconvolution accuracy. Columns depict 

cell types; rows describe the five different configurations (REGP1-3 and CNTR1-2). 𝜌 denotes the Pearson’s 

correlation coefficient. In configuration REGP1, estimates for tumour-associated cell types are not 

available. (b) Pearson’s correlation coefficient between estimated and true cell fraction for all five 
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configurations. Dots denote the median of the correlation coefficient; the shading represents the uncertainty 

based on bootstrapping (upper and lower quartile). (Please note the different scaling of the figure axes.) 

Given the importance of T-cell ratios for treatment outcome6, we further analysed the estimation 

accuracy for T cell subsets as well as for therapeutically relevant T cell ratios (Fig. 3). Surprisingly, 

for CD8+ T cells, the estimation results are accurate (ρ~0.95) for all RGEPs. For CD4+ and 

regulatory T cells, the estimation results using RGEP1 are only mediocre (ρ=0.63 and ρ=0.43) but 

improve significantly for RGEP2 (ρ=0.87 and ρ=0.94). This is also reflected in the ratios of 

Treg/CD4+, CD8+/Treg and CD4+/CD8+ T cells that reach accurate estimations for RGEP2 

(ρ=0.94, ρ=0.96 and ρ=0.93). The estimation for all T cell subsets and ratios does not significantly 

improve for CNTR1 but does improve for CNTR2 (ρ=1.00), indicating that gene expression of T 

cells is influenced by the patient-specific microenvironment. In summary, deconvolution using 

consensus gene expression profiles based on indication-specific gene expression profiles (RGEP3) 

were sufficient to obtain reliable estimates of the cellular composition of the samples without 

requiring patient-specific data on the individual cell types. Deconvolution using gene expression 

profiles based on data from peripheral blood (RGEP1) or based on averages across all three data-

sets/indications (RGEP2) was considerably less accurate. 
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Figure 3: Estimation accuracy of cellular composition for T cell subsets and ratios depends on the 

origin and quality of RGEPs. 

Description as for Fig. 2, ratios are indicated on a log2-scale. 

To determine the impact of using alternative gene sets for the deconvolutions, we repeated the 

analyses using the best performing RGEP3 and four additional gene sets as well as three alternative 

deconvolution algorithms. Interestingly, the impact of different gene sets and deconvolution 

algorithms was relatively small compared to the impact of the origin and quality of the RGEPs (see 

Extended Data Fig. 5). CIBERSORT in conjunction with the Merged gene set provided the best 

overall results. 

Estimation of patient-specific tumour cell gene expression profiles 

Although using RGEP3 that is indication- but not patient-specific enables the accurate estimation 

of cellular composition of any given patient biopsy from bulk gene expression data, the gene 

expression profile of the malignant cells varies the most from patient to patient. Differences in gene 

expression in tumour cells are expected to play a key role in predicting response to traditional 

therapies, including both targeted and chemotherapies. As such, it is also of interest to estimate the 

patient-specific tumour cell profile following deconvolution. If consensus profiles exist for every 

non-malignant cell type and indication, the patient-specific tumour cell profile can be obtained by 

simply subtracting the profile of each non-malignant cell type from the bulk profile, weighted by 

its inferred proportion. In practice, however, the bulk profile will always be “contaminated” by 

cells for which consensus profiles do not exist (“unknown” cells). For example, neutrophils are not 

represented in scRNA-seq data, as they are difficult to isolate, highly labile ex vivo and therefore 

are difficult to preserve with current single cell isolation methods17. Using scRNA-seq data, we 

calculated the estimated tumour cell expression profiles for each patient sample and compared them 

to the true tumour cell profile (Fig. 4a). As some genes, such as housekeeping genes, correlate 

between all cells irrespective of cell type, a certain baseline correlation is expected. We estimated 

this baseline correlation by correlating the gene expression profiles of the non-malignant cells with 

the true tumour cell gene expression profiles. We observe a baseline correlation of 0.7-0.8 for all 

samples, irrespective of the estimated proportion of tumour cells in the samples. As expected, the 

estimation accuracy of the tumour cell expression improved with increasing tumour cell content 

