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Summary  58 

Genomic studies to date in autism spectrum disorder (ASD) have largely focused on newly 59 

arising mutations that disrupt protein coding sequence and strongly influence risk. We evaluate 60 

the contribution of noncoding regulatory variation across the size and frequency spectrum 61 

through whole genome sequencing of 519 ASD cases, their unaffected sibling controls, and 62 

parents. Cases carry a small excess of de novo (1.02-fold) noncoding variants, which is not 63 

significant after correcting for paternal age. Assessing 51,801 regulatory classes, no category is 64 

significantly associated with ASD after correction for multiple testing. The strongest signals are 65 

observed in coding regions, including structural variation not detected by previous technologies 66 

and missense variation. While rare noncoding variation likely contributes to risk in 67 

neurodevelopmental disorders, no category of variation has impact equivalent to loss-of-function 68 

mutations. Average effect sizes are likely to be smaller than that for coding variation, requiring 69 

substantially larger samples to quantify this risk. 70 

 71 

Keywords: autism spectrum disorder, noncoding, loss-of-function, whole-genome sequencing, 72 

de novo variation, structural variation, inversion, translocation, genetic risk, mosaic, constraint   73 
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Introduction  74 

The rapid progression of genomics technologies, coupled with expanding cohort sizes, have led 75 

to significant progress in characterizing the genetics of autism spectrum disorder (ASD). To 76 

date, studies of ASD cohorts have included genotyping array technologies to survey large copy 77 

number variations (CNVs)1-6 and common variants,7,8 exome sequencing to scan the protein 78 

coding genome,1,9-16 and long-insert sequencing to identify large chromosomal 79 

abnormalities.17,18 While genetic variation across the allele frequency spectrum influences ASD 80 

risk,19 robust discovery of specific genetic loci has been driven by the identification of extremely 81 

rare de novo mutations that are predicted to disrupt protein coding genes. Since these 82 

mutations are newly arising in the child, they receive limited exposure to natural selection and 83 

can therefore exert considerable risk for ASD, given the well documented reduction in fecundity 84 

in ASD cases.20 Two factors have driven locus discovery in ASD: the presence of critical sites in 85 

coding genes that, when mutated, severely disrupt gene function leading to dramatic biological 86 

consequences, and the ability to predict such disruption based on gene models, either through 87 

large-scale deletion or the annotation of point mutations using the triplet genetic code. 88 

 89 

Most ASD subjects do not carry either gene disrupting point mutations or large de novo CNVs,1 90 

hence assaying de novo noncoding mutations could identify uncharacterized reservoirs of 91 

genetic risk. Yet, while the vast majority of de novo mutations (97%) arise outside the coding 92 

genome, they present an interpretive challenge. Unlike the coding region, we do not have the 93 

same cipher, the triplet code, to predict which nucleotides will critically alter gene function when 94 

mutated and which will be functionally inert. Association of noncoding variation with complex 95 

traits is well-documented, with the overwhelming majority being common variants mapping 96 

outside of gene regions and often in proximity to putative regulatory domains. These common 97 

variant associations typically have modest effect sizes. While the impact on gene expression 98 

levels, splicing events, or other regulatory processes is defined for some noncoding 99 
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associations, the key regulatory consequences remain unknown for the majority. This 100 

uncertainty in functional prediction necessitates an unbiased approach to rare variant disease 101 

association from WGS that parallels the statistical rigor applied to common variant analyses. 102 

 103 

In the case of coding variation, the analysis of de novo mutations allows identification of an 104 

extremely rare class of variation and the ability to unequivocally link it to disease. We 105 

hypothesized that if a class of noncoding variation has a similar impact, then analysis of de novo 106 

mutations presents a powerful approach to discovery. Furthermore, disruption of specific 107 

regulatory elements could provide key insights into the cell types, brain regions, and 108 

developmental periods critical to neurodevelopmental disorders.21-23 The success of this 109 

approach will be dependent on the number of critical sites, the susceptibility of these sites to 110 

mutations, and our ability to predict disruption of these sites. 111 

 112 

Here, we present an exploration of the impact of noncoding regulatory variation from WGS in a 113 

cohort of 519 ASD cases, their unaffected siblings as controls, and both parents (2,076 114 

individuals) from the Simons Simplex Collection (SSC).24 We find no specific category of de 115 

novo or rare noncoding regulatory variation that reaches statistical significance when accounting 116 

for the tests we performed in this framework. For ASD – and likely other common, complex 117 

disorders – these results indicate that there is no known category of functional annotation in the 118 

noncoding genome that confers comparable risk to de novo loss-of-function coding mutations. 119 

Our results underscore the challenges in the analysis of noncoding variation: 1) absence of a 120 

noncoding equivalent to the triplet genetic code to determine which de novo variants will be 121 

functionally relevant and which will be silent; 2) the size of the noncoding genome; and 3) the 122 

necessity of testing a multiplicity of hypotheses due to the numerous classes of noncoding 123 

functional elements and types of genomic variation. We conclude that the average relative risk 124 
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(RR) of rare noncoding variants will be modest, they will be distributed widely across the 125 

genome, and sample sizes required to identify them will need to be substantially larger. 126 

 127 

Cohort selection and characteristics 128 

All 519 cases were selected from the SSC based on the absence of de novo loss-of-function 129 

mutations or large de novo CNVs in prior data, with the objective of enriching for undiscovered 130 

de novo variation. The majority of cases (92%, N=480/519) were selected randomly after this 131 

exclusion, however the remaining 8% were selected for a pilot study25 to increase the 132 

representation of older fathers, female cases, and cases with comorbid intellectual disability (ID; 133 

defined here as nonverbal IQ ≤70), all of which have been associated with increased rates of 134 

protein-damaging mutations.1 Of the 519 WGS cases, 10.6% are female, which is lower than 135 

the 15.0% (p = 0.02) in cases excluded due to known de novo mutations and the 14.1% (p = 136 

0.04) in the remainder of the SSC without WGS data. No significant differences were observed 137 

in the fraction of cases with ID, which were 25.8%, 26.0% and 25.2%, respectively.  138 

 139 

The contribution of coding de novo mutations to neurodevelopmental disorders is a continuum 140 

ranging from severe intellectual disability, with de novo loss-of-function mutations contributing 141 

risk in 18% of cases in the Deciphering Developmental Disorders (DDD) cohort,26 to later-onset 142 

disorders, such as schizophrenia in which de novo loss-of-function mutations are unlikely to 143 

contribute to more than 2% of cases. ASD falls between these two extremes, with about 7% of 144 

SSC cases carrying such mutations. The contribution of inherited (largely common) variation 145 

appears to run in the opposite direction, as reflected by the high sibling recurrence rates in 146 

ASD27 and schizophrenia28 compared to ID cases.29 Given this relationship, we predicted 147 

common variant ASD burden from microarray data of the 1,631 families in the SSC of European 148 

ancestry (Extended Data Fig. 1).  As expected, we observed a lower burden of common variant 149 

risk in cases excluded due to known de novo mutations than in our WGS cohort and the 150 
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remainder of the SSC (p=0.03, one-sided t-test), but no difference between our cohort and the 151 

remainder of the SSC. 152 

 153 

Single nucleotide variants and insertion-deletions 154 

Single nucleotide variants (SNVs) and small insertion-deletions <50 bp (indels) were discovered 155 

in the new WGS subset using the Genome Analysis ToolKit (GATK),30 and family structure was 156 

leveraged to define high quality calls (Extended Data Fig. 2-5). Overall, we identified 3.7 million 157 

high quality, autosomal variants per individual, including 3.4 million SNVs and 0.3 million indels. 158 

