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Abstract	
Understanding	 the	 nature	 and	 form	 of	 prefrontal	 cortex	 representations	 that	 support	
flexible	 behavior	 is	 an	 important	 open	 problem	 in	 cognitive	 neuroscience.	 In	 humans,	
multi-voxel	 pattern	 analysis	 (MVPA)	 of	 fMRI	 BOLD	measurements	 has	 emerged	 as	 an	
important	 approach	 for	 studying	 neural	 representations.	 An	 implicit,	 untested	
assumption	underlying	many	MVPA	studies	is	that	the	base	rate	of	decoding	information	
encoded	 in	 neuronal	 activity	 from	 BOLD	 activity	 patterns,	 is	 invariant	 across	 brain	
regions.	Here	we	test	this	assumption	by	estimating	these	base	rates	from	a	meta-analysis	of	
published	 MVPA	 studies.	 We	 show	 that	 this	 assumption	 is	 violated	 for	 the	 prefrontal	
cortex,	 which	 shows	 a	 significantly	 lower	 base	 rate	 for	 decoding	 than	 visual	 sensory	
cortex.	Our	results	have	implications	for	the	design	and	interpretation	of	MVPA	studies	of	
prefrontal	cortex,	and	raise	important	questions	about	its	functional	organization.	
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Introduction	
	
The	 prefrontal	 cortex	 supports	 flexible,	 organized	 behavior.	 Patients	 with	 frontal	 lobe	
lesions	 struggle	 to	 coherently	 organize	 their	 behavior	 around	 a	 goal	 and	 show	 reduced	
flexibility	in	changing	circumstances	1-3.	Theories	of	prefrontal	cortex	function	emphasize	its	
role	in	representing	task-relevant	information	like	rules,	goals,	rewards,	action	choices,	etc.	
during	 task	 performance	 4-10.	 These	 task	 representations	 are	 hypothesized	 to	 serve	 as	 a	
source	 of	 top-down,	 contextual	 signals	 that	 bias	 processing	 in	 other	 brain	 regions,	 thus	
achieving	 cognitive	 control.	 Understanding	 the	 nature	 and	 form	 of	 prefrontal	
representations	 remains	 a	 key	 open	 problem	 in	 the	 study	 of	 cognitive	 control,	 learning,	
generalization,	multi-tasking	and	decision	making	11-16.		
	
Much	 of	 our	 knowledge	 of	 prefrontal	 representations	 derives	 from	 single-neuron	
electrophysiology	 conducted	 in	 highly	 trained	 non-human	 primates.	 Such	 studies	 have	
consistently	revealed	rich	coding	of	a	variety	of	task-relevant	information	in	the	firing	rate	
of	individual	prefrontal	neurons	17-21,	the	activity	patterns	of	ensembles	of	neurons	22-26	and	
in	oscillatory	synchronization	of	local	field	potentials	27.	
	
In	humans,	blood-oxygenation-level	dependent	(BOLD)	measures	from	functional	MRI	were	
traditionally	 seen	as	 lacking	 the	 sensitivity	 and	 spatial	 resolution	 for	 the	 study	of	neural	
information	coding	 28.	 In	 the	past	decade,	however,	 this	view	has	been	challenged	by	 the	
development	 of	 sensitive	 multivariate	 pattern	 analysis	 (MVPA)	 methods	 that	 employ	
powerful	machine	learning	pattern	classifiers	to	decode	the	information	content	of	spatially	
distributed	BOLD	activity	patterns	29-35.	MVPA	has	been	applied	to	fMRI	data	from	all	over	
the	 brain,	 and	 the	 prefrontal	 cortex	 is	 no	 exception.	 Several	 studies	 have	 reported	
statistically	 reliable	 classification	 of	 task	 rule	 and	 other	 task-relevant	 information	 from	
regions	within	prefrontal	cortex	36-41.		
	
An	implicit	assumption	in	many	MVPA	studies	is	that	the	function	relating	the	information	
content	of	BOLD	patterns	with	 the	 information	content	of	underlying	neuronal	activity	 is	
invariant	across	different	parts	of	 the	brain.	 In	other	words,	all	regions	have	similar	base	
rates	for	decoding	information	from	BOLD	patterns,	to	the	degree	that	it	is	encoded	in	the	
underlying	neuronal	activity.	For	example,	 this	assumption	underlies	analyses	comparing	
decoding	 accuracies	 obtained	 from	 different	 brain	 regions,	 or	 those	 that	 employ	 roving,	
whole	 brain	 ‘searchlights’	 to	 discover	 local	 regions	 that	 may	 carry	 such	 information.	
However,	this	remains	an	untested	assumption.	Indeed,	the	base	rate	for	any	brain	region	
likely	 depends	 on	 interactions	 between	 the	 underlying	 micro-anatomy	 and	 the	
haemodynamic	response	function,	both	of	which	may	vary	across	regions.	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 17, 2017. ; https://doi.org/10.1101/127324doi: bioRxiv preprint 

https://doi.org/10.1101/127324
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
	
For	 the	 prefrontal	 cortex,	 in	 particular,	 there	 is	 an	 impression	 among	 researchers	 with	
experience	 using	 MVPA	 that	 decoding	 information	 from	 BOLD	 patterns	 is	 particularly	
difficult.	 Despite	 the	 sensitivity	 of	 MVPA,	 typical	 group-mean	 classification	 accuracies	
reported	in	fMRI	studies	of	PFC	decoding	often	hover	just	above	chance	levels	(e.g.	values	of	
53%,	55%	and	55%	reported	in	Nelissen,	et	al.	42,	Woolgar,	et	al.	37,	and	Bode	and	Haynes	38	
for	two-way	classifications),	even	for	task	features	like	rules	that	are	known	to	be	robustly	
represented	 by	 the	 activity	 of	 prefrontal	 neurons	 in	 non-human	 primates	 20,22,23,43-46.	
Consistently	low	classification	accuracies	hint	at	a	low	base	rate	for	decoding	information	
from	prefrontal	BOLD	patterns.	A	 low	base	 rate	may	result,	 in	part,	 from	methodological	
factors,	and	in	that	case,	it	would	be	useful	to	know	what	these	factors	are.	Alternatively,	a	
low	 base	 rate	 may	 raise	 the	 possibility	 that	 the	 prefrontal	 BOLD	 signal	 itself	 may	 not	
adequately	capture	the	 information	encoded	in	the	spiking	activity	of	prefrontal	neurons.	
Such	 an	 observation	 would	 raise	 interesting	 theoretical	 questions	 about	 why	 and	 how	
prefrontal	cortical	coding	differs	in	its	type	and	organization	from	other	parts	of	the	brain	
with	higher	base	rates.		
	
A	low	base	rate	would	also	have	implications	for	experimental	design	and	inference.	First,	it	
would	suggest	a	small	effect	size,	and	so	would	require	that	prefrontal	MVPA	studies	are	well	
powered,	and	that	power	estimates	are	based	on	effects	sizes	obtained	from	the	PFC	itself	
and	not	 from	other	 regions	of	 the	brain.	 Second,	 a	 systematically	 lower	base	 rate	 in	PFC	
complicates	 the	 interpretation	 of	 comparisons	 with	 other	 brain	 regions,	 which	 would	
require	a	consideration	of	the	underlying	base	rates	of	each	region.		
	