(Fig. 4b). Notably, when the estimated proportion of tumour cells in the samples exceeded 20%, 

the estimated tumour cell gene expression profiles exhibited a correlation of ρ>0.9 with the true 

profile. The predicted tumour cell gene expression profiles in samples with more than 20% but less 

than 70% tumour cells correlate significantly better with the true tumour cell gene expression 

profiles compared to the uncorrected overall gene expression profiles. If a sample contains more 

than 70% tumour cells the gene expression profile of the whole sample is dominated by the tumour 

cells already and does not require any subtraction. For samples with less than 20% tumour cells, 

the subtraction does not improve the estimation because the signal of the tumour cell gene 

expression is low. In summary, for samples with a tumour cell content between 20-70% 

deconvolution results in significantly improved gene expression profiles.  
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Figure 4: Estimation accuracy of patient-specific tumour cell gene expression profiles.  

(a) Scatter plot of estimated vs. true transcriptome wide gene expression (17,933 genes) of the tumour cells 

for individual patient samples. Patient samples without any tumour cells have been excluded from this 

analysis. 𝜌 denotes the Pearson’s correlation. Correlation plots with grey background indicate patient 

samples with less than 20% tumour cell content. Colours according to legend in panel b). (b) Correlation 

values from panel a) plotted against the estimated proportion of tumour cells for each patient sample. 

Shading represents uncertainty based on bootstrapping. Symbols and numbering denote individual patient 

samples.  
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Discussion 

Cellular heterogeneity is present in any biological sample. Single cell RNA-seq allows us to 

understand how cellular heterogeneity contributes to function or patient outcome. However, it is 

still much easier to obtain bulk gene expression data. The work presented here shows how 

deconvolution approaches can be applied to bulk gene expression data to infer cellular composition 

and to provide a tool to link cellular heterogeneity to biological function or drug response from 

bulk gene expression data. We show that with indication- and cell type-specific reference gene 

expression profiles deconvolution methods like CIBERSORT can accurately estimate the cellular 

composition of a given biopsy sample and in addition give us more accurate information about the 

tumour cell gene expression profiles by eliminating contamination from non-malignant cells. This 

is most relevant if the tumour cell content ranges between 20-70%.  

Benchmarking different gene expression reference profiles and different deconvolution algorithms, 

we showed that the estimation accuracy is ultimately limited by the origin and quality of the 

reference gene expression profiles. Reference gene expression profiles derived from PBMCs are 

insufficient to enable accurate deconvolution of tumour bulk gene expression data18. By combining 

well-established deconvolution algorithms with state-of-the-art single-cell RNA-seq data of 

tumour biopsies, we showed that indication-specific consensus profiles of immune, stromal, and 

tumour cells, obtained directly from the tumour microenvironment, can be used to obtain accurate 

estimates of the cellular composition of a given sample. Overall, we found that the origin and 

quality of the reference profiles play a more dominant role than the deconvolution algorithm or 

gene set that is used, although gene sets designed to address as many cellular subsets as possible 

are clearly needed for accurate estimations of cellular heterogeneity. 

With the availability of public scRNA-seq data from PBMCs and melanoma samples as well as the 

ability to generate scRNA-seq data ourselves, we found that the gene expression profiles of tumour-

associated immune cells differ considerably from those of blood-derived immune cells. Despite 

this systematic modulation, we found that patient-to-patient differences do not confound the 

deconvolution of bulk expression data and that consensus reference profiles can be established for 

each cell type, including tumour cells, for each specific microenvironment and indication.  

We restricted our analyses to nine major cell types and three T cell subsets. Additional subdivisions 

can be added by defining these cell types in the scRNA-seq data-set and by choosing an appropriate 

gene set to enable these subdivisions. In practice, it is best to limit the number of subdivisions as 

much as possible, as more uncertainty is introduced when attempting to distinguish cell types with 

similar profiles.  

Given that we obtained the best results using indication- and cell-specific reference gene expression 

profiles, it is likely that consensus reference profiles for immune and stromal cells will need to be 

established from scRNA-seq data for every solid tumour indication. Why, then, are these 

deconvolution approaches necessary? At this time, scRNA-seq experiments are difficult to perform 

in a routine clinical setting. Tumour samples need to be acquired and analysed within hours. As 
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opposed to PBMCs, these samples can neither be fixed nor frozen. The reference scRNA-seq data-

sets can be obtained, but only in very controlled settings. With the appropriate data-sets in place, 

however, deconvolution approaches enable routine clinical samples to be analysed both for cell 

content and patient-specific tumour cell gene expression profiles. Bulk RNA-seq data can easily 

be obtained from either flash-frozen or formalin-fixed, paraffin-embedded tissue samples, 

including both surgically resected material and core needle biopsies. The deconvolution approach 

presented here enables the estimation of immune cell content and improved tumour gene 

expression profiles in a clinical trial setting, which is necessary to link cellular content with 

treatment response. Therefore, we anticipate the discovery of novel predictive response biomarkers 

for both conventional and immune-directed therapy by taking the cellular composition into 

account.  
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Extended data figures 