From these variants, de novo SNVs and indels were predicted using multiple detection 159 

algorithms and excluding low complexity regions. These predictions were ensured to be of high 160 

confidence by tuning and subsequent validation (Extended Data Fig. 5-6). Confirmation rates 161 

compared favorably with published literature for both SNVs (96.8%, 212/219) and indels 162 

(82.4%, 145/176).25 Both WGS and whole exome sequencing (WES) data were available for 163 

991 children. Within Gencode-defined, autosomal coding regions, 1,071 de novo SNVs and 41 164 

de novo indels were detected by WGS compared to 869 de novo SNVs and 27 de novo indels 165 

by WES. Of the 896 de novo WES variants, 870 were detected by GATK in the WGS data 166 

(97%; 849 SNVs, 21 indels) and 768 of these variants met our high quality de novo criteria (88% 167 

of 870; 754 SNVs, 14 indels). WGS identified an additional 344 high quality de novo mutations 168 

(317 SNVs, 27 indels) that were not reported by WES, in large part due to limited coverage in 169 

the WES data. 170 

 171 

In WGS data we observed a median of 64 de novo SNVs and 5 de novo indels per child, with a 172 

slight excess of mutations in cases compared to their sibling controls after adjusting for quality 173 

metrics influencing de novo mutation detection using linear regression (RR = 1.024, p = 0.002 174 

for all variants; RR = 1.023, p = 0.003 for noncoding mutations alone). However, when we 175 

correct for the effect of paternal age, which is known to affect mutation rates,10,31 no significant 176 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/127043doi: bioRxiv preprint 

https://doi.org/10.1101/127043
http://creativecommons.org/licenses/by/4.0/


8 

difference in de novo burden remained for all mutations (RR = 1.008, p = 0.28; Extended Data 177 

Fig. 8) or noncoding mutations alone (RR = 1.007, p = 0.33). The slight excess of about one 178 

noncoding mutation per case, prior to adjusting for paternal age, is likely due to the fact that 179 

56% of cases were born after their sibling controls. This bias towards later born cases is 180 

consistent with a wide range of scenarios, only one of which involves a direct relationship 181 

between noncoding de novo mutation and ASD risk. Regardless of the mechanism, this modest 182 

excess in cases will confound a search for the noncoding elements that mediate ASD risk, 183 

therefore, correction for all covariates, including paternal age, was applied to all subsequent 184 

tests of de novo burden. 185 

 186 

The sheer diversity and complexity of noncoding functional annotations necessitates a strategy 187 

to interpret the multiple parallel hypotheses. We first assessed whether there was evidence of 188 

an excess of variants in cases within regions of the genome defined by genes. As noted, the 189 

cohort included only cases that did not carry a de novo loss-of-function coding mutation in prior 190 

analyses by WES.1 Using Gencode gene definitions, we surveyed four coding categories, e.g. 191 

missense, and seven noncoding categories, e.g. UTRs (Fig. 1). In all analyses, we tested for an 192 

enrichment of mutations mapping to these regions in cases compared to their sibling controls, 193 

and then assessed the significance of this enrichment using 10,000 case/control label-swapping 194 

permutations comparing the number of de novo mutations corrected for paternal age and 195 

sequencing quality metrics. This analytical approach is used throughout the manuscript, unless 196 

otherwise noted. After correcting for multiple comparisons, no significant excess of de novo 197 

variants in any gene-defined category was observed. We repeated the analysis considering 198 

SNVs and indels separately (Extended Data Fig. 9-10), and considering only variants within or 199 

near to one of 179 genes associated with ASD at a liberally defined false discovery rate (FDR < 200 

0.3).1 Only an excess of de novo missense mutations is apparent (Fig. 1), though both promoter 201 

regions and UTRs showed a trend towards enrichment in cases. Substituting ASD-associated 202 
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genes for constrained genes32 or mRNA 203 

targets of Fragile X Mental Retardation 204 

Protein (FMRP)33 did not yield any 205 

nominally significant categories, including 206 

missense variants, nor did considering only 207 

variants at nucleotides conserved across 208 

species.  209 

 210 
Figure 1. Burden analyses for gene-211 

defined annotation categories.  212 

a) The observed relative risk of de novo 213 

mutations in cases vs. controls is shown by 214 

the red line against grey violin plots 215 

representing 10,000 label-swapping 216 

permutations of case-control status for 11 217 

gene-defined annotation categories. 218 

Uncorrected p-values are highlighted with 219 

red asterisks; the absence of an asterisk 220 

indicates the category did not reach 221 

nominal significance. Loss-of-function 222 

variants were not analyzed as cases with 223 

such mutations were excluded from the 224 

cohort. b) The analysis in ‘a’ is repeated 225 

considering only de novo mutations in or 226 

near 179 ASD genes.  227 

  228 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/127043doi: bioRxiv preprint 

https://doi.org/10.1101/127043
http://creativecommons.org/licenses/by/4.0/


10 

We next designed an unbiased WGS-association framework for the noncoding genome in ASD. 229 

We integrated five approaches to annotation: 1) ASD-associated gene lists (e.g., targets of 230 

FMRP); 2) functional annotation (e.g., chromatin state); 3) conservation across species; 4) type 231 

of variant (SNVs, indel); and 5) gene-defined categories described above. In total we surveyed 232 

51,801 non-redundant annotation categories derived from combinations of these five annotation 233 

approaches. In the absence of a clear a priori hypothesis, we treated all of these category 234 

comparisons equally and compared the burden of de novo mutations in cases vs. controls (Fig. 235 

2a) in a category-wide association study (CWAS). The most strongly associated categories 236 

were from coding variants, while the top noncoding category was from mutations underlying 237 

H3K36me3 peaks that were nearer to lincRNAs than to other transcripts (Table 1). 238 

 239 

 240 

Figure 2. Category-wide association study. 241 

a) The burden of de novo mutations in cases vs. controls was tested for 51,801 annotation 242 

categories. The 11,876 categories with ≥10 observed variants are shown as points in the 243 
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volcano plot colored by the number of observed mutations. P-values were calculated by 10,000 244 

label-swapping permutations of case-control status in each annotation category. No test 245 

exceeds the correction for 4,211 effective tests (horizontal red line). b) The number of nominally 246 

significant annotation categories (p≤0.05) was calculated for cases (red line), controls (blue 247 

line), and 10,000 permutations (grey density plot) to assess whether more annotation categories 248 

are enriched for de novo variants in cases than expected in ‘a’. Cases have a greater than 249 

expected number of nominally significant categories relating to coding mutations and noncoding 250 

indels, but no to all noncoding mutations. P-values were calculated by comparison to the 251 

permutation results.  252 

 253 

Many of these annotation categories are highly dependent (Fig. 3), raising the question of what 254 

constitutes an appropriate correction for multiple comparisons. To estimate this correction we 255 

generated 10,000 simulated datasets of annotated mutations and assessed the correlation of p-256 

values for the 51,801 categories across the simulations. Excluding categories with too few 257 

mutations to achieve nominal significance left 14,789 categories, and eigenvalue decomposition 258 

was used to estimate 4,211 effective tests based on the sum of eigenvalues that explain 99% of 259 

variation (Fig. 3). Correcting for 4,211 tests sets a category-wide significance threshold of 260 

1.2x10-5 (Fig. 2a). 261 

  262 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/127043doi: bioRxiv preprint 

https://doi.org/10.1101/127043
http://creativecommons.org/licenses/by/4.0/


12 

 263 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/127043doi: bioRxiv preprint 

https://doi.org/10.1101/127043
http://creativecommons.org/licenses/by/4.0/


13 

Figure 3. Effective number of tests in CWAS and power calculation. 264 

a) Correlations between p-values for 51,801 annotation categories across 10,000 simulated 265 

data sets were analyzed using Eigenvalue decomposition. After excluding tests with fewer than 266 

