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Dispersal determines gene flow among groups in a population and so plays a major role in many ecologi-

cal and evolutionary processes, from biological invasions to species extinctions. Because patterns of gene

flow shape kin structure, dispersal is also important to the evolution of social behaviours that influence

reproduction and survival within groups. Conversely, dispersal patterns depend on kin structure and so-

cial behaviour. Dispersal and social behaviour therefore co-evolve but the nature and consequences of this

interplay are not well understood. Here, we model this co-evolution and show that it readily leads to the

emergence and maintenance of two broadly-defined social morphs: a sessile, benevolent morph expressed

by individuals who tend to increase the fecundity of others within their group relative to their own; and

a dispersive, self-serving morph expressed by individuals who tend to increase their own fecundity rela-

tive to others’ within their group. This social polymorphism arises as a consequence of a positive linkage

between the loci responsible for dispersal and social behaviour, leading to benevolent individuals prefer-

entially interacting with relatives and self-serving individuals with non-relatives. We find that this positive

linkage is favoured under a large spectrum of conditions, which suggests that an association between dis-

persal proclivity and other social traits should be common in nature. In line with this prediction, dispersing

individuals across a wide range of organisms have been reported to differ in their social tendencies from

non-dispersing individuals.

Introduction

Dispersal, the movement away from natal habitat to reproduce, is an important step in the life-history of most

organisms 1,2. At the population level, dispersal patterns shape kin structure which determines whether in-

dividuals interact and compete with relatives. This in turn influences the evolution of social behaviour such

as helping or aggression 3,4. At the same time, dispersal decisions are often influenced by kin and social in-

teractions 1,5–7, resulting in the co-evolution among dispersal between groups and social behaviours within
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groups 8–16. However, the consequences of this co-evolution for within-species behavioural diversity e.g., 17 re-

main elusive. Here, we model the co-evolution between unconditional dispersal and social behaviours, and

show that it readily leads to a stable genetic and social polymorphism, whereby individuals who disperse be-

have differently than non-dispersers.

To model social interactions within groups and dispersal between groups, we assume that the population is

structured according to the infinite island model 5,18,19, in which individuals belong to local groups and inter-

act socially only with other locals. As a baseline, we assume that groups are of fixed size N , that individuals

reproduce asexually and then die so that generations do not overlap. An offspring either remains in its natal

group (with probability 1−d), or disperses to another randomly chosen one (with probability d) and survives

dispersal with probability 1− cd. Social interactions are modelled with a classical matrix game 20: individuals

randomly pair up within their group and each independently chooses between two actions denoted B (with

probability z) and M (with probability 1− z). Depending on the action of each player, each reaps a material

payoff that in turn linearly increases its fecundity. Without loss of generality, we assume that when both play

M, they obtain no payoff (see Material and Methods M.1 for more details on the game). If one plays B and

the other plays M, the B player gets the (direct) benefit BD and the M player gets the (indirect) benefit BI. We

assume that BI −BD > 0, which means that an individual who plays B more often that its partner increases

its partner’s fecundity relative to its own, and conversely, an individual who plays M more often decreases its

partner’s fecundity. We therefore refer to action B as benevolent and M as self-serving. Finally, if they both play

B, they each get BD +BI −S, where S > 0 is the antagonistic synergy of benevolence, i.e., S captures the degree

with which returns diminish with the number of individuals adopting the benevolent action B in a pair.

Results

First, we study mathematically the co-evolution of the probability d of dispersing with the probability z of

adopting the benevolent action B when they are encoded by two linked loci that experience rare mutations

with small quantitative effects 21 (M.2 for methods). In agreement with previous results, the population first

evolves gradually to converge towards an equilibrium for both traits: dispersal converges to an equilibrium 0 <
d∗ ≤ 1 that depends on the cost cd of dispersal and group size 5,22 (Figure 1), while the probability z of adopting

the benevolent action B converges to 0 ≤ z∗ = BD/S ≤ 1 (provided 0 ≤ BD ≤ S, S.1.1 for details) 23. Once the

population has converged to the equilibrium (d∗, z∗) for both dispersal and benevolence, the population either

is maintained at this equilibrium by stabilising selection (i.e., the population is uninvadable by any alternative

strategy) and remains monomorphic, or undergoes disruptive selection and becomes polymorphic.

Mathematical analysis reveals that disruptive selection occurs under a wide range of model parameters (Fig-

ure 2), and that it leads to the emergence of two morphs: a more benevolent, sessile morph, and a more self-

serving, dispersive morph (Supporting Information 1.2-1.3). To understand why selection favours these two
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morphs, consider an individual that expresses the benevolent, sessile morph. Such an individual tends to pref-

erentially interact with related individuals of the same morph, and so its benevolence is preferentially directed

towards relatives. Conversely, an individual from the dispersive morph preferentially interacts with less related

individuals, and thus benefits from being self-serving. Polymorphism therefore arises due to the combined

effects of dispersal on kin interaction and social behaviour on neighbours’ fitness. In line with this, when only

one trait (dispersal or benevolence) evolves and the other is fixed, the population remains monomorphic for

all model parameters (Supporting Information 1.2).

To check our mathematical analyses and investigate the long-term effects of disruptive selection, we ran

individual-based simulations under conditions that should lead to polymorphism (Supporting Information 3).

As predicted, the population first converges to the interior equilibrium for dispersal d∗ and the probability z∗

to adopt benevolent action B, and splits into two morphs, a more benevolent, sessile morph, and a more self-

serving, dispersive morph (Figure 3a). Competition among the two morphs then creates a positive feedback

that favours more extreme variants. The population eventually stabilises for two highly-differentiated genetic

morphs, resulting in a strong association between dispersal and social behaviour (Figure 3b).

To test whether an association between dispersal and social behaviour also emerges when selection is stabil-

ising, we ran simulations under such conditions. As predicted by our analysis, the phenotypic distribution in

the population remains centred around the uninvadable equilibrium (Figure 3c). A negative association among

dispersal and benevolent behaviour also emerges but is it significantly weaker than when selection is disruptive

(compare Figures 3b and c).

Three important assumptions made in the baseline model are that generations do not overlap, that group size

is fixed and that the population is structured according to the standard island model. We relaxed the first as-

sumption by performing a mathematical analysis of dispersal and social behaviour co-evolution when a single

individual is replaced at each generation in each group. This analysis reveals that polymorphism is also of-

ten favoured in this scenario. In fact, compared to our baseline model, polymorphism is favoured for an even

greater diversity of payoff variables, which means that a greater diversity of social behaviours may become as-

sociated with dispersal when generations overlap (Supporting Information 2). We next relaxed the second and

third assumptions by letting group size fluctuate (with regulation through local competition), and by isolat-

ing groups by distance (instead of an island model). For both conditions, we compared the outcomes of three

simulation experiments: i) we fixed dispersal and let only social behaviour evolve, ii) we fixed social behaviour

and let only dispersal evolve, and iii) we allowed both traits to co-evolve. These experiments show that distinct

social morphs emerge as a result of disruptive selection, but as under the baseline scenario, this is only true

when both traits co-evolve (Supplementary Figures S1-S2).

We also tested the importance of genetic linkage for the emergence of highly differentiated social morphs by

studying the effects of various levels of recombination between the loci that control dispersal and social be-

haviour (Supporting Information 3). This revealed that the emergence of distinct morphs depends on the level
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of recombination. As recombination increases, maladapted morphs that are benevolent and dispersive or self-

serving and sessile increase in frequency (Figure 4a). Beyond a threshold, recombination prevents polymor-

phism altogether and the population remains monomorphic (Figure 4a). This is because strong recombination

breaks the positive genetic linkage among the dispersal and social behaviour loci that is necessary for benev-

olent individuals to preferentially direct their benevolence towards relatives, and self-serving individuals to

compete with non-relatives.