 

 
Extended Data Figure 1: Classification of cell types from scRNA-seq expression profiles using 

decision trees.  

(a) DBSCAN clustering is performed on the t-SNE map to identify distinct cell clusters with high similarity. 

(b) The expression of 45 marker genes is evaluated based on three logical gates (AND, OR, NOT) and 

shown on top of the t-SNE mapping. (c) Predominant cell types within each cluster are identified based on 

the marker gene expression and used as a training set for unsupervised classification. (d) A decision tree 

classifier is trained and utilized to predict the cell types of all individual cells. (e) The resulting map indicates 

all nine major cell types by colour and by indication (melanoma, ascites) or location (PBMCs) by symbols.  
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Extended Data Figure 2: Benchmarking the cell type classification to literature and experimental 

FACS analysis. 

(a) The result of our cell type classification (left bars, dark colours) compared to the cell types provided 

across all melanoma samples in the data-set by Tirosh et al.19 (right bars, light colours). (b) Cell type 

classification (left bars, dark colours) compared to FACS data (right bars, light colours) for three ovarian 

ascites patient samples. For sample 7892M, macrophages/monocytes could not be detected by FACS.  

 

 

 
Extended Data Figure 3: t-SNE map with patient-specific colour-coding.  

Single cells (symbols) were arranged in two dimensions based on similarity of their gene expression profiles 

by the dimensionality reduction technique t-SNE. Colours indicate the patient sample and symbols show 

the source location (triangles for melanoma, squares for PBMCs, and diamonds for ascites). Red dashed 

ellipses indicate clusters of malignant tumour cells. 
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Extended Data Figure 4: Construction of five RGEPs for benchmarking the estimation accuracy.  

(a) For each source location (melanoma, ascites, PBMC) individual single cell gene expression profiles are 

collected for multiple patients. Colours indicate the cell type, numbers indicate the patient sample and 

symbols show the source location (triangles for melanoma, squares for PBMCs, and diamonds for ascites). 

(b) Construction of REGPs from three single cell data-sets: RGEP1 bases on the population average of 

PBMC data; RGEP2 takes all three source locations into account; RGEP3 is indication- and location-

specific; CNTR1 is patient-specific for tumour cells and indication/location-specific for non-malignant 

cells; CNTR2 is fully patient-specific. 
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Extended Data Figure 5: Estimation accuracy is dependent on different signature gene sets and 

deconvolution algorithms. 

Dots denote the mean of the correlation coefficient; the shading represents the uncertainty based on 

bootstrapping. (a) Comparison of five different signature gene sets used for generating the reference gene 

expression profiles. Table S12: a published set of 244 marker genes differentially expressed in regulatory T 

cell subpopulations based on the scRNA-seq melanoma data11; Table S3: a published set of 385 marker 

genes based on the scRNA-seq melanoma data11; LM22: gene set which comprises 547 signature genes that 

were found to maximally differentiate various cell types8; Merged: a list of 1076 unique genes combined 

from the LM22, Table S12 and Table S3 gene lists as well as the 45 marker genes used for classification; 

All genes: a list of 17,933 genes that have a non-zero expression in at least one sample. (b) Comparison of 

four different algorithms used in the deconvolution approach. mldivide: exact solution using an algorithm 

for matrix inversion in MATLAB (The MathWorks, Inc.); SDPT3: a semidefinite-quadratic-linear 

programming algorithm from the CVX package20; fitlm: fitting a linear model (y = a*x+b) to the data based 

on least-squares in MATLAB; 𝜈-SVR: a support vector regression algorithm used in the CIBERSORT 

method. 
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Methods 

Data sources 

Ovarian cancer ascites of four patients were obtained from University of Massachusetts – 