7 variants in at least 50% of simulations, 14,789 categories remained; these are shown as a 267 

small dot with X and Y coordinates determined by t-Distributed Stochastic Neighbor Embedding. 268 

Red dots indicate categories that are nominally significant in cases, blue dots are nominally 269 

significant in controls, and grey transparent dots are not significant. Two hundred clusters of 270 

annotation categories were identified using k-means clustering and are represented as large 271 

circles with size determined by the number of effective tests required to account for the 272 

categories within the cluster. In total, 4,211 effective tests explain 99% of the variability in p-273 

values. Clusters are colored according to the percent of nominally significant categories in 274 

cases (red) or controls (blue). Zoomed in plots from ‘a’ with edges representing p-value 275 

correlation are shown for: b) cluster 122, with 132 categories related to variants near lincRNAs 276 

that account for 41 effective tests; c), cluster 8, with 115 categories related to conserved indels 277 

that account for 30 effective tests; d) cluster 107, with 167 categories relating to variants in 278 

proximity to post synaptic density genes that account for 31 effective tests; and e) cluster 110, 279 

with 37 categories relating to promoters of developmental delay genes that account for 7 280 

effective tests. f) The red line shows the threshold to achieve 80% power at nominal 281 

significance across the range of relative risks of a category (log10 scaled x-axis) and number of 282 

de novo mutations per individual within the category (log10 scaled y-axis). The blue line shows 283 

the 80% power corrected for 4,211 effective tests. The grey dots represent the observed results 284 

for de novo mutation burden in 519 families for the 11,876 annotation categories with ≥10 285 

mutations. g) The lines show the threshold of 80% power across the range of relative risks and 286 

category sizes as sample size increases (correcting for correspondingly more effective tests). 287 

For reference, the results for well-defined categories of ASD risk are shown by the red dots. 288 

  289 
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Variant type Most significant categories within level of analysis 
Variants 
per 
child 

Relative 
risk 

p-value 
uncorrected 

Number of 
comparisons 

p-value 
corrected 

Gene-defined categories 

De novo SNVs and indels Intergenic regions 30.2 1.03 0.02 10 0.16 

Gene-defined categories near ASD genes 

De novo SNVs and indels Damaging missense 0.01 5.77 0.004 7 0.03 

CWAS - multiple annotations, top test per cluster shown for top five clusters 

De novo SNVs and indels Conserved variants within post synaptic density genes (Cluster 107) 0.06 2.81 0.00009 4,211 0.38 

De novo SNVs Near lincRNAs underlying H3K36me3 (Elongating) peaks (Cluster 122) 4.65 1.11 0.0002 4,211 0.84 

De novo SNVs and indels Conserved coding variants near post synaptic density genes under open chromatin (DNase) peaks (Cluster 31) 0.02 8.26 0.0003 4,211 1.00 

De novo indels Conserved, near protein coding genes under H3K27me3 (Repressor) peaks (Cluster 33) 0.04 3.17 0.0003 4,211 1.00 

De novo indels Conserved intronic within chromatin state 15 (Quiescent) regions (Cluster 8) 0.03 5.01 0.0003 4,211 1.00 

Regulatory regions in prefrontal midfetal cortex 

De novo SNVs and indels Midfetal H3K27ac regions 3.69 1.01 0.35 2 0.70 

Regulatory regions in prefrontal midfetal cortex near ASD genes 

De novo SNVs and indels Midfetal H3K27ac regions 0.08 1.11 0.37 2 0.74 

Table 1. Burden results for most significant or previously implicated annotation categories

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/127043doi: bioRxiv preprint 

https://doi.org/10.1101/127043
http://creativecommons.org/licenses/by/4.0/


15 

While no single category met this threshold, we considered whether there was evidence of a 291 

tendency towards enrichment of categories in cases, suggesting an underlying signal. We 292 

therefore counted the number of nominally significant categories and compared this to 293 

expectation based on permutation and controls (Fig. 2b). We observed more significant tests 294 

than expected in cases in coding regions (p = 0.01) but not noncoding regions (p = 0.21), both 295 

overall and near ASD genes. This result gives important insight into genomic architecture; as 296 

cohort size increases we should anticipate that noncoding signal will remain weaker than the 297 

coding signal, unless annotation approaches improve dramatically. Moreover, since cases with 298 

known loss-of-function coding mutations were excluded from this sample, this suggests that the 299 

noncoding signal will likely be more modest than the signal from missense coding mutations. 300 

Interestingly, tests of annotation categories for de novo indels separate from SNVs showed a 301 

greater number of significant results than expected, and this enrichment was stronger for 302 

noncoding (p = 0.04) than coding indels (p = 0.10). Indels may represent a sweet spot for 303 

statistical power in interrogating the noncoding genome; they can disrupt regulatory elements to 304 

a greater degree than SNVs by virtue of their size while being detected in considerably greater 305 

numbers than SVs. 306 

 307 

To further assess the role of rare noncoding variation for ASD we developed a polygenic risk 308 

score based on de novo variants, akin to similar scores developed previously for common and 309 

rare variants.34,35 The rate of de novo mutations in cases and controls was weighted based on 310 

the category RR and adjusted for p-value correlation structure (Fig. 3). Cross validation was 311 

used to select annotation categories that best predicted case-control status. In keeping with the 312 

modest differences observed between cases and controls, the derived score was not able to 313 

accurately predict case status, further supporting a limited role for rare noncoding mutations in 314 

this cohort. Of note, this model did not explicitly highlight the contribution of coding mutations, 315 

with the majority of selected categories relating to overall de novo burden (e.g. all variants, all 316 
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intronic variants, and all intergenic variants). However, the model did highlight the role of two 317 

other functional annotations: conservation scores across vertebrate species and variants near 318 

long intergenic noncoding RNAs (lincRNAs, Fig. 3). Though neither finding is significant after 319 

correcting for multiple comparisons (Fig. 3), they present intriguing hypotheses for future 320 

studies.  321 

 322 

Finally, we explored the impact of rare inherited SNVs and indels in the 405 families of 323 

European ancestry.8 Overall we observed a small excess of rare homozygous SNVs and indels 324 

(allele frequency <1%) in regions of homozygosity (ROH) in cases (66.1 per case vs. 63.1 per 325 

control; RR = 1.05; p = 2.4x10-7, one-sided binomial test). Since ROH blocks often contain 326 

multiple variants inherited simultaneously, we counted only one variant per ROH block and 327 

excluded variants in ROH blocks that overlapped coding regions. No significant excess of 328 

variants remained (3.53 per case vs. 3.51 per control; RR = 1.004; p = 0.91). No overall excess 329 

of rare heterozygous SNVs and indels was observed, including considering maternally and 330 

paternally inherited variants separately, and no category reached significance in a CWAS for 331 

either homozygous or heterozygous variants (Extended Data Figs. 11-21). 332 

 333 

Structural variation 334 

Though no definitive noncoding signal was observed for small mutations, the strongest trends 335 

were observed in indels, in keeping with their larger size and presumed greater disruption to 336 

regulatory elements than SNVs (Fig. 2b). Following this logic, we assessed whether structural 337 

variants (SVs), which can rearrange and potentially disrupt large segments of the genome, 338 

might demonstrate a noncoding signal. We integrated the results of seven prediction algorithms 339 

to capture both changes in read-depth (three algorithms) and clusters of anomalously pairing 340 

reads indicating an SV breakpoint (four algorithms; see Online Methods). We then developed a 341 

series of post hoc algorithms, called RdTest, to correct for the limited concordance among 342 
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individual algorithms (Extended Data Fig. 22). The method jointly tests for a significant 343 

difference in the read-depth signal supporting each predicted CNV against the normalized 344 

cohort background, and performs local k-means clustering to predict the likely presence of 345 

multiple copy states. We next integrated the statistically significant CNV segments with 346 

predicted balanced events using a series of breakpoint linking methods to identify signatures of 347 