Since disruptive selection promotes an association among dispersal and social behaviour, it should also pro-

mote a genetic architecture that makes this association heritable 24. We tested this by adding a third locus that

controls recombination and let it evolve by introducing two alleles that mutate from one another, one recessive

wild-type that codes for a recombination probability of 1/2 and one dominant mutant that stops recombina-

tion (Supporting Information 3). Starting with a wild-type population at the predicted equilibrium (d∗, z∗)

for dispersal and social behaviour, the mutant allele at the recombination modifier locus eventually invades so

that recombination is shut down, which then permits the emergence of distinct morphs (Figure 4b). Disruptive

selection therefore leads to the genetic integration of dispersal and social behaviours to form a "supergene" 25,

which allows benevolent individuals to preferentially interact with relatives, and self-serving individuals with

non-relatives. This type of kin association through genetic and spatial assortment may constitute a first step

towards conditional dispersal 10 or conditional social behaviours 8,11,26, which allow individuals to fine tune

their behaviours towards relatives.

Finally, we studied the population genetic signatures associated with the emergence of this social polymor-

phism. We first calculated the degree of genetic differentiation (FST) among morphs at the locus responsible

for social behaviour (the "selected locus") and at a neutral, unlinked locus. Genetic differentiation among

morphs at the selected locus is much greater than at a neutral locus (Figure 5), which is unsurprising since

social behaviour is genetically determined. Second, we looked at the degree of genetic differentiation among

groups within each social morph, and found that differentiation among groups is greater within the benevo-

lent morph than the self-serving one at the selected locus (Figure 5). This pattern arises because the benevolent

morph has lower dispersal tendencies than the self-serving one. Interestingly, differentiation among groups is

also greater within the benevolent morph at the neutral locus (Figure 5). The effect of dispersal differences be-

tween the social morphs therefore extends beyond the selected locus and creates detectable patterns of genetic

differentiation at neutral unlinked loci.

Discussion

These analyses reveal that the co-evolution of dispersal and social behaviour favours the emergence of a social

polymorphism and dispersal syndrome. Clear predictions can be extrapolated from our results. The first is that

phenotypic associations between dispersal and social behaviour should be common. This prediction finds
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echo in multiple organisms ranging from protozoa to primates where an intraspecific association between

dispersal and social behaviour have been found (Table 1, see also 10,27–29 for reviews). For example, in the ciliate

Tetrahymena thermophila, laboratory studies have shown that strains that are more cooperative disperse at a

lower rate than less cooperative strains at intermediate population densities 30. Similarly, in wild populations

of prairie voles Microtus pennsylvanicus, individuals that disperse tend to be more aggressive than those who

do not 31.

Our prediction that benevolence and dispersal propensity should be associated at the phenotypic level aligns

with the predictions stemming from models of conditional behaviours 8,10,11. When individuals can condi-

tion their social behaviour on whether they have dispersed or not, selection favours increased benevolence in

dispersers and self-servingness in non-dispersers 11, also creating a negative phenotypic association between

benevolence and dispersal behaviours. Although studies on conditional behaviours 8,10,11 have not tested

whether genetic polymorphism would also emerge, such an association is unlikely because conditional be-

haviour already allows to behave more benevolently towards relatives. The evolution of conditional behaviour

thus results in a phenotypic but not a genetic association among dispersal and social behaviours.

By contrast, the social polymorphism we report here is underlain by a genetic association among dispersal

and social behaviours. Previous models of the co-evolution of unconditional dispersal and cooperation have

also found that genetic polymorphism can emerge in asexual haploids 14–16. But these models assume that

cooperation has non-linear fitness effects such that polymorphism can arise when cooperation is evolving but

the rate of dispersal is fixed. As a result, the importance of dispersal and social behaviours co-evolution for

polymorphism is unclear from these models. By contrast, in our model, a polymorphism only emerges when

both traits co-evolve.

Importantly, our analyses suggest that selection also leads to the genetic integration of dispersal and social

behaviours into a single Mendelian genetic element. This brings us to our second prediction: dispersal and

social behaviour should be genetically associated when polymorphism is present. Data to test this prediction

are scarce because few studies combine dispersal, behavioural and heritability assays. One notable exception

is found in western bluebirds Sialia mexicana, for which a multi-generational pedigree analysis revealed that

dispersal and social behaviour are genetically associated such that dispersive males are more likely to produce

aggressive offspring and non-dispersive males, non-aggressive offspring 32. A similar pattern of positive ge-

netic association among dispersal and aggressiveness has been observed in two species of wild house mice

Mus musculus musculus 33 and Mus domesticus 34. Lines of Drosophila melanogaster that have been selected

for greater dispersal propensity also exhibit elevated aggressiveness 35, which shows that genetic correlations

among dispersal and aggressiveness are also present in this species. Conversely, in the colony-breeding Alpine

swift Apus melba, dispersal and cooperative defence against human intrusion are negatively associated both at

the phenotypic and genetic level 36.

Our prediction of a genetic association among dispersal and social behaviour could be tested further in so-
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cially polymorphic species, such as social spiders or halictine bees. Between Anelosimus spider species, natal

dispersal tends to be negatively associated with social living and behaviour 37. It would be interesting to test

whether this association also occurs within species. In particular in the social spider Anelosimus studiosus an

aggressive morph co-exists with a docile one 38, and evidence already suggests that expressing the aggressive

morph is heritable 39 and associated with other social behaviours 40, but an association between dispersal and

aggressiveness has not yet been studied. Direct evidence for such an association would require dispersal and

heritability assays that can be challenging. Alternatively, indirect evidence could be provided by patterns of ge-

netic differentiation (FST) among groups. In particular, our model suggests that a genetic association between

dispersal and aggressiveness should lead to greater between-group genetic differentiation (at both selected and

neutral loci) for the aggressive morph than for the docile morph (Figure 5).

Eusocial species, who typically exhibit rich and variable patterns of dispersal and social behaviours, also pro-

vide a good model to test our prediction that dispersal and social behaviour should be genetically associated.

Many ant species show a dispersal syndrome that associates dispersal with social organisation. Queens either

disperse far away from their natal nest and form single-queen (monogyne) colonies, or disperse short dis-

tances and form multiple-queen (polygyne) colonies 41. These two morphs are frequently found in the same

population and show little genetic differentiation, suggesting extensive gene flow among them 41–44. In line

with the predictions of our model, individuals from monogyne colonies exhibit high intra-specific aggression

towards non-nestmates while individuals from polygyne colonies are much less aggressive 41. The genetic un-

derpinning of social organisation has been uncovered in two ant species, Solenopsis invicta 43 and Formica

selysi 44. Remarkably, in both cases, the social polymorphism and dispersal syndrome is controlled by a large

non-recombining region that has independently arisen in each species, which suggests that integration of dis-

persal and social behaviour into a supergene can readily occur in nature.

Our simple model of course cannot explain all associations among dispersal and social behaviour which can be

influenced by many other factors (e.g., in species with a social hierarchy, such as meerkats 45, it may be benefi-

cial to be more submissive when dispersing into a foreign group, so that we may expect benevolent behaviours

to be positively associated with dispersal, see also 27,29). Yet, the selection that associates dispersal and social

behaviour in our model will influence evolution under most ecological settings because it only depends on

kin structure which, due to limited dispersal and the spatial scale of social interactions, is ubiquitous in na-

ture 46. While current data support the notion that individuals who disperse behave towards conspecifics in a

way that is different to non-dispersers, further pedigree and genomic analyses will provide a better picture of

how associations among dispersal and social behaviour are genetically constructed.
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Materials and Methods

M.1 Matrix game

We use a pairwise symmetric matrix game 20 to model social interactions within groups. Without loss of gener-

ality, we assume that the game is described by the following payoff matrix

B M

B BI +BD −S BD

M BI 0

(1)

whose entries give the payoff to a focal row player (i.e., when both play B, the focal obtains BI +BD −S; when

the focal plays B and the partner plays M it obtains BD; in the reverse situation, the focal obtains BI; and when

both partners play M, the focal obtains 0).