Worcester. Samples were shipped on ice on the same day and processed upon receiving. Each 

sample was filtered through a 70μm filter and the cells were centrifuged down at ~300xG in a 

swing bucket centrifuge. Cells were resuspended in PBS-5% FBS and counted. 1e7 viable cells 

were frozen down in 90% FBS + 10% DMSO and stored at -80C until use. Cryopreserved cells 

were thawed at 37C water bath. Cells were spun down and resuspended in PBS-0.1% BSA and 

stored on ice. Viable cell number was measured and cells were diluted to 1.6 to 2e5 cells per ml in 

PBS-0.1% BSA. About 3,000 cells were encapsulated using the InDrops procedure21,22 at the Single 

Cell Core at Harvard Medical School. The libraries from about 1,000 cells per sample were 

sequenced with the Illumina Nextseq 500 method at the Molecular Biology Core Facility at Dana-

Farber Cancer Institute. Single-cell melanoma data were obtained from Gene Expression Omnibus 

(GEO; https://www.ncbi.nlm.nih.gov/gds) under accession number GSE72056 in a pre-processed 

format. Single-cell RNA-seq data of PBMCs from patient blood samples were downloaded from 

the 10x Genomics website (https://support.10xgenomics.com/single-cell/datasets; “4k/8k PBMCs 

from a Healthy Donor”, “Frozen PBMCs (Donor A/B/C)”13) and 1,000 random cells were selected 

randomly for each donor to ensure similar size as for the melanoma and ascites data-sets. The LM22 

gene set was taken from the supplementary information of Newman et al. 20158. Table S3 and 

Table S12 were obtained from the supplementary information of Tirosh et al. 201611. 

Data processing 

Gene expression values were used on the transcripts per million (TPM) scale as provided by current 

quantification methods 23–25. The expression values were transformed to  

𝑦 = log2(TPM + 1). 

To ensure cross-sample comparability, all single-cell melanoma, PBMC and ascites samples were 

normalized to the average expression of 3559 housekeeping genes26 by 

𝑦̃𝑖 = 𝑦𝑖 ⋅
HK

HK𝑖
, 

where 𝑦𝑖 represents the gene expression profile of the 𝑖-th sample, HK𝑖 denotes the average gene 

expression over all housekeeping genes of the 𝑖-th sample and HK is the average expression over 

all housekeeping genes and samples. Other normalization methods like upper quartile or median 

normalization could not be applied to scRNA-seq data as the single-cell measurements contain too 

many genes with zero expression leading to a zero-upper quartile and median for several samples. 

Gene symbols of the single-cell melanoma data were corrected to account for automatic conversion 

into dates by Microsoft Excel27. 
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Flow cytometry analysis 

Ascites were stained with either anti-human CD45 (H30, APC), CD3 (OKT3, Alexa-Fluor 700), 

CD4 (SK3, APC-Cy7), CD8 (RPA-T8, BV510), CD25 (BC96, Percp-Cy5.5), CD56 (5.1H11, 

BV570), CD127 (A019D5, BV421) CD16 (3G8, BV650) Abs or with anti-human CD45 (H30, 

APC), CD1c (L161, BV421), HLA-DR (L243, APC-Cy7), CD14 (M5E2, Alexa-Fluor 700), CD15 

(W6D3, BV605) CD16 (3G8, BV650) Abs in PBS 2% FBS for 20 min at 4°C. The antibodies were 

purchased from BD Pharmingen or Biolegend. The samples were acquired on an LSRFortessa flow 

cytometer (Becton Dickinson) and analysed using FlowJo software. 

Classification of cell types based in single-cell  

For classification of scRNA-seq data, a multi-step approach was developed. In contrast to the 

classification approach presented by Tirosh et al.11, malignant and non-malignant cells were not 

treated separately, and only the scRNA-seq gene expression data were used for generating a 

training set. A workflow chart of our classification approach is depicted in Extended Data Fig. 1. 