10 canonical balanced and complex SV classes,36 of which 64.5% altered copy number (e.g., 348 

paired-duplication inversion37) and 35.5% were copy number neutral.  349 

 350 

These analyses identified a median of 4,089 SVs per individual, involving an average of 12.1 351 

Mb of rearranged sequence per genome (Extended Data Fig. 23). Notably, these SVs result in a 352 

median of 84 loss-of-function and 21 whole-gene copy gain variants per person, and 7.5% of SV 353 

altered coding sequence compared to 2.2% of SNVs and indels. The variant frequency of SV in 354 

this cohort largely parallels that of SNVs and indels; 72.0% of all variants were rare (<1%) and 355 

45.5% of variants were observed in only 1 family. In keeping with their presumed functional 356 

effect and resulting selective pressure, 61.4% of genic loss-of-function or copy gain SVs 357 

appeared in only a single family. 358 

 359 

We compared standard WGS to 1,332 high quality CNVs previously reported from microarray 360 

data in the SFARI cohort (Extended Data Fig. 24),1 and observed an overall sensitivity of >99% 361 

and a 5.2% false discovery rate (FDR). We relied on long-insert WGS (liWGS; 3.5 kb inserts, 362 

median physical coverage of 102x) to validate SVs undetected with microarray (including small 363 

CNVs, copy-neutral balanced SV, and complex SV) and found a 4.3% overall FDR for 2,238 SV 364 

calls (Extended Data Fig. 24). Consistent with the comparisons to microarray and liWGS, cross-365 

site validation using PCR and Sanger sequencing confirmed 92.3% of our predictions, 366 

suggesting high specificity from these analyses, very likely at the cost of sensitivity for small 367 

variants (see Methods), though we have no gold standard to determine this with certainty.  368 
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 369 

These analyses predicted 105 de novo SVs in the cohort, including 92 germline and 13 370 

apparent mosaic SVs (Extended Data Figs. 25-27). In addition, we found that five subjects had 371 

sex chromosome aneuploidies (0.7% of SSC probands, 0.2% of siblings; Extended Data Fig. 372 

28), and discovered nine SVs initially predicted to arise de novo that demonstrated evidence of 373 

germline mosaicism in a parent. Given the rarity of de novo SVs, there were limited data to 374 

derive insights comparable to those from de novo SNVs and indels. There was no significant 375 

difference in de novo SV burden between cases and controls (see Methods for sibling 376 

comparisons), though we did observe a small increase in risk among cases (RR = 1.53, p = 377 

0.07). There was also a non-significant enrichment in ASD cases for de novo SVs localized to 378 

exons (2.3% versus 0.6%; RR = 3.7; p = 0.06), suggesting that there is a slightly increased 379 

burden of previously undetected SVs that disrupted protein coding sequence in ASD cases, and 380 

this result was more pronounced if we excluded multi-allelic (n = 20) and mosaic (n = 13) SVs 381 

(RR = 9, p = 0.02). There were de novo SVs that represented potential loss-of-function variants 382 

within ASD-associated genes, which included an exonic deletion of CHD2 and a balanced 383 

translocation that disrupted GRIN2B (Fig. 4). Several other genes were disrupted by SVs in 384 

cases that were predicted to be intolerant to loss-of-function mutations (pLi ≥ 0.932), but not 385 

associated with ASD from TADA analyses (LNPEP, PAK7, SAE1, ZNF462, DMD), while one 386 

such disruption occurred in a sibling (USP34). Overall, these analyses suggest that de novo 387 

loss-of-function SVs that were intractable to microarray may translate to a 1.7% increased 388 

burden in ASD cases compared to siblings, in addition to the 10.5% increased burden of cases 389 

harboring ASD relevant loss-of-function coding mutations and CNVs identified previously.1 390 

 391 
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 392 

Figure 4. Structural variation in 519 ASD families. 393 

Structural variation (SV) analyses identified an average of 4,096 SVs per genome and 105 de 394 

novo SVs in this cohort. a) From analyses of these variants we observed no difference in 395 

distribution of SV sizes between cases and sibling controls for any class of SV (cxSV = complex 396 

SV). b) The majority of inversion variation detected in these samples (64.8%; 463/715) were 397 

complex, non-canonical rearrangements that fit previously described subclasses of complex 398 

SV.36 c) We observed no significant enrichments for either de novo or rare inherited SV (variant 399 

frequencies [VF] < 0.1%) in genic or noncoding annotations in cases versus controls after 400 

correcting for multiple comparisons. d) Analysis of balanced SV discovered a de novo reciprocal 401 
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translocation in a case predicted to disrupt GRIN2B, a constrained gene previously implicated in 402 

ASD by recurrent de novo mutations.1,32 e) WGS revealed thousands of small CNVs undetected 403 

by previous analyses, including a 4,391bp de novo deletion of exons 8-10 of CHD2, a gene 404 

implicated in ASD due to recurrent de novo loss-of-function and missense point mutations from 405 

whole-exome sequencing.1 f) Analysis of breakpoint sequences also classified 13 de novo SVs 406 

that were predicted to be germline mosaic in the parents, such as a 364.2kb paternally 407 

transmitted mosaic duplication at 8q24.23 that was previously characterized as de novo in the 408 

child. 409 

 410 

We next explored the properties and potential impact of 16,906 rare inherited SVs in the SSC 411 

(MAF <0.1%). Consistent with our previous analyses of large SV in the SSC,36 rare SVs were 412 

enriched for many of the hallmarks of selection against deleterious variation in the human 413 

genome when compared to common SVs (MAF > 1%), as they were more likely to disrupt 414 

genes (p=1.17x10-81), particularly constrained genes (p=7.00x10-14), and enhancers obtained 415 

from Fantom538 samples (p=3.40x10-51).  However, there was no significant difference between 416 

ASD cases and controls in the predicted impact of rare inherited SVs in this study, including no 417 

difference in overall size, percent of genome rearranged, or distribution of complex SVs (Fig. 4; 418 

Extended Data Fig. 23). We also did not detect any changes in SV burden in proximity to genes, 419 

or any signal when surveying up to 1 Mb from the transcription start site of genes. This result 420 

remained negative when we restricted analyses to variants in close proximity (2 kb) to 421 

constrained genes (min p = 0.25) and ASD-associated genes (min p = 0.69). The strongest 422 

noncoding signal in a CWAS analysis of SV was an increased burden of rare inherited SV (MAF 423 

< 0.1%) within introns of constrained genes (p = 0.0008), though this result was not significant 424 

when correcting for the considerable number of tests performed (see effective tests above). 425 

Finally, we identified signatures of large SVs that were not detected by microarray in the SSC, 426 

revealing that 0.9% of ASD cases (N=5) harbored a large balanced chromosomal abnormality 427 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/127043doi: bioRxiv preprint 

https://doi.org/10.1101/127043
http://creativecommons.org/licenses/by/4.0/


21 

(>3 Mb), and 429 CNVs >40 kb were detected by WGS but not microarray (Extended Data Fig. 428 

24). Despite this improved power and resolution for SV detection, we found no significant 429 

differences in the rate of rare inherited SV as a mutational class in ASD, nor did we observe any 430 

evidence of biased transmission of any class of SV from either parent (Extended Data Fig. 29). 431 

 432 

Prediction of biologically relevant noncoding loci 433 

The analyses reported above took an unbiased approach to testing the association of 434 

noncoding variation with ASD and it thus required appropriate correction for the effective 435 

number of tests performed. One could argue that, while we don’t have the same triplet code in 436 

the regulatory genome, there is good evidence to define one or more putative functional loci a 437 

priori that influence risk. Indeed, members of our consortium performed such analyses in the 438 

initial 39 pilot quartets, leveraging prior discovery of convergent co-expression of ASD genes in 439 

the midfetal prefrontal cortex39 to identify noncoding target regions as a single hypothesis 440 