The payoff matrix (eq. 1) entails that the average payoff to a focal player who adopts action B with probability

z1 against a partner who adopts this action with probability z2 is

π(z1, z2) = (BI +BD −S) z1z2 +BDz1(1− z2)+BI(1− z1)z2. (2)

We assume that the payoff that an individual receives increases its fecundity linearly, in which case the fecun-

dity of the partner, relative to the fecundity of the focal player, can be written as

f0 +π(z2, z1)

f0 +π(z1, z2)
= 1+ (BI −BD)(z1 − z2)

f0 +π(z1, z2)
(3)

where f0 is a baseline fecundity that ensures that fecundity is positive. Eq. (3) shows that when BI −BD > 0

and the focal is more likely to express B than its partner (z1 − z2 > 0), this results in an increase of the partner’s

fecundity relative to the focal’s. Conversely, when the focal is less likely to express B than its partner (z1−z2 < 0),

this results in a decrease of its partner’s fecundity relative to its own. The quantity BI −BD can therefore be

thought of as the relative fecundity effect of action B.

We assume throughout that BI −BD > 0 so that expressing action B increases the fecundity of its recipients

(for all z2 < 1) relative to its actor, and we therefore call behaviour B "benevolent". Conversely, expressing

M increases the fecundity of its actor relative to its recipient (for all z2 > 0), and we call behaviour M "self-

serving". The condition that BI −BD > 0 includes well-known social dilemma games. For instance, when BI >
BI +BD − S > BD > 0, B behaviour is "Dove" in the Hawk-Dove game, or "Cooperate" in the Snow-Drift (or

Volunteers’ dilemma) game. When BI > BI +BD −S > 0 > BD, B is "Cooperate" in the Prisoner’s dilemma game.

Behaviour B therefore generally encompass cooperative and altruistic behaviours but not necessarily. Whether

behaviour B is cooperative or altruistic sensu evolutionary biology depends on its fitness effects 19,47, which

themselves depend on population structure and life-cycle.
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M.2 Evolutionary invasion analysis in the island model

Invasion and the average mutant growth rate

In the infinite island model, the fate of a mutation that codes for a rare mutant phenotype xm = (zm,dm) when

the resident population has phenotype x = (z,d) can be deduced from the geometric growth rate W (xm,x) of

that mutation 48,49, which is the time-averaged mean cumulative growth over different replicates or sample

paths of the invasion dynamics. If the geometric growth rate is less or equal to one (W (xm,x) ≤ 1), then the

mutation will eventually go extinct in the population, otherwise it may persist indefinitely 16. When the mutant

and residents only differ by a small amount (‖xm − x‖ ¿ 1), the growth rate can be approximated by Taylor

expanding W (xm,x) close to resident phenotype x,

W (xm,x) ≈ 1+ (xm −x)Ts(x)+ (xm −x)TH(x)(xm −x), (4)

where s(x) is a 2×1 vector and H(x) is a 2×2 matrix that respectively give the first- and second-order effects

of selection 16,49, which can be used to infer on the adaptive dynamics of both traits. We detail s(x) and H(x)

below.

Directional selection in the infinite island model

When mutations are rare with weak phenotypic effects, the population first evolves under directional selec-

tion whereby selected new mutations rapidly sweep the population before a new mutation arises, so that the

population “jumps" from one monomorphic state to another 21. The direction of evolution under directional

selection is indicated by the selection gradient vector

s(x) =
sz (x)

sd (x)

=


∂W (xm,x)

∂zm

∣∣∣∣
xm=x

∂W (xm,x)

∂dm

∣∣∣∣
xm=x

 . (5)

In the infinite island model, the selection gradient on trait u ∈ {z,d}, which captures the directional coefficient

of selection on trait u, has been showne.g., eq. 12 of ref. 16 to be equal to

su(x) = ∂w(x1,x−1,x)

∂u1

∣∣∣∣ x1=x
x−1=x

+ (N −1)r2(x,x)
∂w(x1,x−1,x)

∂u2

∣∣∣∣ x1=x
x−1=x

, (6)

where w(x1,x−1,x) is the individual fitness of a focal individual that we arbitrarily label as individual "1" (i.e., the

expected number of adult offspring produced by individual "1"), when it has phenotype x1 = (z1,d1), his N −1

neighbours have phenotypes x−1 = (x2, . . . ,xN ), and the resident has phenotype x; and rl (xm,x) is defined as

the probability that l −1 randomly drawn (without replacement) neighbours of a mutant are also mutants (i.e.,

that they all belong to the same lineage). In a monomorphic population (so that xm = x), rl (x,x) reduces to the

probability of sampling l individuals without replacement whose lineages are identical-by-descent, which is

the standard l th-order measure of relatedness for the island model 50. The selection gradient (eq. 6) is therefore
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the sum of the direct fitness effects of trait u and the pairwise relatedness (r2(x,x)) weighted indirect fitness

effects of trait u (note: x−1 = x means x2 = x3 = . . . = xN = x) 16,19.

In two-dimensional phenotypic space, s(x) points towards the direction of directional selection close to the

resident, so adaptive dynamics will first settle for an equilibrium

x∗ = (z∗,d∗) such that s(x∗) = 0, (7)

when the equilibrium is an attractor of selection. The condition for the equilibrium x∗ to be a local attractor

depends on whether the two traits are genetically correlated. When traits are not genetically correlated (so that

mutations have independent effects on both traits) and mutations affect only one trait at a time (no pleiotropy),

the equilibrium is a local attractor of the evolutionary dynamic if the Jacobian matrix,

J(x∗) =


∂sz (x)

∂z

∣∣∣∣
x=x∗

∂sz (x)

∂d

∣∣∣∣
x=x∗

∂sd (x)

∂z

∣∣∣∣
x=x∗

∂sd (x)

∂d

∣∣∣∣
x=x∗

 , (8)

has all eigenvalues with negative real parts. More generally, in the presence of pleiotropy and/or genetic cor-

relations among traits (so that mutations have correlated effects on both traits), the equilibrium x∗ is a local

attractor if the symmetric part of the Jacobian matrix J(x∗) (eq. 8),

J(x∗)+ J(x∗)T

2
, (9)

is negative-definite (i.e., if it has only negative eigenvalues), and such an equilibrium is referred to as (strongly)

convergence stable 51,52. Note that if the symmetric part of the Jacobian matrix J(x∗) (eq. 9) is negative-definite,

then J(x∗) has eigenvalues with negative real parts. For polymorphism to emerge when mutations have weak

effects, it is necessary that the population is first at a convergence stable equilibrium 53.

Stabilising/disruptive selection in the infinite island model

Once the population is at an equilibrium x∗ that is convergence stable, the leading eigenvalue λ(x∗) of the

Hessian matrix,

H(x∗) =
hzz (x∗) hzd (x∗)

hzd (x∗) hdd (x∗)

=


∂2W (xm,x∗)

∂z2
m

∣∣∣∣
xm=x∗

∂2W (xm,x∗)

∂zm∂dm

∣∣∣∣
xm=x∗

∂2W (xm,x∗)

∂zm∂dm

∣∣∣∣
xm=x∗

∂2W (xm,x∗)

∂d 2
m

∣∣∣∣
xm=x∗

 , (10)

tells us whether selection is stabilising (when λ(x∗) ≤ 0 and all mutations close to the resident vanish) or dis-

ruptive (when λ(x∗) > 0 and polymorphism emerges). Note that the Hessian necessarily has real eigenvalues

because it is symmetric with real entries.