After normalizing all data as described above, t-SNE mapping was performed on the Merged gene 

set in order to identify clusters of similar cells. Subsequently, the DBSCAN algorithm28 was used 

to identify clusters based on the t-SNE map as shown in Extended Data Fig 1a. The parameters of 

DBSCAN were set manually to MinPts=25 and Eps=1.5 with the aim that each larger cell group 

on the map is assigned to a separate cluster. For each cell, the expression of a total of 45 marker 

genes (see Supplementary Table 1) was normalized to [0, 1] and evaluated based on three 

categories of genes: (1) AND genes that are all required, (2) OR genes where only the expression 

of one of them is necessary, and (3) NOT genes where the expression is a negative selection 

criterion. Evaluating all three categories for each cell type led to a score describing the likelihood 

of each cell to belong to a certain cell type. The resulting score is depicted as a heat map on top of 

the t-SNE map in Extended Data Fig. 1b. In each DBSCAN cluster, a total cell type score was 

calculated and only cell types with a predominant total score (>75% of the maximal score) were 

assigned preventing the misclassification of closely related cell types (e.g. Natural killer cells and 

T cells). This initial cell type assignment led to a sparse training set as depicted in Extended Data 

Fig. 1c. A decision tree classifier was trained based on these training data (also based on the Merged 

gene set). Using the trained classifier, the identity of all cells was predicted and validated based on 

5-fold cross-validation (Extended Data Fig. 1d) showing a high accuracy (98.06%) for the 

classification of the major cell types. Cells with a posterior probability lower than 0.99 were 

marked as “unknown”. The resulting classification is shown in Extended Data Fig. 1e. Further, 

three sub-types of T cells (CD4+, CD8+ and regulatory T cells) were classified based on the T cell 

population defined in the first round of classification. The same procedure as explained above was 

repeated on the T cell subtypes (as shown in Supplementary Figure 1). This was necessary because 

the similarity of sub-types is much higher than for distinct cell types. Only the parameters for 

DBSCAN needed to be adjusted (MinPts=25 and Eps=1.75) to account for the smaller sample size 

and the different distances on the t-SNE map of the T cells. The cross-validation of the 
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classification resulted in an accuracy of 93.88% for the T cell sub types. The resulting t-SNE map 

indicating all cell types and T cell subtypes is depicted in Fig. 1a. 

Construction of “bulk” gene expression data from single cell data 

The “bulk” gene expression data that was used for testing the deconvolution approach was 

generated from single-cell RNA sequencing data by aggregating reads from all cell barcodes for 

each patient sample. As single-cell and conventional bulk sequencing differ in their quantification 

biases, we cannot assume that single-cell based reference gene expression profiles are applicable 

for deconvolution of conventional bulk sequencing data. Therefore, to apply the deconvolution 

based on single-cell reference gene expression profiles, conventional sequencing must be adapted 

to closely mimic the quantification process in single-cell sequencing, however, without the cell 

barcoding that would be problematic in a clinical trial setting. 

Deconvolution algorithms 

Computational approaches to decipher the relative immune cell content in the tumour environment 

from microarray or RNA-seq gene expression data have been proposed8,9,29,30 and have been 

validated on blood samples8,9 or in-vitro cell mixtures30. Detailed reviews on this topic are 

available7,31. A method called CIBERSORT was proposed and its performance was compared to 

previously existing methods8. Using blood samples of a total of 41 patients, the authors could show 

that CIBERSORT outperforms the other methods when comparing the deconvolution results to 

flow cytometry data. The authors of the study also released a set of 547 genes (called LM22) which 

was used for their deconvolution approach. The CIBERSORT method (and most of the other 

methods mentioned above) assumes that the gene expression profile of an unknown bulk sample 

can be explained by the weighted sum of the cell type specific profiles of which it is composed. 

The weights vector leading to the linear combination can be obtained by solving a linear equation 

system computationally. As biological data can be obscured by technical and biological variability, 

methods for deconvolution need to be robust against noise. The contamination of the sample with 

unknown cell types can be a further source of noise. A method called 𝜈-Support vector regression 

(𝜈-SVR) combines feature-selection with a linear loss function and 𝐿2-regularization32 and is 

therefore robust against noise31. The performance of deconvolution approaches has been widely 

demonstrated on in vitro mixtures and setting where the cellular gene expression profiles were 

directly measured such as for peripheral blood mono-nuclear cell (PBMC) content in blood. 

Although there have been attempts to use RNA-seq data for deconvolution of cell mixtures30,33, so 

far, the accuracy of the approach has not been evaluated in a realistic setting and in a systematic 

manner. The potential of having absolute expression values from RNA-seq data rather than relative 

data from microarray has not been fully exploited.  