(unpublished analysis). To define these regulatory targets, they generated H3K27ac ChIP-Seq 441 

data to identify regions of active transcription from 4 post mortem human brains (15-22 weeks 442 

post-conception, prefrontal cortex) and ATAC-Seq data to identify regions of open chromatin 443 

from 5 brains (16-22 weeks post-conception, prefrontal cortex). Previously published analyses 444 

have also suggested associations with noncoding regulatory variation through targeted 445 

biological hypotheses. These include association with variants localized to fetal CNS DNase I 446 

hypersensitive sites (DHS) within 50 kb of ASD-associated genes among these 39 SSC pilot 447 

quartets and 14 additional families,25 as well as a recent report of paternally inherited SV 448 

predicted to disrupt fetal brain promoters or UTRs of constrained genes in a study that included 449 

these SSC quartets.40  450 

 451 

Despite the strong evidence for biological relevance in our unpublished pilot analyses, and an a 452 

priori association in a subset of these same families, our targeted hypothesis was refuted in the 453 
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larger cohort: there was no excess of de novo mutations within these regions of open or active 454 

chromatin in the midfetal human prefrontal cortex (Extended Data Fig. 30). Similarly, no excess 455 

of mutations was observed by further filtering to variants in proximity to 179 ASD genes defined 456 

by WES at a false discovery rate of 0.31 (Extended Data Fig. 30-31). Contrary to previously 457 

published analyses, we also find no evidence of enrichment for disruption of DHS sites in 458 

proximity to all genes, or ASD-associated genes, at any sliding window distance extending up to 459 

1 Mb (Extended Data Fig. 32), nor did we observe enrichment of paternally inherited SV 460 

disrupting any class of functional annotation in proximity to all genes, constrained genes, or 461 

those genes previously associated with ASD.   462 

 463 

Integration and estimation of noncoding risk in ASD  464 

An excess of de novo loss-of-function mutations and of de novo missense mutations has 465 

previously been described in WES data with RRs of 1.75 and 1.15, respectively.14 Resampling 466 

these WES data finds that about 300 families are required to observe the de novo loss-of-467 

function burden (80% power, alpha = 0.05), while over 1,500 families would be necessary to 468 

observe the de novo missense burden (Fig. 3). If we count the number of de novo missense 469 

mutations in cases versus controls in the current WGS sample, the RR is only slightly inflated in 470 

cases (414/404 = 1.02) and it is not significantly different than 1.00, as expected from this power 471 

calculation. If, with the benefit of hindsight, we consider only 179 genes previously associated 472 

with ASD at a liberal false discovery rate of 0.31 as a sole endpoint of our analyses, we find a 473 

much higher RR of 2.6 (21/8), which is significantly different from 1.0 (p = 0.01, one-sided 474 

binomial test, Fig. 2). As noted, however, this result does not survive correction for multiple 475 

comparisons and it is probably somewhat biased by the inclusion of these 519 families in the 476 

original WES analyses that defined the 179 genes. Moreover, filtering missense mutations 477 

instead by conservation, constrained genes, or brain-expressed genes, does not yield nominally 478 

significant evidence for risk. 479 
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 480 

These results give important context to interpreting the WGS data for 519 families and for the 481 

larger sample sets of the future. At 519 families, we should expect a noncoding signal 482 

equivalent to de novo loss-of-function to be nominally significant (alpha = 0.05), but not expect 483 

this of a signal equivalent to de novo missense until the sample size exceeds 1,500 families. As 484 

noted (Fig. 2), the noncoding signal we observe is weaker than that seen for de novo missense 485 

mutations. Furthermore, the best chance of achieving a significant test lies in integrating data 486 

that enriches for ASD-associated signal, such as proximity to ASD genes. Yet, when we 487 

searched over the space of de novo SNVs, indels, SVs, and rare homozygous variants, they 488 

showed no detectable concentration near bona fide or even likely ASD genes. Nor did these 489 

variants concentrate in any particular region of the genome, as could occur if disruption of a 490 

particular noncoding region were associated with large relative risk. Finally, they did not 491 

concentrate notably in any annotation category that we tested. 492 

 493 

Without the triplet genetic code of the protein coding sequence we could not have distinguished 494 

loss-of-function, missense, and silent variants in the exome data and would expect a RR of 1.12 495 

for all de novo mutations in coding regions. We would require 1,000 families to detect this 496 

burden (80% power, alpha = 0.05), over three-fold more than required to detect loss-of-function 497 

alone. This analogy represents the challenge of assessing noncoding regulatory risk from WGS 498 

data, exacerbated by the likelihood that regulatory variants are, as a group, unlikely to confer 499 

the same level of risk as loss-of-function variation. Moreover, because we have yet to discover 500 

the functional elements critical for disease risk, rather than specify them a priori, it induces a 501 

search over a large number of putatively functional elements and mandates far more stringent 502 

thresholds for statistical association as we have used. 503 

 504 
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To estimate the sample sizes required to discover annotation categories enriched for noncoding 505 

variation, we performed a power calculation across estimates of RR and numbers of variants 506 

per annotation category. Because these categories show complex correlation structure, and 507 

therefore simple corrections for multiple testing are inappropriate, we used eigenvector analysis 508 

to estimate the effective number of tests conducted. As sample size increases, the correction for 509 

number of categories becomes somewhat larger due to increased likelihood of observing a total 510 

number of de novo mutations in any given annotation category that is sufficient to achieve 511 

significance: the number of effective tests increases from ≈4,200 at 519 families to ≈7,600 at 512 

4,000 families and approaches an asymptote of ≈10,000 (Fig. 3). The multiple testing burden 513 

produces a threshold for statistical significance on the order of 5 x 10-6. In this setting, over 514 

4,000 families would be necessary to discover a noncoding element equivalent to missense 515 

variation. 516 

 517 

Conclusion 518 

Refinements in DNA sequencing, computing capability, and statistical analyses now permit 519 

simultaneous evaluation of the coding and noncoding genome in many thousands of individuals. 520 

This eventually will precipitate a sea change in how we interpret the impact on ASD risk of rare 521 

variation throughout the genome. Yet, the complexity of the noncoding genome complicates 522 

interpretation for both de novo and inherited variation, and there are perils in underestimating its 523 

complexity. A priori prediction by experts of which regulatory elements of the noncoding genome 524 

should be important will limit the number of tests evaluated, and one could argue this limits the 525 

required correction for multiple testing. We find this argument wanting in terms of establishing a 526 

robust, unbiased framework to interpret disease association. Perhaps the simplest way to 527 

understand why is by analogy to common variants and a comparison of current-day genome-528 

wide association studies (GWAS) versus the candidate gene tests of a previous era. GWAS 529 

results have a good record for replication, in large part because the field requires, for any study, 530 
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large samples and appropriate correction for multiple testing. By contrast, despite investigator 531 

intuition about what genes are important to disease risk, candidate gene studies have had a 532 

miserable record regarding replication. This history of candidate gene studies, with a plethora of 533 

false positive and a paucity of true results,41 should make us highly skeptical of methods based 534 

on investigator-selected a priori hypotheses in the noncoding genome. Continuing the analogy, 535 

instead of candidate genes, the field would be substituting “candidate annotations”, with all 536 

likelihood of worse outcomes, due to myriad combinations of annotation, cell type, brain region, 537 

and developmental stage. 538 

 539 

We anticipate that large-scale functional assays will continue to provide increasingly insightful 540 

annotation of the regulatory genome enabling future studies to better characterize and quantify 541 

the precise contribution of noncoding regulatory variation to ASD. In addition, high-throughput 542 

methods to validate noncoding variant function, such as STARR-Seq,42 for which there is no 543 

equivalent for coding missense mutations, could refine noncoding signals, potentially to the 544 

degree of implicating specific noncoding loci. Until that time, we recommend the GWAS path for 545 