In	this	paper,	we	empirically	test	the	assumption	that	the	base	rate	of	decoding	information	
from	PFC	is	similar	to	other	brain	regions.	To	this	end,	we	carried	out	a	systematic	meta-
analysis	 of	 published	 fMRI	 studies	 of	 prefrontal	 cortex	 that	 employed	 MVPA.	 From	 this	
analysis,	we	estimate	 the	base	rate	of	decoding	 information	 from	prefrontal	cortex	BOLD	
patterns	and	compare	it	to	base	rates	obtained	from	visual	cortex	and	mid-temporal	regions.	
We	also	determine	the	distribution	of	classification	accuracies	obtained	for	‘significant’	and	
‘null’	 effects	 in	 PFC	 and	 ask	 to	 what	 extent	 they	 overlap.	 Based	 on	 estimates	 of	 typical	
classification	 accuracies	 from	 these	 distributions,	 we	 also	 consider	 whether	 published	
studies	typically	collect	sufficient	data	in	order	to	detect	the	small	PFC	effects.	Finally,	we	
identify	 studies	 that	 have	 achieved	 considerably	 better-than-average	 classification	
accuracies	and	ask	whether	 they	are	associated	with	particular	 sub-regions	of	prefrontal	
cortex,	particular	task	features	or	particular	analysis	methods.		
	
Collectively,	 our	 results	 show	 that	 the	 base	 rate	 of	 decoding	 information	 from	 PFC	 is	
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systematically	 lower	 than	 other	 regions,	 and	 that	 this	 low	 base	 rate	 appears	 mostly	
consistent	across	variance	in	methodological	approaches.	We	conclude	by	considering	the	
potential	reasons	for	this	low	base	rate	of	prefrontal	classification.		

Results	

Typical	decoding	performance	in	prefrontal	cortex	is	poor	
We	leveraged	our	meta-analysis	of	published	studies	to	approximately	estimate	the	base	rate	
of	decoding	information	from	PFC	cortical	BOLD	patterns.	To	this	end,	we	compiled	all	two-
way,	 group-level	 mean	 classification	 accuracies	 reported	 across	 the	 76	 studies	 in	 our	
database.	 The	 resulting	 distribution	 is	 an	 estimate	 of	 the	 sampling	 distribution	 of	mean	
classification	accuracies	for	decoding	information	from	PFC	BOLD	patterns.	The	mean	of	this	
distribution	was	57.7%	(95-CI:	56.3-59.2%	**),	though	we	observed	a	skew,	so	that	more	
than	63.1%	of	the	accuracies	were	below	the	mean.	Therefore,	we	employed	the	median	as	
a	measure	of	the	central	tendency,	arriving	at	a	base	rate	of	55.7%	(95-CI:	55.0-57.0%).	For	
comparison,	we	also	derived	base	rates	for	decoding	visual	information	from	occipital	and	
temporal	cortex	BOLD	patterns.	These	were	computed	from	meta-analytic	data	previously	
compiled	 by	 Coutanche	 and	 colleagues	 consisting	 of	 119	 analyses	 from	 52	 studies47.	
Compared	to	prefrontal	cortex	base	rates,	both	the	occipital	and	temporal	cortex	(median)	
base	rates	were	significantly	higher	at	66.6%	(95-CI:	61.5-72%	**)	and	71.0%	(95-CI:	68.0-
75.0%	**)	respectively.		
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MVPA	 studies	 of	 occipital	 and	 ventral	 temporal	 cortex	 focus	 exclusively	 on	 decoding	
information	 about	 visual	 stimulus	 attributes.	 This	 is	 because	 overwhelming	 evidence	
supports	a	strong	prior	 for	 the	hypothesis	 that	 the	human	occipital	and	ventral	 temporal	
cortices	code	for	visual	information.	On	the	other	hand,	prefrontal	MVPA	analyses	spanned	
attempts	 to	 decode	 a	 wide	 variety	 of	 information,	 reflecting	 a	 much	 less	 constrained	
hypothesis	space	for	what	information	is	represented	in	PFC.	To	control	for	this	difference,	

	
	
Figure	1.	Decoding	accuracy	distributions	for	frontal,	occipital	and	ventral	temporal	cortex.	
Cumulative	distribution	functions	(a	&	c)	and	probability	density	functions	(b	&	d)	for	visual	
decoding	accuracies	in	occipital	(red)	and	ventral	temporal	(orange)	cortex	compared	with	
frontal	 decoding	 accuracies	 from	 all	 analyses	 (top	 panels,	 purple)	 and	 rule	 decoding	
analyses	(bottom	panels,	aqua).	Vertical	lines	indicate	median	values	of	66.6%	(95-CI:	61.5-
72%)	 for	occipital,	71.0%	(95-CI:	68.0-75.0%)	 for	ventral	 temporal,	55.7%	(95-CI:	55.0-
57.0%)	 for	 frontal,	 and	 57.5%	 (95-CI:	 56.0-60.0%)	 for	 frontal	 rule-decoding	 analyses.	
Shaded	areas	reflect	95%	confidence	intervals	obtained	from	a	hierarchical	bootstrapping	
procedure.		
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we	focused	on	a	subset	of	311	analyses	from	36	studies	in	our	database	that	attempted	to	
decode	 “rule	 information”.	 Well-established	 deficits	 in	 rule-guided	 behavior	 have	 been	
linked	 to	 prefrontal	 dysfunction	 48-52	 and	 have	 been	 attributed	 to	 a	 loss	 of	 the	 ability	 to	
represent	 rules	 in	working	memory	 7.	Moreover,	 there	 is	 strong	 evidence	 from	macaque	
electrophysiology	that	the	prefrontal	neurons	code	for	task	rules	20,22,23,43-46,53.	Therefore,	it	
is	reasonable	to	place	a	strong	prior	on	the	hypothesis	that	task	rule	information	is	coded	in	
the	activity	of	human	prefrontal	neurons.	A	base	rate	obtained	from	rule	decoding	studies	
should,	thus,	be	more	comparable	to	the	studies	in	Coutanche	et	al’s	database.	The	median	
of	the	distribution	of	classification	accuracies	from	rule	decoding	analyses	was	57.5%	(56.0-
60.0%),	again	significantly	lower	than	both	the	occipital	and	ventral	temporal	base	rates.		
	
Collectively,	 these	 results	 demonstrate	 that	 the	 base	 rate	 for	 decoding	 information	 from	
human	prefrontal	cortex	BOLD	patterns	is	low	in	comparison	to	two	sensory	regions	of	the	
brain,	consistent	with	the	impression	that	MVPA	in	human	prefrontal	cortex	is	particularly	
difficult.			

Overlaps	between	decoding	accuracy	distributions	for	null	and	significant	effects		
Our	database	of	PFC	decoding	analyses	included	group	mean	classification	accuracies	of	both	
significant	 (greater	 than	 chance)	 and	 null	 effects.	 This	 allowed	 us	 to	 separately	 compile	
literature-derived	 distributions	 of	 classification	 accuracies	 for	 (a)	 when	 information	 is	
successfully	decoded	 from	frontal	BOLD	activity	patterns	and	(b)	when	no	 information	 is	
detected.	 These	 distributions	 should	 overlap	minimally	 if	 the	 studies	 that	 produced	 the	
classification	accuracies	had	high	power	and	low	false	positive	rates.		
	