Signature gene sets 

The basis for an accurate deconvolution is the choice of the signature gene set. The gene expression 

levels of these genes need to be informative enough to distinguish between cell types contained in 
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the mixture/bulk sample. For our comparison, we chose five different signature gene sets. The 

LM22 gene set8 consists of 547 genes of which 496 are contained in the scRNA-seq PBMC, 

melanoma and ascites data-sets. The Table S12 gene set11 contains 244 genes that are preferentially 

expressed in regulatory T cells of which 239 are present in all three data-sets. The Table S3 gene 

set11, a list of 391 genes that have been identified as differentially expressed among the cell types 

in scRNA-seq data. Therefore, 374 genes are contained across all three scRNA-seq data-sets. A 

Merged gene set, generated by merging all genes from the LM22, the Table S3 and the Table S12 

gene sets and adding the 45 marker genes used for classification training. It consists of 1076 unique 

genes, with 1015 genes in common with the scRNA-seq data. An All genes gene set, consisting of 

17,936 genes that are contained in the all three scRNA-seq data-sets with 17,933 non-zero genes 

for at least one single-cell profile. 

Settings for algorithm comparison 

For deconvolution of the bulk patient profiles, the data was filtered to the Merged gene set and one 

of three deconvolution algorithms was applied. For 𝜈-Support vector regression (𝜈-SVR) we used 

the implementation of libSVM34 for MATLAB (version R2016a, The MathWorks Inc., Natick, 

MA, USA). The parameters were set to “-s 4 -t 0 -n 0.50 -h 0 -c 1 -q”. The mldivide 

function from MATLAB uses the pseudo-inverse of the matrix 𝐵 for solving for w = pinv(B)*m. 

This is equivalent to using w = mldivide(B, m). The fitlm function from MATLAB fits a linear 

model to the data based on a least-squares fit. The main difference to the mldivide function is that 

for fitlm an intercept is taken into account. For the CVX package for MATLAB the problem was 

defined as: 

cvx_begin quiet 

    cvx_solver sdpt3; 

    variable w(size(B, 2)) nonnegative; 

    minimize( norm((B*w - m), 2) + lambda*norm(f, 2)) 

    subject to 

        w <= 1; 

        sum(w) <= 1; 

cvx_end 

with lambda=1 and solved using the SDPT3 algorithm35 for semidefinite-quadratic-linear 

programming problems.  

Processing of estimation results 

The results for the proportions of known cell types 𝑤⃗⃗⃗  as obtained by one of the above mentioned 

algorithms are processed by replacing negative numbers by zeros8. The proportion of unknown 

other cell types 𝑤̃, i.e. cell types for which no reference profile was available, is calculated by 

taking the difference between one and the sum of all 𝑚 known cell proportions: 

𝑤̃ = 1 − ∑ 𝑤𝑖
𝑚
𝑖=1 . 
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Estimation quality assessment 

To assess the quality of our deconvolution results, we compared the true cellular fractions, as 

calculated from the number of single-cell measurements for each cell type and patient, with the 

estimation result by calculating Pearson’s correlation coefficient 𝜌 for all patients. We quantified 

the uncertainty of our quality measure by performing bootstrap re-sampling (100 replications) of 

our deconvolution results and calculated the median and lower and upper quartiles. 

Dimensionality reduction 

To obtain a low-dimensional representation of high-dimensional data, dimensionality reduction 

methods can be applied. T-distributed stochastic neighbour embedding (t-SNE) enables the 

reduction from many to two dimensions while keeping local neighbourhoods14. For removing noise 

and improving the performance, a principle component analysis (PCA) can be used to reduce the 

initial dimensionality before running t-SNE. We used the Barnes-Hut implementation of t-SNE36 

with the default settings to analyse our data. The result is a map that reflects the similarities between 

the high-dimensional input data as depicted in Fig. 1 and Extended Data Figs. 3 and 4. 

Tumour gene expression profile estimation 

To calculate the gene expression profile of an average tumour cell for each individual patient, we 

need to subtract the explained portion of gene expression from the patient’s bulk sample gene 

expression profile and rescale the expression with the estimated tumour proportion, i.e.  

𝑡 𝑖 =
𝑚⃗⃗⃗ 𝑖 − 𝐵 non−tumor 𝑤⃗⃗⃗ 𝑖,non−tumour

𝑤𝑖,tumour
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