In the infinite island model, it has been showneq. 13 of ref. 16 that the huv (x∗) entry of the Hessian for u ∈ {z,d}

and v ∈ {z,d}, which is the quadratic coefficient of selection on traits u and v , can be decomposed as

huv (x∗) = hw,uv (x∗)+hr,uv (x∗), (11)
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where

hw,uv (x∗) =∂w(x1,x−1,x∗)

∂u1∂v1

∣∣∣∣ x1=x∗
x−1=x∗

+ (N −1)r2(x∗,x∗)

∂2w(x1,x−1,x∗)

∂u2∂v2

∣∣∣∣ x1=x∗
x−1=x∗

+ ∂2w(x1,x−1,x∗)

∂u1∂v2

∣∣∣∣ x1=x∗
x−1=x∗

+ ∂2w(x1,x−1,x∗)

∂u2∂v1

∣∣∣∣ x1=x∗
x−1=x∗


+ (N −1)(N −2)r3(x∗,x∗)

∂2w(x1,x−1,x∗)

∂u2∂v3

∣∣∣∣ x1=x∗
x−1=x∗

,

(12)

captures the second-order fitness effects when the relatedness among mutants is the same as among residents

(since r2(x∗,x∗) and r3(x∗,x∗) are evaluated when the population is monomorphic for the resident at equilib-

rium), and where

hr,uv (x∗) = (N −1)

∂w(x1,x−1,x∗)

∂u2

∣∣∣∣ x1=x∗
x−1=x∗

∂r (xm,x∗)

∂v

∣∣∣∣
xm=x∗

+ ∂w(x1,x−1,x∗)

∂v2

∣∣∣∣ x1=x∗
x−1=x∗

∂r (xm,x∗)

∂u

∣∣∣∣
xm=x∗

 , (13)

depends on the effects that the traits have on pairwise relatedness (i.e., on ∂r (xm,x∗)/∂v and ∂r (xm,x∗)/∂u). In

order to evaluate this effect, it is first necessary to decompose individual fitness w(x1,x−1,x) as

w(x1,x−1,x) = wP(x1,x−1,x)+wD(x1,x−1,x), (14)

where wP(x1,x−1,x) is the expected number of offspring of the focal individual that remain in their natal group

(i.e., its expected number of philopatric offspring), and wD(x1,x−1,x), is its number of offspring that disperse.

Then, for the models considered here, previous works have shown that the effect of trait v ∈ {z,d} on relatedness

can be expressed as

∂r (xm,x∗)

∂v

∣∣∣∣
xm=x∗

= kr2(x∗,x∗)

1−m(x∗)

((
1+ (N −1)r2(x∗,x∗)

) ∂wP(x1,x−1,x∗)

∂v1

∣∣∣∣ x1=x∗
x−1=x∗

+ (
2r2(x∗,x∗)+ (N −2)r3(x∗,x∗)

)
(N −1)

∂wP(x1,x−1,x∗)

∂v2

∣∣∣∣ x1=x∗
x−1=x∗

)
,

(15)

where k is a constant that depends on the life-cycle (k = 2 for the baseline Wright-Fisher

modeleq. 18 of ref. 54, eq. 28 of ref. 55, k = N when generations overlap under the Moran modeleq. 14 of ref. 16) and

m(x∗) is the neutral backward probability of dispersal (i.e., the probability that a breeding spot is filled by an

immigrant in a population monomorphic for the resident).

The quadratic coefficient of selection on a single trait (hzz (x∗) and hdd (x∗)) tell us about selection on that

trait when it is evolving in isolation from the other. For instance, when hzz (x∗) ≤ 0, selection on z is stabilis-

ing, but when hzz (x∗) > 0 selection is disruptive and z will diversify whether or not dispersal is also evolving.

Meanwhile, the quadratic coefficient of selection on z and d , hzd (x∗), captures the types of associations or cor-

relations among z and d that are favoured by selection. It is therefore referred to as the correlational coefficient

of selection 56. When hzd (x∗) is positive, selection favours a positive correlation among both traits close to the

resident and conversely, when it is negative, selection favours a negative correlation. It follows from standard

linear algebra results 57, that if

hzd (x∗)2 > hzz (x∗)hdd (x∗), (16)
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then the leading eigenvalue of H(x∗) is positive (λ(x∗) > 0), which in biological terms means that if the correla-

tional coefficient of selection is strong relative to the quadratic coefficient of selection on both traits, it causes

selection to be disruptive and hence, polymorphism.

Fitness and genetic structure for baseline model

Here, we give the necessary components to perform an invasion analysis for dispersal and benevolence under

the baseline model in which generations do not overlap (i.e., Wright-Fisher life cycle). First, note that the

fecundity of the focal individual "1" is

f (x1,x−1) = f0 +
N∑

j=2

π(z1, z j )

N −1
, (17)

where the payoff function π is given in eq. (2). Then, under the baseline model, the expected number of

philopatric of individual "1" is

wP(x1,x−1,x) = (1−d1) f (x1,x−1)∑N
i=1(1−di ) f (xi ,x−i )/N +d(1− cd) f (x,x)

, (18)

and the overall fitness of individual "1" is

w(x1,x−1,x) = wP(x1,x−1,x)+ d1(1− cd) f (x1,x−1)

(1−dcd) f (x,x)
. (19)

In order to express pairwise and three-way relatedness (eqs. 6–15), we first give the neutral backward probabil-

ity of dispersal (eq. 15):

m(x) = d(1− cd)

1−d +d(1− cd)
, (20)

which is the ratio of the number immigrant offspring to the total number of offspring in a group. Pairwise and

three-way relatedness are found using m(x) and standard identity-by-descent arguments 19,58, eqs. 13 & 23 of ref. 55,

yielding

r2(x,x) = (1−m(x))2

N − (N −1)(1−m(x))2 , (21)

and

r3(x,x) = (1−m(x))3(1+3(N −1)r2(x,x))

N 2 − (N −1)(N −2)(1−m(x))3 . (22)

This is all that is necessary to infer on the adaptive dynamics of dispersal and benevolence using the selection

gradient and Hessian matrix (eqs. 6–15). Analysis can be found in Supporting Information 1.

Fitness and genetic structure for baseline model when generations overlap

To incorporate generational overlap, we assume that after reproduction, a random individual in each group dies

and that offspring then compete for the single open breeding spot left vacant in each group at each generation

11
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(as in a birth-death local Moran process). In this case, fecundity and neutral backward dispersal are as above

(eqs. 17 and 20). But philopatric fitness and total individual fitness are now respectively given by

wP(x1,x−1,x) = N −1

N
+ 1

N

(1−d1) f (x1,x−1)∑N
i=1(1−di ) f (xi ,x−i )/N +d(1− cd) f (x,x)

, (23)

and,

w(x1,x−1,x) = wP(x1,x−1,x)+ 1

N

d1(1− cd) f (x1,x−1)

(1−dcd) f (x,x)
. (24)

e.g., 16. Meanwhile, pairwise and three-way relatedness Table 1 of ref. 16 are given by

r2(x,x) = 1−m(x)

1− (N −1)m(x)
, (25)

and

r3(x,x) = 2(1−m(x))r2(x,x))

2+m(x)(N −2)
, (26)

which completes the necessary expressions to derive the adaptive dynamics of dispersal and benevolence

when generations overlap. Analysis can be found in Supporting Information 2.
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Figure 1: Equilibrium dispersal. Dispersal equilibrium d∗ in terms of the cost of dispersal, cd, for different

group sizes N (see Supporting Information S.1.1, eq. S.3 for mathematical expression).
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Figure 2: Disruptive selection when dispersal and social behaviour co-evolve. Parameter region under which

disruptive selection leads to polymorphism at the equilibrium (d∗, z∗) (shaded region, computed from eq. S.17

in Supporting Information S.1.3, here shown with individual fecundity at the equilibrium set to one). Disruptive

selection is therefore favoured when (i) groups are small; (ii) dispersal cost cd is low; (iii) antagonistic synergy

S is weak; and (iv) benevolence has large relative effects (i.e., BI −BD is large).
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Figure 3: The emergence and maintenance of social morphs when dispersal and social behaviour co-evolve.

a. Dispersal d and benevolence z in a simulated population of 10’000 individuals (trait values of 300 individ-

uals randomly sampled every 500 generations, see colour legend for colouring scheme) and predicted interior

equilibrium (dashed black line, with BD = 0.05, BI = 1.95, S = 0.55, N = 8, cd = 0.1, and baseline fecundity set to

one). b. Phenotypic distribution of whole population at generation 3×104 (same parameters as a., predicted

interior equilibrium shown by grey disc). c. Phenotypic distribution of whole population at generation 3×104

under balancing selection (with cd = 0.25, other parameters same as a., predicted interior equilibrium shown

by grey disc).