The	median	of	the	classification	accuracy	distribution	of	significant	effects	was	58.7%	(95-
CI:	 57.0-60.0%).	 Note	 that	 the	 values	 in	 our	 ‘significant’	 distribution	 sample	 from	 an	
underlying	‘true’	distribution	truncated	at	the	left	tail	by	the	different	significance	thresholds	
used	by	specific	studies.	In	other	words,	we	are	likely	(conservatively)	overestimating	the	
center	of	this	‘true’	distribution.	The	distribution	for	the	null	effects	had	a	median	of	51.6%	
(95-CI:	51.0-52.0%).	We	computed	the	95th	percentile	of	this	empirical	 ‘null	distribution’	
analogous	to	the	typical	‘critical	value’	used	for	null-hypothesis	testing	and	obtained	a	value	
of	57.4%.	Note	that	these	values	sample	a	putative	‘true	null’	distribution	truncated	at	the	
right	tail	by	the	significant	thresholds	used	in	each	analysis.	Such	truncating	would	normally	
bias	our	estimates	of	central	tendency	and	the	critical	value	downwards.	On	the	other	hand,	
the	studies	in	our	database	employed	different	sample	sizes	and	a	variety	of	procedures	for	
testing	significance.	If	a	proportion	of	these	studies	were	underpowered,	this	would	bias	our	
estimates	 upwards.	 In	 addition,	 we	 have	 only	 relied	 on	 published	 studies	 in	 this	 meta-
analysis.	Thus,	it	is	also	likely	that	our	estimates	are	biased	upward	due	to	the	so-called	file	
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drawer	 effect	 or	 systematic	 non-reporting	 of	 null	 findings.	 In	 order	 to	 obtain	 a	 more	
conservative	estimate	of	the	critical	value,	we	recentered	the	null	distribution	to	50%.	With	
this	approach,	we	obtained	an	estimate	of	55.4	for	the	95th	percentile.		
	

	
Despite	these	conservative	adjustments,	as	shown	in	Fig	2,	there	was	considerable	overlap	
between	 the	 estimated	 ‘significant’	 and	 ‘null’	 distributions.	 Indeed,	 36.0%	 (95-CI:	 15.5-
66.4%)	of	the	accuracies	in	the	‘significant’	distribution	fell	below	the	95th	percentile	of	the	
uncentered	null	distribution	of	57.5%	while	23.5%	fell	below	the	centered	null	distribution	
of	 55.4%.	 This	 overlap	 suggests	 that	 a	 number	 of	 previous	 studies	 were	 either	 not	
sufficiently	powered	to	detect	information	coded	in	PFC	BOLD	patterns,	or	had	inflated	false	
positive	rates	(over	the	usual	5%).		
	
However,	 as	has	been	 recently	pointed	out,	 the	 results	of	 such	 tests	of	 group-level	mean	
accuracies	against	chance	levels	do	not,	in	fact,	support	the	population-level	inference	that	

	
Figure	 2.	 ‘Significant’	 v/s	 ‘Non-significant’	 decoding	 accuracy	 distributions.	 Cumulative	
distribution	 function	 (a)	 and	 probability	 density	 function	 (b)	 for	 frontal	 decoding	
accuracies	 reported	 as	 significant	 (blue)	 and	 non-significant	 (green).	 Dotted	 line	 in	 (b)	
reflects	 chance-level	 (50%)	 and	 solid	 green	 line	 indicates	 95th	 percentile	 of	 the	
(uncentered)	 non-significant	 distribution	 at	 57.4%.	 36%	 of	 decoding	 accuracies	 in	 the	
significant	distribution	fell	below	this	‘critical’	value.	Shaded	areas	reflect	95%	confidence	
intervals	obtained	from	a	hierarchical	bootstrapping	procedure.	Distributions	consisted	of	
506	 analyses	 from	 75	 studies	 and	 349	 analyses	 from	 48	 studies	 for	 significant	 and	
nonsignificant	 accuracies,	 respectively.	 Raw	 decoding	 accuracies	 are	 plotted	 in	
Supplementary	Figure	S1.		
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the	effect	is	typically	present	in	the	population	54.	Instead,	these	tests	assess	the	global	null	
hypothesis	 55	 that	no	 participants	 show	 the	 effect.	 It	 has	 been	 suggested	 that	 population	
inferences	can	be	made	based	on	the	prevalence	of	an	effect	in	a	sample	54.	As	a	consequence,	
the	power	to	detect	an	effect	at	the	level	of	an	individual	participant	becomes	particularly	
important.		
	
It	has	not	been	common	practice	 to	report	 individual	participant	data,	and	therefore	 it	 is	
difficult	to	get	estimates	of	within-subject	variance	needed	for	power	analysis.	Nevertheless,	
it	is	possible	to	make	some	general	points	about	power	at	the	individual	level.	The	empirical	
‘null’	distribution	described	above	gives	us	an	estimate	of	the	typical	decoding	accuracy	for	
a	 participant	 who	 does	 not	 show	 an	 effect	 (given	 that	 in	 these	 analyses	 the	 global	 null	
hypothesis	cannot	be	rejected).	The	95th	percentile	of	the	null	distribution	is	55.4%.	On	the	
other	hand,	an	estimate	of	the	typical	individual’s	decoding	accuracy	when	they	do	show	the	
effect	may	be	derived	 from	the	 ‘significant’	distribution.	Comparing	these	 two	values	will	
allow	us	an	estimate	of	the	size	of	the	typical	effect.		
	
We	consider	two	boundary	conditions	to	derive	the	typical	subject-level	decoding	accuracy.	
Consider	the	boundary	condition	where	we	assume	that	every	significant	effect	reported	in	
our	database	was	maximally	prevalent	in	that	study’s	sample	(i.e.	every	participant	shows	
the	effect).	In	that	condition,	the	median	of	the	‘significant’	distribution	is	a	good	estimate	of	
the	typical	participant-level	decoding	accuracy.	Given	a	median	of	58.7%,	we	are,	therefore,	
looking	to	detect	a	difference	of	only	3.3%	points	in	order	to	reject	the	null	hypothesis	of	
chance-level	coding	for	a	typical	participant.	If	a	study	included	test	50	trials	(which	is	typical	
for	MVPA	designs)	 for	 each	 condition,	 this	would	 imply	 a	 difference	 of	 less	 than	4	 trials	
successfully	classified.	Consider	another	boundary	condition	where	every	significant	effect	
reported	by	studies	in	our	database	show	a	prevalence	of	only	50%.	A	population	inference	
requires	 that	at	 least	a	majority	of	 the	participants	show	the	effect.	Assuming	this	 liberal	
boundary	condition	for	the	studies	 in	our	database,	we	can	estimate	the	typical	decoding	
accuracy	 of	 an	 individual	 who	 showed	 the	 effect	 from	 the	 median	 of	 our	 significant	
distribution	 to	 be	 approximately	 67.4%	 (assuming	 that	 half	 of	 the	 subjects	 in	 the	 study	
showed	 no	 effect	 and	 thus	 had	 a	 decoding	 accuracy	 of	 50%).	 In	 that	 case,	we	would	 be	
looking	to	detect	a	12%	points	difference	–	a	difference	of	12	trials	successfully	classified	
under	the	most	liberal	assumptions.	These	rough	calculations	suggest	that	the	typical	PFC	
MVPA	effect	is	very	small	and	given	high	levels	of	noise	in	fMRI	measurements,	one	would	
require	considerably	more	data	per	participant	to	detect	such	an	effect	reliably.	
	