WGS studies: rigorous evaluation of multiple hypotheses and appropriate correction for that 546 

multiplicity, as we have outlined here. If we hold to these standards, it will require very large 547 

sample sizes to make headway, but we predict that the ensuing inferences will be sound and 548 

replicable.  549 

 550 

  551 
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METHODS 726 

Sample selection 727 

519 quartet families (2,076 samples) were selected from the Simons Simplex Collection (SSC). 728 

The families were selected on the basis of having no known de novo rare CNVs, de novo loss-729 

of-function mutations, or inherited rare CNVs at known ASD loci in the proband. The first 39 730 

families were additionally selected for high paternal age, low IQ, and female sex while the 731 

second 480 were selected at random from the SSC. All of the families had pre-existing 732 

microarray data1 and pre-existing WES (47 trios without a sibling and 472 quartets)14. A 733 

complete list of the 2,076 samples is shown in. 734 

  735 

Whole genome sequencing 736 

Whole blood-derived DNA from all four family members was transferred from the Rutgers 737 

University Cell and DNA Repository (RUCDR) to the New York Genome Center (NYGC). 738 

Rigorous quality control for the DNA led to 21 families being excluded prior to sequencing. The 739 

remaining 519 families were submitted for WGS. Data for the first 39 families was generated 740 

using PCR-based library preparation followed by sequencing on an Illumina Hi-Seq 2000. The 741 

next batch of 480 families were sequenced by PCR-free library preparation on an Illumina Hi-742 

Seq X Ten. Sequencing reads for all samples were 150 bp paired-end cycles with a median 743 

insert of 423 bp. Sequencing yielded a median alignment rate of 99.3%, a strand balance of 744 

0.50, a 0.11% duplication rate, and a median coverage of 37.8X per individual. 745 

  746 

Data processing 747 

Using the NYGC processing pipeline, FASTQ reads were aligned to the hg19 reference from 748 

the 1000 Genomes Project (GRCh37.63) using BWA-mem version 0.7.8-r455. Reads were 749 

sorted and duplicates were removed with Picard, version 1.83. Indel realignment, base quality 750 

score recalibration, and variant calling with the GATK haplotype caller were performed using 751 
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GATK version 3.1-1-g07a4bf8 for 19 families of the first batch, version 3.2-2-gec30ce for 21 752 

families of the first batch, and version 3.4-0-g7e26428 for all 479 families of the second batch.  753 

 754 

The BAM and gVCF files for 519 quartet families (2,076 samples) were transferred to Amazon 755 

Web Services (AWS) S3 storage system where they are available to access and download. For 756 

downstream steps on AWS, we deployed the CfnCluster based on the Lustre cluster system 757 

and multiple m4.10xlarge instances (amazon AMI: ami-3a081f50). We used GATK version 3.4-758 

46-gbc02625 and the protocol detailed by GATK best practices 759 

(https://software.broadinstitute.org/gatk/best-practices/) to merge individual gVCF files into a 760 

combined VCF file. SNP and indel recalibration was then run on this combined VCF file. Variant 761 

Quality Score Recalibration (VQSR) metrics were created from a training set of highly validated 762 

variant resources: dbSNP build 138, HapMap 3.3, 1000 Genomes OMNI 2.5, and 1000 763 

Genomes Phase 1. For the following analysis, we excluded variant calls with VQSR tranche 764 

level between 99.9 and 100%, and variant calls located in low-complexity regions43, as these 765 

calls have a high error rate or unusual characteristics43,44.  766 

 767 

For annotation and subsequent analyses, indels were realigned using left-normalization, and 768 

multiple variants at the same locus were split into individual VCF lines using BCFtools. VCFs for 769 

each of the 519 families were then extracted from the combined VCF using BCFtools45, while 770 

retaining allele frequency and count information calculated from the full cohort. Spanning 771 

deletions were excluded from the family VCFs using a custom python script. 772 

 773 

Genomic prediction of common variant contribution in SSC cohort 774 

Microarray data were limited to samples from the main European ancestry (1,634 families). We 775 

used a jackknife approach to determine genomic prediction within the SSC proband and 776 

pseudo-control samples: for each step of the jackknife, a proband and pseudo-control 777 
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(comprised of the un-transmitted SNP alleles from mother and father) from one family was 778 

removed from the data46. Solutions on the observed (0/1) scale for the remaining individuals 779 

were obtained using mixed linear model equations taking into account 7 ancestry eigenvectors 780 

based on the genetic ancestry of probands and pseudo-controls. Heritability for ASD on the 781 

liability scale was 0.396, which was transformed to a heritability on the observed scale of 0.718 782 

based on a prevalence of 0.01 and a 50:50 ratio of cases and controls in our sample. Genomic 783 

predictions for the two samples left out were based on the linear regression of the known 784 

solutions using the genomic relationship matrix among probands and pseudo-controls from all 785 

families. Genomic predictions were scaled to have mean 0 and standard deviation 1. The SSC 786 

sample was divided into three groups, WGS sample (N=519, only 327 met our strict criterion for 787 

European ancestry), cases carrying damaging de novo mutations (N=438), and neither (N=869). 788 

Next we conducted an analysis of variance to determine if the mean genomic scores for the 789 

three groups were significantly different (in statistical package R, function ‘aov’).  790 

 791 

Variant annotation  792 

Variants were annotated using Annovar47 and Bamotate1 in five groups: 793 

1) Variant type: SNVs and indels were obtained from the final VCF and subject to the ROC-794 

based filtering for high-quality variants. Indels are limited to the size less than 50 bp. SVs 795 

include deletions, duplications, insertions, and complex events.  796 

2) Gene-defined annotation: Gencode complete version 19 (wgEncodeGencodeCompV19)48 797 

gene definitions were obtained from the UCSC table browser (https://genome.ucsc.edu/). 798 

Variants were annotated against these gene definitions using Bamotate; where multiple possible 799 

annotations were present they were assigned in the following order of priority: coding, intron, 800 

promoter, UTRs and intergenic. Promoters were defined as 1kb upstream of the transcription 801 

start site (TSS). For intergenic variants the nearest TSS was also identified. 802 
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3) Annotation of species conservation scores: To evaluate the conservation status of identified 803 

variants, we used two conservation metrics: phastCons 46-way scores, and phyloP scores from 804 

a 46-way vertebrate comparison from the UCSC table browser49,50.  805 

4) Annotation of gene sets: Gene lists were chosen based on prior association with ASD (e.g. 806 

post-synaptic density genes). ASD risk genes (FDR<0.3) were obtained from Sanders et al. 807 

(2015)1. Genes co-expressed with ASD genes were defined as the union of the two co-808 

expression modules identified by Willsey et al. (2013)39 in the: 1) human midfetal prefrontal and 809 

primary motor-somatosensory cortex; and 2) infant mediodorsal thalamic nucleus and the 810 

cerebellar cortex. Genes associated with developmental delay were downloaded from the 811 

Development Disorder Genotype - Phenotype Database (https://decipher.sanger.ac.uk/ddd)26,51 812 

in Sept 2016. The 2,156 genes were filtered to: 1) confirmed DD gene; 2) predicted as loss-of-813 

function in the mutation consequence; and 3) including term “Brain” in the organ specificity list. 814 

CHD8 target genes were defined as the union of lists from two previous ChIP-Seq studies52,53, 815 

and FMRP target genes were selected from Darnell et al. (2011)33. Human cortex post-synaptic 816 

density (PSD) proteins were downloaded from the Genes2Cognition database 817 

(http://www.genes2cognition.org/)54. Constrained genes were defined as probability of being 818 

loss-of-function intolerant (pLI) score≥0.9 in the ExAC database32. 819 

If a variant was within a Gencode transcript then that transcript was cross-referenced to these 820 

gene lists. For intergenic variants, the nearest transcription start site was cross-referenced to 821 

these gene lists. 822 

5) Annotation of regulatory regions: BED files were obtained for multiple regulatory regions. 823 