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 28, 2017. ; https://doi.org/10.1101/127316doi: bioRxiv preprint 

https://doi.org/10.1101/127316
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: The effect (a) and evolution (b) of genetic linkage between dispersal and social behaviour loci. a

Phenotypic distribution of whole population at generation 2× 104 when recombination probability is fixed

(recombination value shown above graphs, other parameters same as in Fig 3a, Supporting Information 3

for details). b. Upper panel: effective recombination rate in the population (number of recombination

events/population size) every 100 generations when recombination evolves in a population of 10’000 individu-

als (for 30 replicates, each replicate is shown by a grey line, average recombination rate over replicates is shown

in black). Lower panel: benevolence z of 300 individuals randomly sampled every 500 generations across all 30

replicates (coloured according to colour legend in Fig 3). Polymorphism arose in all 30 replicates.
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Figure 5: Patterns of genetic differentiation. Upper panel: FST values calculated every 100 generations for a

population initially monomorphic for its predicted equilibrium that becomes polymorphic when the loci for

dispersal and social behaviours are genetically linked (see Supplementary Information S.3 for information on

FST calculations, simulation parameters same as in Fig 3a). Black: genetic differentiation among morphs at the

selected locus (full line) and at an unlinked neutral locus (dashed line). Blue: genetic differentiation among

groups within the benevolent morph at the selected locus (full line) and at an unlinked neutral locus (dashed

line). Red: genetic differentiation among groups within the self-serving morph at the selected locus (full line)

and at an unlinked neutral locus (dashed line). Lower panel: summary of the FST values at equilibrium (be-

tween generations 1.5×104 and 3×104) among morphs (black) and among groups within benevolent (blue)

and self-serving (red) individuals at the selected (darker shade) and an unlinked neutral (lighter shade) locus.
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Tables

Social behaviour Association with dispersal Species

Aggressiveness,

"Self-servingness"
Positive

Sialia mexicana 59,60, Clethrionomys

rufocanus 61, Microtus pennsylvanicus 31, Myodes

glareolus 62, Rhabdomys pumilio 63,

Neolamprologus pulcher 64, Mus musculus

domesticus 65, Macaca mulatta 66–68, Drosophila

melanogaster 35

Pro-social,

Helping,

Cooperation,

"Benevolence"

Negative

Picoides borealis 69, Lacerta vivipara 70,

Tetrahymena thermophila 30, Uta

stansburiana 71, Heterocephalm glaber 72, Apus

melba 36

Table 1: Species where a phenotypic association between dispersal and social behaviour has been described.
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Supplementary Figures

Supplementary figure S1: Evolution of dispersal and social behaviour under group size fluctuations. Group

size fluctuations were implemented by assuming that before dying, each adult individual produced a Poisson

distributed number of offspring, with mean given by eq. (17) multiplied by a factor of 5 to avoid extinction.

Each dispersing offspring independently survives dispersal with probability 1− cd (cd = 0.05 here). After dis-

persal, offspring compete locally to survive to adulthood: each survive with a probability 1/(1+ηNoff), where

Noff is the number of offspring coming into competition (η = 0.04, other parameters same as in Fig 3a). Left

column: evolution of the probability z of adopting benevolent behaviour when dispersal is fixed at d = 0.65 and

equilibrium distribution of z (between generations 1.5×104 and 3×104). Top row: evolution of the dispersal

probability d when z is fixed at z = 0.1 and equilibrium distribution of d . Bottom right: co-evolution of z and

d and equilibrium distribution.
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Supplementary figure S2: Evolution of dispersal and social behaviour under isolation-by-distance. To in-

corporate isolation-by-distance, we assumed that social groups are arranged on a 2-D lattice (size: 35 by 35

groups), shaped as a taurus to avoid boundary effects. A dispersing offspring lands to one of the nearest neigh-

bouring group with equal probability (dispersal distance is set to one). The rest of the life-cycle is the same as

in our baseline scenario (cd = 0.05, other parameters same as in Fig 3a). Left column: evolution of the proba-

bility z of adopting benevolent behaviour when dispersal is fixed at d = 0.65 and equilibrium distribution of z

(between generations 1.5×104 and 3×104). Top row: evolution of the dispersal probability d when z is fixed at

z = 0.1 and equilibrium distribution of d . Bottom right: co-evolution of z and d and equilibrium distribution.
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a. b. Baseline Wright Fisher model Moran model 

Supplementary figure S3: Necessary conditions for disruptive selection in (a) the baseline model and (b)

the Moran model. For disruptive selection to occur, it is necessary that the quantity S f (x∗,x∗)/(BI −BD)2 lies

between zero and the plotted curve, shown as a function of dispersal cost and for different group sizes (see

eqs. S.17 and S.32). In both models, low dispersal cost and small group sizes thus favour disruptive selection.

Because the area between zero and the plotted curve for all dispersal costs and group sizes is larger under the

Moran model (compare a and b), disruptive selection is more likely to occur in this model.
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Supporting Information

S.1 Adaptive dynamics for the baseline Wright-Fisher model

Here, we analyse the adaptive dynamics of dispersal and benevolence for the baseline Wright-Fisher model set

out in the main text, in which generations do not overlap. Throughout the supporting information, references

to equations without the prefix "S" refer to equations of the main text.

S.1.1 Directional selection

Directional selection on dispersal. We first look at the selection gradient on dispersal. Substituting eqs. (19)

and eq. (21) into eq. (6) (with u = d) gives the selection gradient on dispersal,

sd (x) = 1− cd

1− cdd
× l (d)

h(d)
, (S.1)

where

l (d) = 1− (1+2cdN )d + cd(1+ cd)N d 2,

h(d) = 1−2(1− (1− cd)N )d + (
1− (1−c2

d)N
)

d 2 > 0.
(S.2)

The equilibrium d∗ for dispersal then solves l (d∗) = 0, which gives

d∗ =
1+2N cd −

√
1+4N (N −1)c2

d

2N cd(1+ cd)
, (S.3)

in agreement with previous works on the evolution of dispersale.g., eq. (14) of ref. 54. In particular, when there is

only one adult per site, N = 1, the equilibrium eq. (S.3) matches the one found in the classical Hamilton and

May model 5: d∗ = 1/(2−p), where p = 1− cd is the probability of survival during dispersal eq. (1) of ref. 5.

The equilibrium eq. (S.3) is an attractor when dispersal is evolving in isolation from z if

∂sd (x)

∂d

∣∣∣∣
x=x∗

= (1− cd)l ′(d∗)

(1− cdd∗)2h(d∗)
< 0, (S.4)

which is always the case because the derivative l ′(d∗) =−
√

1+4N (N −1)c2
d < 0 is always negative.

Directional selection on benevolence. Substituting eqs. (19) and eq. (21) into eq. (6) (with u = z) gives the

selection gradient on benevolence,

sz (x) = (1− r2(x,x)) (BD −Sz)

f (x,x)
, (S.5)

so that the equilibrium x∗ which solves sz (x∗) = 0 is

z∗ = BD

S
, (S.6)
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in agreement with previous works on the evolution of z alone eq. (9) of ref. 23 with κ=0. Eq. (S.5) shows that dis-

persal has no effect on the convergence of z to an equilibrium here. This is because how limited dispersal

influences convergence of z depends on the effects of dispersal on genetic relatedness, which favours benev-

olent behaviour, and on kin competition, which favours self-serving behaviour 73, and when local population

size is constant (fixed N ) and generations do not overlap, these effects cancel out regardless of payoffs 74.