We	emphasize	again	that	this	analysis	is	not	intended	as	a	recommendation	of	trial	numbers	
for	 future	MVPA	studies	of	 the	PFC	and	should	not	be	cited	as	such.	Rather,	 this	analysis	
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merely	makes	concrete	the	point	that	given	the	low	base	rate	decoding	accuracy	in	PFC	and	
given	the	importance	of	assessing	prevalence,	sufficiently	powered	studies	at	the	individual	
participant	 level	 are	 essential.	 Power	 calculations	 should	be	based	on	 estimates	of	 effect	
sizes	from	classification	of	PFC	itself	and	not	based	on	samples	or	effect	sizes	observed	in	
other	regions	of	the	brain	given	the	differences	between	regions.		

Analysis	of	outliers	

Our	 estimate	 of	 a	 literature-derived	 decoding	 accuracy	 distribution	 provides	 a	means	 of	
placing	the	results	of	any	given	prefrontal	decoding	analysis	within	the	context	of	the	wider	
literature.	Studies	with	very	high	accuracies,	for	instance,	merit	attention	as	they	may	have	
identified	classes	of	information	that	are	particularly	well	represented	in	prefrontal	cortex,	
or	may	have	employed	a	particularly	effectively	analysis	approach.	At	the	same	time,	given	
prior	 findings,	 these	 effects	 are	 surprising	 and,	 therefore,	 also	merit	 closer	 scrutiny	 and	
replication	 to	 ensure	 that	 these	 results	 are	not	 caused	by	other	 confounding	 factors.	 For	
these	reasons,	we	examined	the	top	5%	of	reported	classification	accuracies	in	our	database	
(Table	1)	to	identify	factors	that	might	explain	the	high	values.		
	
First,	as	many	as	18	of	the	41	analyses	in	the	top	5%	decoded	some	form	of	motor	response	
(reaching,	 grasping,	 saccades	 etc.).	 Five	 additional	 analyses	 involved	 classifying	 the	
anticipation	or	experience	of	electric	shocks	on	very	different	parts	of	the	body	(arm	v/s	leg).	
Six	other	analyses	classified	ordered	stimuli	like	speech	or	music	versus	unordered	versions	
of	the	same	stimuli.	All	of	these	studies	manipulate	conditions	that	likely	produce	univariate	
differences,	either	as	a	small	mean-response	difference	across	a	majority	of	 the	voxels	or	
differential	activation	of	adjacent	subregions.	For	example,	univariate	versions	of	ordered	vs	
unordered	stimuli	are	often	used	to	localize	language	specific	regions	in	prefrontal	cortex	
56,57.	 Univariate	 contributions	 to	 decoding	 analyses	 do	 not	 invalidate	 the	 inference	 of	
information	 coding.	 But,	 they	 do	 not	 require	 the	 use	 of	 pattern	 classifiers	 to	 detect,	 and	
therefore,	should	not	inform	an	assessment	of	the	method	as	it	is	used	in	more	typical	MVPA	
analyses.	
	
Two	studies	employed	unusual	measurement	or	analysis	methods.	Study	39	(5	analyses)	
deployed	non-linear	classifiers	which	produced	significantly	higher	accuracies	than	linear	
classifiers	on	the	same	data.	The	classification	accuracies	obtained	from	the	linear	classifiers	
are	 much	 closer	 to	 the	 median	 of	 our	 distribution.	 Study	 31	 uniquely	 employed	 high-
resolution	scanning	with	a	7T	magnet.		
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Table	1:	Analyses	in	the	top	5th	percentile	of	the	‘significant’	distribution	

Study	
ID	

No.	of	
analyses	
in	top	5%	
(total	41)	

Decoding	
accuracy	
range	

ROI	or	
Searchlight	 Region(s)1	 Description	

48	 13	 76%	-	93%	 ROI	

Right	precentral	gyrus;	Left	precentral	
gyrus;	Left	middle	frontal	gyrus;	Right	
supplementary	motor	area;	Left	
supplementary	motor	area	

Classified	hand	v/s	saccade	
response	

66	 5	 79%	-	90%	 ROI	
Right	middle	frontal	gyrus;	Left	middle	
frontal	gyrus;	Bilateral	anterior	
cingulate	gyrus	

Classified	
anticipation/experience	of	
electric	shock	on	arm	v/s	leg	

39	 5	 76%	-	82%	 Searchlight	
Right	superior	frontal	gyrus;	Right	
anterior	cingulate	gyrus;	Bilateral	
medial	frontal	gyrus	

Classified	to-be-purchases	
objects	v/s	neutral	objects	when	
attended/unattended.	

52	 5	 76%	-	87%	 Searchlight	

Bilateral	inferior	frontal	gyrus,	pars	
orbitalis;	Bilateral	inferior	frontal	
gyrus,	pars	triangularis;	Bilateral	
inferior	frontal	gyrus,	pars	opercularis	

Classified	speech/music	v/s	re-
ordered	speech/music	

70	 4	 78%	-	88%	 ROI	
Left	middle	frontal	gyrus;	Right	middle	
frontal	gyrus;	Left	precentral	gyrus;	
Right	precentral	gyrus	

Classified	tasks	that	involved	
different	rules	&	stimuli	

71	 2	 84%	-	86%	 ROI	

Bilateral	superior	frontal	&2	gyrus	&	
bilateral	middle	frontal	gyrus	&	
bilateral	medial	frontal	gyrus	&	
bilateral	supplementary	motor	area;	
	
Bilateral	superior	frontal	gyrus	&	
bilateral	middle	frontal	gyrus	&	
bilateral	medial	frontal	gyrus		

Classified	reactive	v/s	predictive	
eye-movement	pursuit	of	stimuli	

69	 2	 80%	-	85%	 ROI	 Bilateral	anterior	cingulate	gyrus	&	
bilateral	midcingulate	area	

Classified	near	v/s	far	semantic	
similarity	of	presented	words	

54	 2	 81%	-	83%	 ROI	 Bilateral	precentral	gyrus	
Classified	execution	v/s	
imagining/observing	reaching	
movements	

50	 1	 85%	 Searchlight	 Left	inferior	frontal	gyrus,	pars	triangularis	
Classified	speech	v/s	spectrally-
rotated	speech	

31	 1	 77%	 ROI	 Left	middle	frontal	gyrus	
Classified	prospective	Yes	v/s	No	
decisions	across	intentions	
(honest/dishonest)	

78	 1	 79%	 ROI	 Bilateral	precentral	gyrus	 Classified	whole	hand	grasping	
v/s	reaching	movement	

	
1. Regions	were	registered	to	corresponding	AAL	region.		
2. &	refers	to	the	union	of	AAL	regions	for	constructing	a	larger	ROI	used	in	the	corresponding	study.	
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Importantly,	only	4	of	these	analyses,	all	from	a	single	paper	(Study	70),	involved	decoding	
task	or	rule	information	as	posited	by	models	of	cognitive	control	and	observed	in	macaque	
studies.	However,	even	in	these	analyses,	task/rule	was	confounded	with	visual	information	
as	 the	 contrasted	 task	 conditions	 involved	 different	 classes	 of	 stimuli.	 Indeed,	 when	
task/rule	was	decoded	after	controlling	stimulus	differences,	classification	accuracies	were	
in	 the	mid	50s,	 close	 to	 the	median	of	 our	distribution.	Therefore,	 the	high	 classification	
accuracies	may	have	been	driven	by	the	additive	effects	of	multiple	sources	of	information.			
	
In	summary,	we	did	not	find	a	particular	factor	or	approach	that	consistently	explained	these	
outlying	decoding	accuracies	beyond	what	basic	univariate	analysis	could	provide.		