Known enhancers were downloaded from the Vista enhancer annotation (vistaEnhancers) from 824 

the UCSC genome browser55 and the pre-defined enhancer set from the FANTOM 5 server 825 

(http://enhancer.binf.ku.dk/presets/)38. ENCODE-defined transcription factor binding sites and 826 

DNase hypersensitive sites were downloaded from UCSC genome browser 827 
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(wgEncodeRegTfbsClusteredV2 and wgEncodeRegDnaseClusteredV3). Human accelerated 828 

regions (HARs) were obtained from Doan et al. 201656.  829 

 830 

For histone marks and chromatin states, we utilized data from the NIH Roadmap Epigenome 831 

Project57. For histone marks and chromatin states, we merged data from brain tissues (E067 832 

Angular Gyrus E068, Anterior Caudate, E069 Cingulate Gyrus, E070 Germinal Matrix, E071 833 

Hippocampus Middle, E072 Inferior Temporal Lobe, E073 Mid Frontal Lobe, E074 Substantia 834 

Nigra, E081 Fetal Brain Male, E082 Fetal Brain Female), neurospheres (E053 neurosphere 835 

cultured cells cortex derived, E054 neurosphere cultured cells ganglionic eminence derived), 836 

ES-derived neuronal cells (E007 H1-derived neuronal progenitor cultured cells, E009 H9-837 

derived neuronal progenitor cultured cells, E010 H9-derived neuron cultured cells), and 838 

astrocytes (E125 NH-A Astrocytes). 839 

  840 

In addition to the Roadmap Epigenome Project and ENCODE data, we utilized data sets 841 

generated at UCSF from mid-fetal human prefrontal cortex tissue (15-22 gestational weeks). 842 

These data sets included ATAC-seq, to identify regions of open chromatin, and ChIP-seq for 843 

H3K27ac, to identify putative active enhancer regions. Peaks were called by MACS (H3K27ac 844 

ChIP-seq) and Homer (ATAC-seq). Identified peaks common to two or more individual samples 845 

(1≥ bp overlap) were used for annotation. 846 

 847 

Detection of high quality SNVs and indels  848 

As we had no established best practices or predetermined filtering criteria available for rare 849 

variants in WGS data, we developed an optimized set of thresholds for various quality metrics to 850 

detect rare SNVs and indels. For this, we compared two sets of rare variants which have the 851 

most distinct quality metrics – 1) private transmitted variants (only observed in one family and 852 

no frequency given in the 1000 Genome Project or ExAC database), which are likely true 853 
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variants, and 2) variants that are Mendelian violations in at least one child but are also observed 854 

in an unrelated individual, which are likely false positive calls. The ability of individual quality 855 

metrics obtained from the final VCFs to distinguish these true variants from false variants was 856 

assessed using receiver operating characteristic (ROC) curves. The metric and threshold that 857 

yielded the maximum increase of specificity and the minimum decrease of sensitivity was 858 

selected after which the training set was filtered by these criteria and the process repeated. This 859 

sequential ROC analysis was repeated until we no longer observed improvement in sensitivity 860 

and specificity.  861 

 862 

Detection of high quality de novo SNVs and indels 863 

Four algorithms run on the default settings were used to detect de novo SNVs, TrioDeNovo58, 864 

DenovoGear59, PlinkSeq (https://atgu.mgh.harvard.edu/plinkseq/), and DenovoFlow. For de 865 

novo indels, DenovoGear was replaced with Scalpel60. DeNovoFlow is a custom script that 866 

parses all possible Mendelian violations from each family, given GATK quality metrics. The 867 

union of these four algorithms made predictions for 86,921 Mendelian violation SNVs and 5,726 868 

indels per child. 869 

 870 

These numbers are large, suggesting a high false positive rate among putative de novo calls. 871 

To identify high quality de novo variants from the call set, we applied the same sequential ROC 872 

approach as above with true positive calls defined by PCR Sanger validation de novo mutations 873 

from prior work (1,302 selected SNVs; 95 selected indels). Sequential ROC curve analyses 874 

were applied to all variant- and individual-level quality metrics for the child and both parents. 875 

This analysis predicted 87.3% sensitivity and 98.8% specificity for SNVs using 3 additional 876 

metrics, and 86.3% sensitivity and 93.0% specificity for indels using 4 additional metrics. 877 

 878 

Validation of high quality de novo SNVs 879 
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From the 66,366 high quality de novo SNVs, 250 mutations were selected at random (based on 880 

available DNA) for validation in the child and both parents using PCR amplification and high-881 

throughput sequencing on an Illumina MiSeq. We examined PCR products from all 250 child 882 

reactions on a gel and 13 (5%) failed to make a product and were excluded from the analysis. 883 

Of the remaining 237 putative mutations, we observed an overall mean coverage of 26,818X. 884 

Based on investigation of off-target coverage, we determined that a depth coverage ≥ 50X was 885 

required to ensure an accurate genotype and any samples that failed to achieve this coverage 886 

were considered sequencing failures due to insufficient depth. All putative mutations in the child 887 

met this threshold, however for 7 of these, no variant was detected in the child. In the remaining 888 

230 putative mutations, 18 had insufficient coverage in one or more parents and were excluded 889 

from the analysis. The remaining 212 putative mutations with sufficient coverage in the child and 890 

both parents all validated as de novo; no inherited variants were observed. Our overall 891 

confirmation rate for de novo SNVs was therefore 96.8% (212/219; 212 validated versus 7 with 892 

sufficient coverage but no variant in the child). 893 

 894 

Validation of high quality de novo indels 895 

From the 9,961 high quality de novo indels, 250 indels (125 non-coding deletions and 125 non-896 

coding insertions) were selected at random for validation using PCR amplification and high-897 

throughput sequencing on an Illumina MiSeq. Of these, 16 were larger than 50bp and were 898 

excluded from the analysis (de novo confirmation rate of 6%). We examined PCR products from 899 

all of the remaining 234 child reactions on a gel and 7 (3%) failed to make a product and were 900 

excluded from the analysis. Of the remaining 227 putative mutations, we observed an overall 901 

mean coverage of 19,461X, however 7 failed to meet our threshold of ≥ 50x coverage in the 902 

child and were excluded from the analysis. Of the remaining 220 putative mutations, 75 failed to 903 

identify a variant in the child despite adequate coverage. In the remaining 145 putative 904 

mutations, 8 had insufficient coverage in one or more parents and were excluded from the 905 
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analysis. Of the remaining 137 putative mutations with sufficient coverage in the child and both 906 

parents, 131 validated as de novo and 6 were inherited from one parent. Our overall 907 

confirmation rate for our first round of de novo indels <50bp was therefore 61.8% (131/212; 131 908 

validated versus 6 inherited indels and 75 with sufficient coverage but no variant in the child). 909 

 910 

Based on the results of this first round of validations, de novo indel prediction was refined 911 

identifying 5,932 mutations overall, and a second round of validation was performed on 200 912 

randomly selected variants <50bp. From this final validation set, 189 (94.5%) putative mutations 913 

achieved adequate coverage in the child, but 28 of these failed to identify a variant in the child. 914 

Of the remaining 161 variants, 13 had insufficient coverage in the parents and were excluded 915 

from the analysis. In the remaining 148, 145 were validated as de novo, while 3 were inherited. 916 

Therefore, with the improved indel filtering criteria, 82.4% of putative mutations were confirmed 917 

as de novo (145/176; 145 validated versus 3 inherited indels and 28 with sufficient coverage but 918 

no variant in the child), showing a significant improvement relative to the exploratory analyses.  919 