The equilibrium eq. (S.6) is an attractor point when z is evolving alone if

∂sz (x)

∂z

∣∣∣∣
x=x∗

=− (1− r2(x,x))S

f (x∗,x∗)
< 0, (S.7)

which occurs when S > 0 (since 0 ≤ r2(x,x) < 1 and f (x∗,x∗) > 0). So, in order for an internal equilibria to be an

attractor, we must have 0 ≤ BD/S ≤ 1 and S > 0, which we will assume for the rest of this section.

Directional selection when dispersal and benevolence co-evolve When both traits co-evolve, whether the

point x∗ = (z∗,d∗) is an attractor depends on the Jacobian matrix (J(x∗), eq. 8). Since we find that both off-

diagonal entries of the Jacobian are zero, i.e.,

∂sd (x)

∂z

∣∣∣∣
x=x∗

= ∂sz (x)

∂d

∣∣∣∣
x=x∗

= 0, (S.8)

the eigenvalues of the Jacobian J(x∗) and of its symmetric part (J(x∗)+J(x∗)T)/2 are equal to the diagonal entries

(eqs. S.4 and S.7). So the conditions for

x∗ = (z∗,d∗) =

BD

S
,

1+2N cd −
√

1+4N (N −1)c2
d

2N cd(1+ cd)

 , (S.9)

to be an attractor are the same as for z∗ and d∗ to be attractors when evolving in isolation from one another,

which we have already derived. Thus, provided 0 ≤ BD/S ≤ 1 and S > 0, the population will converge to x∗ =
(z∗,d∗) under directional selection.

S.1.2 Stabilising selection on dispersal and benevolence when they evolve in isolation from one another

Substituting eqs. (18), (19), (21) and (22) into eqs. (11)- (15) (with u = v = d), we find that we can express the

quadratic coefficient of selection on dispersal at the equilibrium as a product

hdd (x∗) =−Fdd (x∗)Gdd (x∗) (S.10)

where

Gdd (x∗) = N 2
(
N + (N −1)(1−m(x∗))2

)(
N + (N −1)(1−m(x∗))(2−m(x∗))

)
N − (N −1)(1−m(x∗))2 > 0,

Fdd (x∗) = 2(1−m(x∗))2m(x∗)

N
(
N − (N −1)(1−m(x∗))2

)(
N 2 − (N −1)(N −2)(1−m(x∗))3

)
(1−d∗)2

> 0.

(S.11)

So, hdd (x∗) < 0 is negative, and selection on dispersal when it is evolving alone is always stabilising (as previ-

ously found for this life-cycle 54).

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 28, 2017. ; https://doi.org/10.1101/127316doi: bioRxiv preprint 

https://doi.org/10.1101/127316
http://creativecommons.org/licenses/by-nc-nd/4.0/


Similarly, substituting eqs. (18), (19), (21) and (22) into eqs. (11)-(15) (with u = v = z), the quadratic coefficient

of selection on z at the equilibrium can be expressed as

hzz (x∗) =−Fzz (x∗)
(
Gzz (x∗)(BI −BD)2 +Kzz (x∗)S f (x∗,x∗)

)
, (S.12)

where

Gzz (x∗) = m(x∗)(1−m(x∗)) ≥ 0

Kzz (x∗) = N + (1−m(x∗))(N + (N −2)(1−m(x∗))) > 0

Fzz (x∗) = 2N (1−m(x∗))2m(x∗)(
N − (N −1)(1−m(x∗))2

)(
N 2 − (N −1)(N −2)(1−m(x∗))3

)
f (x∗,x∗)2

≥ 0,

(S.13)

Then, since S > 0, hzz (x∗) < 0 is non-positive, and mutations that only change z will eventually vanish. So,

selection on z when it is evolving alone is stabilising for all model parameters.

S.1.3 Disruptive selection on dispersal and benevolence when they co-evolve

Correlational coefficient of selection. When dispersal and benevolence co-evolve, selection at the equilib-

rium also depends on the correlational coefficient of selection, and by substituting eqs. (18), (19), (21) and (22)

into eqs. (11)- (15) (with u = z and v = d), we find that it can be expressed as

hzd (x∗) =−
√

Fdd (x∗)Fzz (x∗)Gzd (x∗)(BI −BD), (S.14)

where

Gzd (x∗) =−N 2 − (N −1)(N −2)(1−m(x∗))3

2d∗ +N (N −1)(1−m(x∗))(2−m(x∗))

+ N 3(1− (1−m(x∗))2)+N 2(1−m(x∗))

N − (N −1)(1−m(x∗))2 > 0,

(S.15)

is positive (showing that Gzd (x∗) > 0 can be easily achieved with an algebraic computer program 75 once we

have substituted for the dispersal equilibrium eq. S.3). Since we assume BI −BD > 0, eq. (S.14) shows that the

correlational coefficient of selection is negative, hzd (x∗) < 0, which means that selection favours a negative

correlation among benevolence and dispersal.

Disruptive selection. Substituting eqs. (S.10), (S.12) and (S.14) into eq. (16) shows that the selection will be

disruptive whenever

Gzd (x∗)2(BI −BD)2 >Gdd (x∗)
(
Gzz (x∗)(BI −BD)2 +Kzz (x∗)S f (x∗,x∗)

)
. (S.16)

This can be re-arranged to

S

(BI −BD)2 f (x∗,x∗) < Gzz (x∗)

Kzz (x∗)

(
Gzd (x∗)2

Gdd (x∗)Gzz (x∗)
−1

)
, (S.17)

so that the the left hand-side only depends on the properties of the game, and the right hand side only depends

on ecological variables: group size N and dispersal cost cd (with eqs. S.11, S.13, S.15 and eq. 20). Unfortu-

nately, the right hand side of eq. (S.17) is too complicated to be mathematically tractable, but can be analysed
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numerically (Supplementary Figure S3a). Parameter values that satisfy eq. (S.17) are shown in Figure 2 with

f (x∗,x∗) = 1.

Why is selection disruptive? The above analysis shows that the correlational coefficient of selection can cause

polymorphism when z and dispersal co-evolve. In order to gain more understanding about this result, let us

consider a mutation that arises in a monomorphic population for the equilibrium x∗ and that changes dispersal

by ∆d = dm −d∗ and z by ∆z = zm − z∗. This mutation will invade whenever its growth rate is greater than one,

i.e., whenever

W (xm,x∗) = 1+∆2
d hdd (x∗)+∆2

z hzz (x∗)+∆d∆z hzd (x∗) > 1. (S.18)

From eq. (S.14), the correlational coefficient of selection hzd (x∗) < 0 is negative. Then, since hdd (x∗) < 0 and

hzz (x∗) < 0, eq. (S.18) shows that the only mutations that have a chance of invading are those that have op-

posite effects on dispersal and z, i.e., mutations with ∆d∆z < 0. Thus, two types of mutation can invade the

population, one type that increases z and decreases d and another type that decreases z and increases d . Fur-

ther insights can be brought by looking at the correlational coefficient of selection when dispersal cost is low

(i.e., when cd is small),

hzd (x∗) = cd(1− cd)
BI −BD

f (x∗,x∗)︸ ︷︷ ︸
∂w(x1,x−1,x∗)

∂z1∂d1
|x∗

−2cd︸ ︷︷ ︸
∂r (xm,x∗)

∂d |x∗

× BI −BD

f (x∗,x∗)︸ ︷︷ ︸
(N−1)

∂w(x1,x−1,x∗)
∂z2

|x∗

+O(c3
d) =−cd(1+ cd)

BI −BD

f (x∗,x∗)
+O(c3

d), (S.19)

which reveals that what causes the correlational coefficient of selection to be negative, is the combination of the

effect of dispersal on pairwise relatedness (∂r (xm,x∗)/∂d) with the indirect fitness effects of social interactions

(∂w(x1,x−1,x∗)/∂z2), which are proportional to the relative effect of benevolence BI −BD. The correlational

coefficient of selection therefore favours mutations or morphs that ensure that its carriers either provide (1)

more indirect benefits to their own kin; or (2) less indirect benefits to non-kin.