Factors	affecting	decoding	performance	
We	next	sought	to	systematically	examine	whether	particular	sub-regions	of	frontal	cortex,	
particular	 types	 of	 information,	 or	 particular	 methods	 were	 correlated	 with	 decoding	
accuracy	 levels.	 To	 do	 this,	we	 assessed	 the	 partial	 influence	 of	 these	 factors	 in	 our	 full	
database	 using	 mixed-effects	 linear	 regression.	 We	 fit	 a	 single	 mixed-effects	 regression	
model	with	all	the	characteristics	-	region,	 information	type,	analysis	procedure.	All	these	
regressors	were	dummy	coded	with	one	category	omitted	from	the	model.	To	account	for	
covariance	 between	 observations	 from	 the	 same	 study,	 we	 also	 included	 random	 study	
intercepts.	Classification	accuracies	reported	as	non-significant	were	excluded	as	they	are	
more	likely	to	have	small	or	no	effects.	
	
To	assess	the	significance	of	each	characteristic,	regressors	were	dropped	one	at	a	time	from	
the	model	and	tested	against	the	full	model	using	the	likelihood	ratio	test.	Results	are	shown	
in	Supplementary	Fig.	 S2.	Only	 the	 inclusion	of	classifier	 significantly	 improved	model	 fit	
(Supplementary	 Table	 S4;	 L=17.3	 p=0.004,	 df=5).	 Post-hoc	 pair-wise	 tests	 applied	 to	
classifier	showed	that	non-linear	SVM	had	a	significantly	higher	accuracy	than	linear	SVM	
(t(55)=-3.27;	p=0.02,	Tukey-HSD).	This	effect	was	driven	by	3	out	of	4	studies	using	non-
linear	SVM,	each	with	accuracies	above	70%,	and	was	also	significant	in	a	regression	using	
only	a	single	mean	accuracy	per	study	(Supplementary	Table	S5,	F(5,59)=4.14,	p=0.003).	One	
of	these	studies	were	also	identified	by	our	outlier	analysis.	However,	given	the	non-normal	
distribution	of	group	accuracies,	this	result	should	be	evaluated	with	caution.	The	effects	on	
accuracy	 for	all	other	analysis	characteristics	can	be	seen	 in	Supplemental	Figure	S2	and	
Supplemental	Table	S4.		
	
The	 full	 regression	 model	 did	 not	 reveal	 differences	 in	 accuracy	 across	 regions	
(Supplementary	Figure	S2).	However,	the	analysis	may	have	been	underpowered	due	to	the	
large	 number	 of	 regions	 tested	 simultaneously	 and	 the	 few	 number	 of	 observations	
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associated	with	each	region.	Given	that	we	found	no	effect	of	ROI	laterality	in	the	main	model,	
we	 combined	 the	 left,	 right	 and	 bi-lateral	 portions	 of	 each	 ROI	 for	 a	 more	 powerful,	
exploratory	follow	up	analysis,	and	observed	that	superior	&	middle	frontal	gyrus,	orbital	
part	(58.2%),	and	middle	frontal	gyrus	(59.7%)	were	marginally	lower	than	the	grand	mean	
(61.3%)	 (Supplemental	 Figure	 S3;	 t=-2.01,	 p=0.044;	 t=-2.21,	p=0.027).	 Finally,	we	 tested	
whether	 accuracy	differed	across	 regions	based	on	 the	 type	of	 information	decoded.	Not	
surprisingly	response	decoding	was	associated	with	higher	accuracy	in	superior	frontal	gyrus	
(66%,	p=0.03)	and	marginally	so	in	precentral	gyrus	&	supplementary	motor	area	(64.3%,	
p=0.09),	and	perceptual	decoding	was	associated	with	higher	accuracy	in	cingulate	cortex	
(68.5%,	p=0.004;	 Supplemental	 Figure	 S4).	 There	were	 no	 other	 differences	 in	 accuracy	
across	 the	 rest	of	 the	 regions.	 In	 summary,	 although	 these	different	 analyses	of	 our	data	
suggest	small	differences	across	regions	-	OFC,	motor,	cingulate	–	exist,	the	distribution	of	
classification	accuracies	is	broadly	similar	and	low	across	prefrontal	cortex.	

Discussion	
Over	the	past	decade,	MVPA	has	emerged	as	a	powerful	method	for	studying	information	
coding	in	the	human	brain	with	fMRI	29-34.	MVPA	is	a	more	sensitive	method	than	traditional	
univariate	 analyses	because	 it	 combines	 evidence	across	voxels	 to	detect	 subtly	 encoded	
information	in	distributed	patterns	of	activity.	Given	the	many	open	and	important	questions	
regarding	representations	in	prefrontal	cortex,	MVPA	has	also	been	enthusiastically	applied	
to	this	brain	region.	Many	MVPA	studies	 implicitly	assume	that	 the	base	rate	of	decoding	
information	from	PFC	is	similar	to	that	of	other	brain	regions,	or	at	the	very	least,	does	not	
vary	systematically.	This	assumption	underlies	the	comparison	of	decoding	accuracies	from	
PFC	with	other	regions	of	the	brain,	the	use	of	whole-brain	searchlights	to	discover	regions	
of	coding,	as	well	as	choices	about	sample	size,	analysis	methods,	etc.	This	assumption	has	
not	been	tested	in	the	past	and	contrasts	with	a	prevailing	impression	amongst	practitioners	
(often	heard	at	conferences)	that	decoding	information	from	PFC	BOLD	patterns	is	uniquely	
challenging.	We	estimated	the	base	rate	decoding	accuracy	for	PFC	and	show	that	it	is	indeed	
lower	than	sensory	(visual)	cortex.	
	
Our	meta-analysis	of	prefrontal	MVPA	studies	identified	over	800	MVPA	decoding	analyses	
across	76	studies,	each	reporting	a	group-level	mean	classification	accuracy.	This	dataset	
includes	attempts	to	decode	a	wide	range	of	information	from	BOLD	patterns	in	various	sub-
regions	of	prefrontal	cortex,	while	employing	a	similarly	wide	range	of	MVPA	methods.	In	
this	sense,	our	meta-analysis	samples	a	space	of	possible	approaches	to	classification	in	PFC	
and	 so	permits	not	 only	 an	 estimate	of	 a	base	 rate,	 but	 also	 if	 particular	 approaches	 are	
systematically	more	or	less	successful.		
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From	this	dataset,	we	estimate	the	base	rate	for	decoding	information	from	prefrontal	BOLD	
patterns	at	the	low	value	of	55.7%	for	two-way	classifications	where	chance	performance	is	
50%.	Further,	we	observed	 that	 the	PFC	base	 rate	 is	markedly	 lower	 than	base	 rates	 for	
decoding	visual	stimulus	information	occipital	and	ventral	temporal	cortex	BOLD	patterns	
which	were	at	66.6%	and	71.0%	respectively.	These	differences	are	not	due	to	the	 larger	
hypothesis	space	of	PFC	decoding	studies.	The	differences	remain	stark	even	when	we	derive	
the	PFC	base	rate	estimates	solely	from	analyses	that	decode	rule	or	task	information,	which	
we	 believe	 is	 very	 likely	 to	 be	 coded	 by	 PFC	 neurons	 given	 evidence	 from	 primate	
electrophysiology	and	human	neuropsychology.	In	practical	terms,	this	low	base	rate	means	
that	it	is	likely	that	the	difference	between	studies	reporting	successful	versus	unsuccessful	
classification	may	hinge	on	only	a	few	trials	classified	better	than	chance.	This	has	significant	
implications	for	experimental	design	and	inference	that	we	discuss	further	below.		
	