  920 

Validation of mutations in ASD-associated genes  921 

We also attempted validation for four putative mutations in known ASD-associated genes: one 922 

SNV in ADNP, chr20:49548007; two SNVs in GABRB3, chr15:26327365 and chr15:26327513; 923 

and one indel in NRXN1, chr2:51259257. All four mutations were validated as de novo. 924 

 925 

Detection of high quality de novo structural variants 926 

Algorithm integration and variant adjudication: We used a two-tier SV detection pipeline, in 927 

which we integrated four paired-end/split-read (PE/SR) algorithms and three read-depth (RD) 928 

algorithms to discover a maximal list of candidate SV loci, then adjudicated each predicted 929 

variant with a joint analysis of the cohort that included a statistical test for likely de novo status 930 

of each alteration. Our pipeline incorporated PE and SR calls from Delly v0.7.3,61 Lumpy 931 
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v0.2.13,62 Manta v.0.29.6,63 and WHAM-GRAPHENING v1.7.0,64 each of which was run jointly 932 

on the four members of each quad. We included read-depth calls from GenomeSTRiP 933 

v2.00.1696,65 CNVnator v0.3.266, and cn.MOPS v1.8.936. We developed a read depth 934 

verification algorithm in R (RdTest) to determine the likelihood of true dosage alterations at a 935 

candidate locus by testing for statistically significance differences in depth between samples 936 

with disparate copy states. The detection of SV in repetitive regions of the genome remains 937 

challenging,67 as variant prediction in these regions frequently relies only on depth evidence. 938 

While remaining cognizant that many CNVs in the human genome are mediated by such 939 

repeats, we sought to prioritize specificity over sensitivity for SV calls within these regions and 940 

performed a series of ROC curve analyses to identify filters which would minimize the frequency 941 

of false positive variants produced in repetitive and low-complexity segments. From these 942 

analyses, we restricted SV predictions to exclude sites of multiallelic SV (k ≥ 6) and required 943 

any SV with only read-depth evidence to be at minimum 4 kb. We also performed the joint 944 

analysis of copy number difference in a batch-specific framework (pilot n=160 and Phase 1 945 

n=1,916) to correct for the demonstrable differences in read-depth features between the 946 

datasets (which were PCR+ and PCR-, respectively), and further split the samples by sex for 947 

SV on allosomes. Notably, in adjudicating each variant, the metrics computed in the Phase 1 948 

samples were used whenever available, and RdTest was also performed on a per-algorithm 949 

basis to filter spurious algorithm-specific calls. Finally, across all passing CNV we then 950 

genotyped homozygous deletions, defined as samples with a normalized read depth of less 951 

than 0.1 in at least half of the normalized read-depth bins. Notably, our analyses of sex 952 

chromosome SV revealed five samples with sex chromosome anomalies; three XXY Turner 953 

syndrome and two subjects with XYY syndrome (Jacob’s syndrome). 954 

 955 

Distinguishing 10 classes of balanced and complex SV: In addition to our evaluation of 956 

polymorphic and de novo CNVs, we assessed the spectrum of balanced SV and complex SV in 957 
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the SSC, as we have done previously in this cohort with large SVs.36 We applied the algorithm 958 

integration pipeline for PE/SR calls described above to obtain a set of candidate inversion and 959 

translocation breakpoints. We first used bedtools to overlap these breakpoints with the CNV loci 960 

predicted to be significant by RdTest to identify complex SV with large associated CNV, then to 961 

identify candidate pairs within the remaining breakpoints that could constitute a resolved SV. 962 

We resolved the variant structure at each of these loci by matching the ordering of breakpoints 963 

to complex SV signatures previously identified by Collins et al.,36 and used RdTest to evaluate 964 

read-depth support at novel CNV sites associated with complex inversions. We identified 19,342 965 

observations of 127 such inversion-associated CNV between 300 bp and 4 kb that were not 966 

found with the CNV discovery pipeline, as they lacked canonical PE/SR evidence and were 967 

below RD-only algorithm resolution. In total, we identified 38,658 deletions, 11,598 duplications, 968 

230 inversions, and 4 reciprocal translocations with this variant classification pipeline. Further, 969 

we discovered 453 complex SV across 8 classes, of which 99% included copy number 970 

alteration.  971 

 972 

Validation of SV with microarray and jumping libraries: We compared the standard short-insert 973 

WGS (referred to as siWGS for clarity) SV calls to two previously published SSC datasets 974 

including long-insert WGS (liWGS, “jumping”) libraries on 456 of the 519 cases36 and microarray 975 

data available for all 2,071 samples with SV.1 To account for the differences in resolution across 976 

the three technologies, we restricted comparisons to variants which met three criteria: 1) a 977 

minimum size of 40 kb for microarray and 10 kb for liWGS; 2) at most 30% of the variant region 978 

localized to an annotated segmental duplication region, microsatellite, heterochromatin, or one 979 

of our defined multi-allelic regions; and 3) a variant frequency <10%. These filters were applied 980 

equivalently to the siWGS SVs in each comparison, resulting in 1,633 siWGS variants in the 981 

array comparison (Extended Data Fig. 24) and 2,238 siWGS variants assessed for support in 982 
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the jumping libraries. Overall, we observed a 5.2% FDR based on the array data and a 4.3% 983 

FDR when comparing to the jumping libraries. 984 

 985 

Validation of de novo structural variants: Validation was assessed on 68 de novo SV predictions 986 

using microarray, liWGS, and PCR followed by Sanger sequencing. PCR primers were 987 

designed using a custom script and Primer3,68 optimizing for sequencing data and the predicted 988 

size of the SV event. For one variant (DenovoCNV_53) in an AT-rich region we supplemented 989 

the validation with ddPCR. These initial exploratory analyses revealed CNV size (<700 bp) to be 990 

the predominant driver of false positive de novo predictions as our read-depth validation lacks 991 

sufficient data at this resolution, which led to a restriction on de novo SV predictions below this 992 

threshold to require support from two PE/SR algorithms in addition to RdTest adjudication. 993 

These methods returned a final validation estimate of 92.3% (48/52 test variants) with the final 994 

algorithm implementation. 995 

 996 

SV annotation and statistical burden analyses: Each SV was annotated with any predicted 997 

overlap with the canonical transcript of 20,156 protein-coding genes in Gencode v19, as 998 

described above. In brief, deletions were considered loss-of-function (LoF) if they affected any 999 

coding sequence, duplications were considered LoF if they affected an exon but did not extend 1000 

outside the transcript’s boundary, and inversions were considered LoF if one breakpoint 1001 

localized to a coding exon or any genic space spanning the coding sequence (but not if the 1002 

entire coding sequence was inverted). Duplications were considered to be “copy-gain” if they 1003 

spanned the entirety of a transcript’s boundary. A variant was required to localize fully to an 1004 

intron to be considered intronic, and each variant was additionally annotated with any gene 1005 

whose UTR or promoter region (<1 kb upstream of TSS) it disrupted. These same criteria were 1006 

applied to noncoding variation. Statistical burden testing was also performed using a CWAS 1007 

design, paralleling the SNV analyses described above. Notably, families were selected after 1008 
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screening for probands harboring large and presumably loss-of-function de novo CNVs and 1009 

coding mutations, but families with siblings harboring comparable mutations were not excluded. 1010 

These analyses can impact estimates of SV association, and we consequently filtered any 1011 

family in which the sibling met similar exclusionary criteria (n=27). We additionally excluded five 1012 

families in which a family member demonstrated an aberrant WGS dosage profile that 1013 

prohibited accurate SV prediction. Enrichment of rare SV was restricted to the 405 families with 1014 

European ancestry described above in the SNV analyses.  1015 
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