S.2 Adaptive dynamics under the Moran model of overlapping generations

Here, we analyse the adaptive dynamics of dispersal and benevolence under the Moran model in which a single

individual is replaced in each group at each generation, so that generations overlap.

S.2.1 Directional selection

Directional selection on dispersal. Substituting eq. (24) and (25) into eq. (6) (with u = d) yields the selection

gradient on dispersal,

sd (x) = (1−cd)(1−d(1+cdN ))

N (1− cdd)(1−d(1−N (1−cd)))
, (S.20)

which shows that the equilibrium probability of dispersal (d∗ such that sd (d∗) = 0) is

d∗ = 1

1+ cdN
(S.21)
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(in agreement with previous workeq. (26) of ref. 16), which is greater than the equilibrium when generations do not

overlap (eq. S.3) because kin competition is greater when generations overlap 16.

If only dispersal is evolving, the equilibrium eq. (S.21) is a local attractor when

∂sd (x)

∂d

∣∣∣∣
x=x∗

=− (1− cd)(1+N cd)3

N 2(1+ cd(N −1))
< 0, (S.22)

which is always true.

Directional selection on benevolence. Substituting eq. (24) and (25) into eq. (6) (with u = z), and evaluated at

dispersal equilibrium d∗ = 1/(1+cdN ) gives the selection gradient on the probability z of adopting benevolent

behaviour B:

sz (x) = (1− cd)
(−Sz(1+ cd(N +1))+BIcd +BD(1+N cd)

)
N (1+ cd(N −1)) f (x,x)

. (S.23)

Solving the above for zero gives the equilibrium

z∗ = BD

S
+ BI −BD

S

cd

1+cd(N +1)
. (S.24)

Unlike when generations do not overlap (eq. S.6), group size N and dispersal cost cd now affect the equilibrium

benevolence. This is because these variables determine dispersal (eq. S.3), and when generations overlap, dis-

persal has greater effects on genetic relatedness than on kin competition 76. As a consequence, the indirect

fitness benefits of z, as measured by BI −BD > 0, play a larger role on its evolution, and the equilibrium benev-

olence z∗ is greater when generations overlap than when they do not (eq. S.24 versus eq. S.6).

When only benevolence is evolving, equilibrium eq. (S.24) is a local attractor if

∂sz (x)

∂z

∣∣∣∣
x=x∗

=−S
(1− cd)(1+ cd(N +1))

N (1+ cd(N −1)) f (x∗,x∗)
< 0. (S.25)

Therefore, the equilibrium for benevolence is internal (0 < z∗ < 1) and an attractor when only benevolence is

evolving if

0 < BI +BD

(
N + 1

cd

)
< S

(
N +1+ 1

cd

)
and S > 0. (S.26)

Thus, unlike when generations do not overlap, a cooperative behaviour such that BD < 0 (like cooperate in the

Prisoner’s dilemma game) here can have a convergence stable internal equilibrium.

Directional selection when dispersal and benevolence co-evolve. When dispersal and benevolence co-

evolve, whether the equilibrium

x∗ = (z∗,d∗) =
(

BD

S
+ BI −BD

S

cd

1+ cd(N +1)
,

1

1+ cdN

)
(S.27)

is an attractor depends on the Jacobian matrix J(x∗) (eq. 8). We find that the joint equilibrium eq. (S.27) is

convergence stable if in addition to eq. (S.26),

(1−cd)2(1+ cdN )

4N (1+ cd(N +1))3 < S

(BI −BD)2 f (x∗,x∗) (S.28)

holds, which we will henceforth assume.
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S.2.2 Stabilising selection on dispersal and benevolence when they evolve in isolation from one another

Once the population has converged to the equilibrium eq. (S.27), the quadratic coefficient of selection on dis-

persal is found by substituting eqs. (23)-(26) into the Hessian entry eqs. (11)-(15) (with u = v = d), which we

can express as

hdd (x∗) =− 2(1− cd)(1+ cdN )3

N 2(1+ cd)(1+ cd(N −1))
< 0, (S.29)

which is always negative. Selection on dispersal alone is therefore stabilising for all model parameters.

Similarly, the quadratic coefficient of selection on benevolence at the equilibrium eq. (S.27) is found by substi-

tuting eqs. (23)-(26) into the Hessian entry eqs. (11)-(15) (with u = v = z), and we find it can be written as

hzz (x∗) =− S

f (x∗,x∗)

2cd(1− cd)(1+ cd(N +1))

N (1+ cd)(1+ cd(N −1))
< 0, (S.30)

which is always negative since S > 0 at an internal attractor equilibrium (eq. S.26). Selection on z alone is thus

also stabilising for all model parameters.

S.2.3 Disruptive selection on dispersal and benevolence when they co-evolve

When dispersal and benevolence co-evolve, whether selection is disruptive depends on the correlational coef-

ficient of selection, which is found by substituting eqs. (23)-(26) into the Hessian entry eqs. (11)-(15) (with u = z

and v = d), and which can be expressed as

hzd (x∗) =− BI −BD

f (x∗,x∗)

(1− cd)2(1+ cdN )3

N 2(1+ cd)(1+ cd(N +1))(1+ cd(N −1))
< 0, (S.31)

which is always negative when BI−BD > 0. Hence, as in the Wright-Fisher model, correlational selection always

favours a negative correlation among benevolence and dispersal in the Moran model.

Substituting eqs. (S.29), (S.30) and (S.31) into eq. (16) reveals after some re-arrangements that whenever

S

(BI −BD)2 f (x∗,x∗) < (1− cd)2(1+ cdN )3

4N cd(1+ cd(N +1))3 , (S.32)

selection is disruptive. Unlike the right-hand side of eq. (S.17), the right-hand side of eq. (S.32) is always positive

(since cd < 1, see Supplementary Figure S3). This means that unlike when generations do not overlap, for

any ecological parameters N and cd, there exists a game that leads to disruptive selection when generations

overlap. In addition, since cooperative games with BD < 0 (like the Prisoner’s dilemma game) can have an

internal convergence stable equilibrium when generations overlap (eq. S.27), it is possible for such games to

lead to polymorphism when generations overlap, which was not the case in our baseline model.
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S.2.4 Selection when dispersal is cost-free

When dispersal is cost-free (cd = 0), analysis is much simplified. The population first converges to the equilib-

rium point

x∗ = (z∗,d∗) =
(

BD

S
,1

)
, (S.33)

at which there is no kin structure since dispersal is full (d∗ = 1). In other words, the population is well-mixed

and individuals interact at random. At this equilibrium, the Hessian matrix simply reads as,

H(x∗) =


0 − 1

N 2

BI −BD

f (x∗,x∗)

− 1

N 2

BI −BD

f (x∗,x∗)
− 2

N 2

 , (S.34)

and its dominant eigenvalue is,

λ(x∗) =− 1

N 2 +
√

(BI −BD)2 + f (x∗,x∗)2

N 2 f (x∗,x∗)
. (S.35)

Then, since

λ(x∗) > 0 ⇐⇒
√

(BI −BD)2 + f (x∗,x∗)2 > f (x∗,x∗) ⇐⇒ BI −BD 6= 0, (S.36)

disruptive selection always occurs and leads to a polymorphism that creates kin structure: benevolent individ-

uals that have z greater than z∗ = BD/S also disperse less, allowing for relatedness among benevolent individ-

uals to build up. By contrast, when dispersal is fixed at one (d = 1), the population will remain monomorphic

for the convergence stable equilibrium z∗ for Matrix games 77.