Further,	this	base	rate	provides	an	empirically	derived	prior	against	which	future	decoding	
paradigms	or	methods	can	be	compared.	For	example,	studies	that	propose	a	new	feature	of	
the	fMRI	signal	(for	e.g.	Waskom	and	Wagner	41	recently	decoded	context	information	from	
local	 connectivity	measures),	 or	 a	new	decoding	method	as	 capturing	 a	 special	 aspect	 of	
coding	in	the	PFC,	can	be	evaluated	for	their	importance	relative	to	this	base	rate	prior.	In	
other	words,	 do	we	 see	 incremental	 gains	 in	 decoding	 accuracy	 from	 applying	 this	 new	
feature	or	method	beyond	what	would	be	expected	given	 the	base	rate	distribution	 from	
PFC?		
	
Similarly,	our	base	rate	provides	a	principled	basis	on	which	to	highlight	past	studies	that	
were	unusually	successful	at	decoding	information	for	further	scrutiny.	We	probed	several	
outlier	 analyses	 in	 our	 data	 set	 that	 showed	 large	 classification	 accuracies	 to	 look	 for	 a	
consistent	feature	that	explained	their	success.	Most	of	these	cases	could	be	attributed	to	the	
influence	of	univariate	effects.	Beyond	these	effects,	the	few	remaining	outlier	studies	did	
not	 share	 a	 consistent	 approach	 or	 classification	 type	 that	 resulted	 in	 a	marked	 shift	 in	
criterion.	Nevertheless,	our	analysis	places	the	likelihood	of	these	outcomes	in	context	given	
the	broader	literature.	As	such,	these	individual	studies	might	merit	further	follow	up	and	
replication.		
	
Beyond	consideration	of	the	outliers,	we	leveraged	the	meta-analysis	dataset	to	ask	whether	
particular	 information-types	or	methodological	choices	were	consistently	associated	with	
higher	 decoding	 performance	 using	 regression.	 We	 found	 some	 evidence	 that	 motor	
information	 in	some	regions	of	posterior	prefrontal	cortex	and	perceptual	 information	 in	
cingulate	 cortex	 are	 associated	 with	 slightly	 higher	 decoding	 performance.	 Conversely,	
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regions	of	mid-lateral	PFC	closely	tied	to	cognitive	control	were	associated	with,	if	anything,	
even	lower	classification	success	than	other	areas	of	the	frontal	lobe.	We	also	found	a	benefit	
of	using	non-linear	classifiers	in	the	small	number	of	studies	that	use	them.	However,	this	
benefit	 may	 be	 offset	 by	 known	 complications	 associated	 with	 the	 use	 of	 non-linear	
classifiers.	 While	 they	 are	 indeed	 able	 to	 be	 able	 to	 read-out	 a	 wider	 variety	 of	
representational	 formats,	 non-linear	 classifiers	 are	 more	 susceptible	 to	 over-fitting.	
Moreover,	 a	 ‘linear	 readout’	 (that	 a	 linear	 classifier	 implements)	 is	 often	 considered	 a	
hallmark	of	an	explicit	representation	58,59	under	the	assumption	that	downstream	neurons	
usually	implement	a	linear	readout.	Therefore,	the	results	of	a	linear	classifier	can	support	
stronger	 claims	 about	 representations	 that	 those	 of	 a	 non-linear	 classifier	 cannot.	
Nonetheless,	 the	non-linear	SVM	approach	may	merit	 further	study	and	replication	of	 its	
advantage	 for	 PFC	 classification.	 Beyond	 this,	 we	 found	 that	 decoding	 performance	 was	
robust	to	variations	in	methods,	with	the	one	caveat	that	our	power	to	detect	these	effects	
was	 not	 high.	 Collectively,	 these	 results	 suggest	 that	 the	 low	 base	 rate	 of	 decoding	
information	from	PFC	BOLD	patterns	is	a	very	general	finding.	
	
What	makes	decoding	information	from	PFC	BOLD	patterns	so	difficult?	Electrophysiology	
studies	in	non-human	primate	have	provided	consistent	evidence	for	ubiquitous	coding	of	
task-relevant	information	in	prefrontal	firing	rates	17-21,	Thus,	the	finding	of	a	low	base	rate	
of	decoding	such	information	from	prefrontal	BOLD	patterns	is	surprising.	Furthermore,	the	
differences	in	base	rates	between	prefrontal	and	occipital/ventral-temporal	cortex	suggest	
that	 the	 function	 relating	 the	 information	 content	 of	 spiking	 activity	 and	 that	 of	 BOLD	
patterns	across	voxels	 varies	 across	 regions.	Of	 course,	 it	 is	 conceivable	 that	human	PFC	
representations	have	different	properties	than	those	of	macaques	and	that	prior	research	
has	 simply	 not	 identified	 the	 appropriate	 contrasts	 or	 type	 of	 classifier	 to	 probe	 them.	
However,	we	deem	this	unlikely	as	a	general	account	and	suggest	that	PFC	BOLD	patterns	
across	 voxels	 may	 only	 weakly	 reflect	 the	 information	 encoded	 in	 the	 firing	 rate	 of	
populations	of	prefrontal	neurons.	
	
Another	possibility	we	find	more	likely	is	that	the	particular,	local	functional	organization	
and	distribution	of	neural	populations	in	prefrontal	cortex	may	reduce	differences	between	
conditions	at	 the	voxel	 scale	measured	with	 fMRI.	 In	a	 recent	 study,	Dubois	et	al.	 (2015)	
examined	the	coding	of	face	viewpoint	and	identity	information	using	both	MVPA	of	BOLD	
patterns	and	single-unit	recordings	in	macaques.	While	both	viewpoint	and	identity	were	
strongly	coded	in	single-unit	firing	rates,	MVPA	of	BOLD	patterns	only	revealed	viewpoint	
information.	The	authors	concluded	that	identity	decoding	suffered	because	identity	coding	
neurons	were	only	weakly	 clustered	 spatially	 as	 compared	 to	 viewpoint-coding	neurons.	
Clustering	may	enable	nearby	blood	vessels	to	be	strongly	driven	by	neurons	selective	to	one	
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condition,	thus	enabling	inhomogeneities	in	the	sampling	of	the	activity	of	selective	neurons	
by	voxels	60.	Most	single-unit	studies	in	primate	prefrontal	cortex,	however,	show	very	little	
evidence	 of	 clustering	 61,	 with	 neurons	 coding	 different	 task-relevant	 information	 being	
heterogeneously	intermixed	at	a	fine	scale	e.g.	21,62,63-66	By	contrast,	in	the	visual	cortex	MVPA	
effects	may	depend	on	clustering	both	at	the	fine-scale	in	the	form	of	columnar	structure	60,	
and	also	at	the	coarse-scale	in	the	form	of	asymmetric	spatial	distribution	of	columns	67-69.	
This	interpretation	suggests	that	higher	resolution	fMRI	might	ultimately	help	this	base	rate	
issue,	though	this	might	require	still	higher	resolution	than	is	currently	feasible.	Alternately,	
PFC	representations	may	perhaps	be	better	 studied	by	 leveraging	 repetition	suppression	
effects	70,71,	which	are	not	affected	by	the	local	distribution	of	neural	populations.		
		