S.3 Individual based simulations

Simulations for the baseline model. We performed individual based simulations for a population composed

of Nd = 1250 groups, each populated by N = 8 haploid individuals, using Mathematica 11.0.1.0 75. Starting with

a population monomorphic for no dispersal d = 0 and full benevolence z = 1, we track the evolution of the

multidimensional phenotypic distribution under the constant but small influx of mutations. Each individual

i = 1, . . . ,10000 is characterised by a dispersal value di and a benevolence value zi . At the beginning of a gener-

ation, we calculate the fecundity fi of each individual according to its benevolence and that of its neighbours

(eq. 17, with f0 = 1). Then, we form the next generation of adults by sampling N individuals in each group

with replacement, where each individual from the parental generation is weighted according to whether they

belong to the group on which the breeding spot is filled or not. If an individual belongs to the same group in

which a breeding spot is filled, then its weight is fi (1−di ). If it belongs to another group, then its weight is

fi di (1− cd)/(Nd −1). Once an individual is chosen to fill the breeding spot, each locus independently mutates

with probability 0.01. If they do not mutate, then the offspring has the same phenotypic values as its parent. If

they mutate, then we add to parental values a small perturbation that is sampled from a normal distribution

with mean 0 and variance 0.012. The resulting phenotypic values are truncated to remain between 0 and 1. We

repeated the procedure for 3×104 generations.
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Fixed recombination. We incorporated recombination in our model by adding a stage of diploidy in the life-

cycle of our population. After social interactions within groups, haploid adult individuals produce haploid

gametes that disperse according to their genotype at the dispersal locus. Then, gametes randomly fuse within

groups to make a diploid zygote who undergoes meiosis and whose genome recombine according to a prob-

ability R. A diploid zygote then produces two haploid individuals one of which (randomly sampled) develops

into an adult. In terms of simulations, this modified life-cycle entails that after calculating the fecundity fi of

each individual, each of the N breeding spots are filled by first sampling two haploid gametes from the parental

generation according to the weighted sampling described in Simulations for baseline model, and fuse to make

a diploid zygote. Then, say a diploid zygote has parents indexed i and j with genotypes (zi ,di ) and (z j ,d j ) re-

spectively. With a probability R, recombination occurs in this zygote, which produces two recombinant haploid

gametes, (zi ,d j ) and (z j ,di ). With complementary probability 1−R, recombination does not occur and the two

haploid gametes are the parental ones, (zi ,di ) and (z j ,d j ). The breeding spot is filled by sampling one of the

haploid gamete at random (with equal probability) which develops into an adult individual. The rest of the

simulation is as in Simulations for baseline model.

Recombination evolution. In order to model recombination evolution, we added a third quantitative locus

that controls the recombination probability at the diploid stage. The genome of a haploid individual there-

fore carries three quantitative loci: (z,d ,τ), where as before z encodes the probability of adopting B action, d

the probability of dispersal at birth, and τ controls the probability of recombination among z and d loci. For

simplicity, we assume that the τ locus is completely linked to the d locus. Two alleles segregate at the recom-

bination locus τ: a wild-type R which codes for a recombination probability of 1/2 and a dominant mutant r

for zero recombination. Diploid zygotes are formed as above. Then, say a diploid zygote has parents indexed i

and j with genotypes (zi ,di ,τi ) and (z j ,d j ,τ j ) respectively. Recombination in this zygote occurs with a prob-

ability 1/2 if τi = τ j = R, or zero otherwise. If recombination occurs, the haploids produced are (zi ,d j ,τ j ) and

(z j ,di ,τi ) since the τ locus is completely linked to the d locus. Mutation occurs at each locus independently

with probability 0.01. Quantitative effects of mutation at the z and d loci are as in Computer simulations for

baseline model, while mutations at the τ locus changes r to R and R to r . The rest of the simulation is as in

Computer simulations for baseline model.

FST calculations. In order to calculate the FST measures of genetic differentiation shown in Figure 5 at a given

generation, we first calculated the average probability of adopting the benevolent action in the population at

that generation,

z̄ = 1

NdN

Nd∑
j=1

N∑
i=1

zi j , (S.37)

where Nd is the number of groups in the population and zi j is the average genotypic value at the z locus (i.e.,

the probability of adopting the benevolent action) of individual indexed i ∈ {1, . . . , N } in group indexed j ∈
{1, . . . , Nd}. Next, we divided the population between a benevolent and self-serving morph by comparing each
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individual to the population average z̄. Those that carried a genotypic value z greater than z̄ were considered

to be from the benevolent morph, and those with a genotypic value less than z̄, from the self-serving morph.

The set of individuals belonging to the benevolent morph in a group j ∈ {1, . . . , Nd} is then described by the set

B j = {i : zi j ≥ z̄}, (S.38)

which gives the individual indices i of all the individuals from the benevolent morph in group j . Similarly, the

set of individuals belonging to the self-serving morph in a group j ∈ {1, . . . , Nd} is

M j = {i : zi j < z̄}. (S.39)

We denote by |B j | the size of set B j , i.e., the number of individuals from the benevolent morph in group j , and

similarly, by |M j |, the number from the self-serving morph in group j .

Let us first consider the procedure to calculate the genetic differentiation among morphs at the selected locus,

i.e., at the z locus (full black curve in Figure 5). We first calculated the genetic variance among morphs as

σ2
among morphs =

1

2

(
(z̄B − z̄)2 + (z̄M − z̄)2) , (S.40)

where

z̄B = 1∑Nd
j=1 |B j |

Nd∑
j=1

∑
i∈B j

zi j ,

z̄M = 1∑Nd
j=1 |M j |

Nd∑
j=1

∑
i∈M j

zi j ,

(S.41)

respectively give the average z genotypic value within the benevolent and self-serving morph. Next, we calcu-

lated the genetic variance within morphs as

σ2
within morphs =

1

2

 1∑Nd
j=1 |B j |

Nd∑
j=1

∑
i∈B j

(
zi j − z̄B

)2 + 1∑Nd
j=1 |M j |

Nd∑
j=1

∑
i∈M j

(
zi j − z̄M

)2

 . (S.42)

The genetic differentiation among morphs at the selected locus is then

FST,among morphs =
σ2

among morphs

σ2
among morphs +σ2

within morphs

. (S.43)

We also calculated the genetic differentiation among groups, within each morph (full blue and red curves in

Figure 5). We first calculated the genetic variance among groups, within the benevolent morph, as

σ2
among groups,B = 1

Nd

Nd∑
j=1

(z̄B, j − z̄B)2, (S.44)

where

z̄B, j = 1

|B j |
∑

i∈B j

zi j (S.45)

is the average z genotypic value in the benevolent morph in group j . Second, we calculated the genetic variance

within groups, within the benevolent morph, as

σ2
within groups,B = 1

Nd

Nd∑
j=1

1

|B j |
∑

i∈B j

(
zi j − z̄B, j

)2 . (S.46)
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The genetic differentiation among groups, within the benevolent morph, at the selected locus (full blue curve

in Figure 5) is then given by

FST,among groups,B =
σ2

among groups,B

σ2
among groups,B +σ2

within groups,B

. (S.47)

Similarly, genetic differentiation among groups, within the self-serving morph, at the selected locus (full red

curve in Figure 5) is given by

FST,among groups,M =
σ2

among groups,M

σ2
among groups,M +σ2

within groups,M

, (S.48)

where

σ2
among groups,M = 1

Nd

Nd∑
j=1

(z̄M, j − z̄M)2,

σ2
within groups,M = 1

Nd

Nd∑
j=1

1

|M j |
∑

i∈M j

(
zi j − z̄M, j

)2 ,

(S.49)

and

z̄M, j = 1

|M j |
∑

i∈M j

zi j . (S.50)

Measures of genetic differentiation at the neutral locus (dashed curves in Figure 5) are calculated the same way

as above (eqs. S.40-S.50), replacing the genotypic values at the z locus by those at the neutral locus.
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