A	third	possibility	is	that	low	decoding	may	be	caused	by	MR	induced	or	physiological	noise	
contributions	 to	 the	BOLD	signal	 that	may	 influence	 the	 trial-by-trial	 variability	of	BOLD	
patterns	in	a	region-specific	manner.	Indeed,	reliabilities	of	BOLD	patterns,	when	they	have	
been	reported,	tend	to	be	lower	in	prefrontal	cortex	than	in	visual	cortex	72-74.	To	the	extent	
that	improved	scanning	methods	can	attenuate	the	effects	of	such	noise,	it	may	be	possible	
to	improve	on	the	prefrontal	decoding	performance.			
	
Regardless	 of	 the	 source	 of	 these	 differences,	 a	 base	 rate	 decoding	 difference	 between	
prefrontal	 and	 visual	 cortex	 has	 important	 implications	 for	 the	 interpretation	 of	 studies	
which	rely	on	comparisons	of	classification	accuracies	across	regions.	Consider,	for	example,	
the	 debate	 surrounding	 the	 locus	 (prefrontal	 or	 sensory	 cortex)	 of	 detailed	 sensory	
information	during	working	memory	delays,	which	has	been	informed	by	the	finding	that,	
while	classifiers	readily	decode	sensory	 information	from	the	BOLD	signal	recorded	from	
visual	cortex,	they	are	much	less	successful	in	the	frontal	cortex	reviewed	in	75.	If	the	base	
rate	 for	decoding	 is	 lower	 in	prefrontal	cortex,	 such	a	 finding,	on	 its	own,	would	provide	
limited	support	for	an	exclusive	sensory	cortex	locus	of	working	memory	representations.	
In	order	for	such	comparisons	to	be	interpreted,	it	would	be	critical	to	first	consider	the	base	
rate	for	decoding	information	for	the	regions	in	question.	Indeed,	while	we	have	focused	on	
the	PFC	in	this	study,	our	results	highlight	the	more	general	point	that	knowing	such	base	
rates	is	critical	to	interpreting	the	findings	of	any	MVPA	study,	including	those	employing	
other	measurement	modalities	that	span	the	brain	like	MEG	or	EEG		
	
The	empirical	distribution	of	PFC	classification	accuracies	that	we	have	compiled	allows	any	
new	 result	 to	 be	 placed	within	 the	 context	 of	 prior	 findings	 and	 for	 its	 likelihood	 to	 be	
computed.	As	also	noted	above,	analyses	that	report	unusually	high	classification	accuracies	
should	draw	attention	 for	 the	possibility	 that	 they	may	be	 false	positives	or	be	driven	by	
confounding	 factors.	 Employing	 this	 logic,	 we	 compiled	 separate	 distributions	 of	
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classification	 accuracies	 for	 significant	 and	 null	 effects	 from	 our	 dataset	 and	 observed	
considerable	 overlap	 between	 these	 empirical	 distributions.	 This	 overlap	 suggests	 the	
presence	of	 a	number	of	 analyses	 that	 either	did	not	 appropriately	 control	 false	positive	
rates,	or	were	insufficiently	powered	to	reject	null	hypothesis	of	chance-level	coding.	Indeed,	
we	recorded	the	widespread	use	of	parametric	statistics,	which	have	been	shown	to	inflate	
false	positive	rates	for	classification	accuracies.	We	agree	with	recommendations	that	MVPA	
studies	 should	 rely	 primarily	 on	 appropriately	 conducted	 permutation	 testing	 at	 the	
individual	level	76	and	the	assessment	of	the	prevalence	of	effects	at	the	group	level	54.		
	
Indeed,	given	the	importance	of	the	prevalence	of	MVPA	effects	in	making	population-level	
inferences	54,	it	is	important	to	consider	the	power	of	an	experimental	design	to	detect	an	
effect	 at	 the	 individual-subject	 level.	 Based	 on	 our	 rough	 estimates	 of	 typical	 decoding	
accuracies	 from	the	 ‘null’	and	 ‘significant’	distributions,	we	expect	 that	significantly	more	
data	per	participant	will	need	 to	be	collected	 to	detect	 the	small	PFC	MVPA	effects	more	
consistently.	This	 is	particularly	 important	as	 future	studies	move	beyond	demonstrating	
information	coding	to	examining	the	factors	that	may	influence	the	properties	of	underlying	
representations.	With	 classification	 accuracies	 typically	 hovering	 in	 the	 50%-60%	 range,	
there	 is	 little	 room	 to	 detect	 their	 modulation	 with	 experimental	 manipulation	 or	 by	
incorporating	covariates	without	many	more	measurements.	Similarly,	improved	statistical	
power	will	also	be	necessary	in	order	to	regress	out	the	potentially	confounding	effects	of	
small,	idiosyncratic	differences	between	task	conditions	on	nuisance	variables	like	difficulty	
or	time-on-task	77.	The	prefrontal	BOLD	signal	is	known	to	be	sensitive	to	such	variables	56,78	
and	regressing	out	their	effects	post-hoc	is	critical	to	unbiased	inference.		
	
In	conclusion,	we	provide	an	estimate	of	 the	base	rate	of	decoding	 information	 from	PFC	
BOLD	patterns	and	show	that	the	assumption	of	a	comparable	base	rate	across	brain	regions	
is	unwarranted.	Our	 low	estimate	supports	the	prevailing	 impression	that	using	MVPA	to	
decode	information	in	PFC	is	particularly	challenging.	The	reasons	for	this	difficulty	remain	
open,	and	we	suspect	may	reflect	an	important	property	of	neural	coding	in	the	PFC,	such	as	
their	 spatial	 organization	 and	 distribution.	 Though	 we	 cannot	 provide	 a	 reason	 for	 this	
difference,	our	results	have	concrete	implications	for	the	design	and	interpretation	of	future	
studies	–	we	recommend	more	data	per	participant,	the	use	of	permutation	tests,	reporting	
of	prevalence	at	the	group-level,	and	a	consideration	of	base	rate	when	making	comparisons	
across	regions.	Finally,	this	study	provides	an	example	of	how	meta-analyses	of	MVPA	data	
can	 provide	 unique	 insights	 that	 are	 not	 available	 in	 single	 studies.	 To	 facilitate	 future	
investigations,	 we	 are	 sharing	 our	 database	 and	 code	 publicly	 via	 the	 Open	 Science	
Framework	(OSF)	(https://osf.io/8dvzr/).	 
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Methods	

Literature	Search	and	Study	Inclusion		
We	 conducted	 a	 comprehensive	 search	 of	 the	 literature	 to	 identify	 all	 published	 studies	
between	 the	 years	 of	 2001	 and	 2016	 that	 employed	 multivariate	 methods	 to	 decode	
information	from	fMRI	BOLD	patterns	in	the	prefrontal	cortex.	In	summary,	we	queried	the	
PubMed	database	 for	articles	whose	abstracts	 contained	at	 least	one	 term	related	 to	 (i1)	
functional	 imaging,	 (i2)	 multivoxel	 pattern	 analysis,	 (i3)	 frontal	 cortex.	 In	 addition,	 we	
explicitly	excluded	articles	whose	abstracts	contained	terms	related	to	patient	samples	and	
non-human	primates.	A	full	list	of	terms	employed	for	the	search	are	shown	in	Fig	3.		

	
This	 search	 resulted	 in	 a	 set	 of	 462	 studies	 that	 employed	 multivariate	 fMRI	 analysis,	
including	classification	analysis	and	representational	similarity	analysis.	Across	approaches,	
there	was	further	variability	in	the	metrics	used	to	report	the	strength	of	decoding,	including	

 

 
 
Figure	 3.	 Search	 terms	 employed	 for	 literature	 search.	 The	 final	 literature	 search	 was	
conducted	on	09/03/2016.	The	search	string	above	was	entered	into	Pubmed’s	advanced	
search	 (https://www.ncbi.nlm.nih.gov/pubmed/advanced),	 additionally	 restricting	 the	
year	of	publication	to	be	between	2001	and	2016.	 	
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significance	statistics,	correlation	coefficients,	single-subject	mean	classification	accuracies,	
group-level	mean	 classification	 accuracies,	 etc.	 To	 allow	 for	 comparison	 and	 aggregation	
across	 studies,	we	 focused	on	 the	 largest	 subset	of	 studies,	 those	 that	 employed	a	 cross-
validated	 classification	 approach	 for	 decoding	 and	 reported	 group-level	 summary	
classification	 accuracies.	We	 define	 the	 cross-validated	 classification	 approach	 as	 one	 in	
which	unseen	and	unlabeled	BOLD	patterns	are	assigned	labels	by	a	‘classifier’	trained	on	
independent	data,	and	the	success	of	this	classification	is	reported	in	terms	of	classification	
accuracies.	We	further	restricted	our	dataset	to	the	studies	that	reported	decoding	analyses	
with	two	classes	(i.e.	those	that	had	50%	as	chance	level).	This	left	us	with	76	studies	that	
reported	a	total	of	877	decoding	accuracies.	The	list	of	papers	can	be	found	in	Supplementary	
Table	1.		

Within	Study	Extraction	
Studies	reported	a	variable	number	of	decoding	analyses,	ranging	from	1-96	per	study	Some	
studies	 decoded	 the	 same	 information	 from	 different	 PFC	 regions,	 while	 other	 studies	
decoded	different	types	of	information	from	the	same	region.	A	few	studies	also	applied	the	
same	analysis	to	data	from	different	time	points	within	a	single	trial.	As	a	rule,	we	separately	
recorded	all	reported	group-level	summary	classification	accuracies.	However,	there	were	
some	 exceptional	 cases	 in	which	 it	was	 either	 infeasible	 or	 undesirable	 to	 record	 all	 the	
reported	classification	accuracies.	For	example,	analyses	 that	attempt	 to	classify	stimulus	
information	at	 each	TR	over	a	window	of	 time	would	be	 likely	 to	yield	highly	 correlated	
classification	accuracies,	due	to	the	autocorrelation	in	fMRI	BOLD	signal.	Therefore,	in	such	
cases,	we	only	recorded	the	maximum	decoding	accuracy	from	the	entire	window.	Another	
case	concerns	analyses	conducted	 in	both	a	single	region	and	 its	constituent	sub-regions,	
such	as	right,	left,	and	bilateral	dorsolateral	PFC.	We	recorded	only	the	sub-regions	to	reduce	
redundancy	in	our	dataset.	Finally,	in	cases	where	the	goal	of	an	analysis	was	to	test	whether	
the	number	of	included	voxels	influenced	the	result,	we	again	only	recorded	the	maximum	
accuracy	 achieved.	 Thus,	 in	 general,	 we	 sought	 to	 include	 independent	 classification	
attempts	 in	 prefrontal	 cortex,	 and	 where	 classifications	 were	 non-independent,	 to	 favor	
inclusion	of	the	one	with	the	highest	classification	accuracy.	Note	that	this	latter	inclusion	
criterion	biases	against	the	hypothesis	that	it	is	difficult	to	classify	prefrontal	cortex	BOLD.	
	
Another	concern	regarding	the	independence	of	observations	relates	to	the	intrinsic	spatial	
smoothness	of	fMRI	datasets.	If	decoding	accuracies	are	obtained	from	two	regions	that	are	
close	 enough	 to	 each	 other	 to	 show	 spatial	 correlation,	 the	 observations	 would	 not	 be	
independent.	Given	that	papers	do	not	report	intrinsic	spatial	smoothness,	we	employed	a	
threshold	 of	 10mm	 as	 the	 minimum	 separation	 required	 for	 decoding	 accuracies	 to	 be	
considered	separate.	We	found	no	cases	of	two	analyses	from	the	same	study,	decoding	the	
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same	 information,	 focused	 on	 regions	 that	 were	 less	 that	 10mm	 apart.	 In	 addition,	 we	
conducted	a	second	analysis	where	we	averaged	all	accuracies	 from	a	study	 if	 they	were	
associated	with	the	same	AAL	region.	This	did	not	affect	our	results.		
	
To	ensure	 that	 classification	accuracy	values	were	 reliably	 recorded	 from	each	paper	we	
conducted	 a	 validation	 procedure	 in	 which	 an	 independent	 investigator	 (blinded	 to	 the	
initially	coded	value	and	without	authorship	incentive)	re-coded	the	accuracy	values	from	
each	paper.	In	each	case	where	the	two	values	were	different,	the	values	were	re-checked	
and	corrected	in	the	record.		
	
All	recorded	raw	decoding	accuracies	are	plotted	in	Supplementary	Figure	S1.		

Estimating	Distributions	
To	compare	decoding	accuracy	across	regions	(frontal	v/s	occipital	or	mid-temporal)	and	
between	significant	and	non-significant	data	we	estimated	distributions	for	the	group	mean	
data.	 First,	 the	 accuracies	were	pooled	 across	 studies	 and	kernel	 density	 estimates	were	
applied	 (using	 Scott’s	 rule	 for	 bandwidth).	 To	 obtain	 confidence	 intervals,	 we	 applied	
hierarchical	 bootstrapping	which	 accounts	 for	 the	 dependence	 among	 analyses	 from	 the	
same	study.	Analyses	from	the	same	study	share	features	that	may	influence	classification	
accuracy	such	as	sample	size,	data	quality,	preprocessing	methods,	etc.	Studies	were	 first	
randomly	sampled	with	replacement	and	then	group-level	analyses	were	randomly	sampled	
with	replacement	from	these	selected	studies.	Similar	credible	intervals	were	obtained	by	
fitting	 Bayesian	 hierarchical	 Gaussian	 models	 to	 the	 data,	 though	 these	 models	 had	 to	
additionally	assume	a	parametric	family	for	the	data.		
	
In	 Study	70,	mean	decoding	 accuracies	were	 reported	 in	 a	 bar	 graph	 and	 it	was	unclear	
whether	 decoding	 accuracies	 not	 significantly	 different	 from	 chance	 were	 excluded.	
Therefore,	we	excluded	data	from	Study	70	from	the	estimation	of	the	significant	and	non-
significant	 distributions.	 Study	 31	 used	 99.99%	 confidence	 intervals,	 reporting	 two	
accuracies	at	63%	and	64%	within	this	interval.	To	be	conservative,	we	did	not	count	these	
accuracies	in	the	estimation	of	the	non-significant	distribution.		

Regression	Analysis	
A	regression	analysis	was	employed	to	examine	how	decoding	accuracy	across	the	studies	
in	 our	 database	 depended	 on	 brain	 region	within	 frontal	 cortex,	 the	 type	 of	 information	
decoded,	and	the	analysis	methods	used.	The	coding	of	these	factors	for	the	regression	is	
described	below.		
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Region:	We	examined	classification	performance	as	a	 function	of	brain	 region.	 Individual	
analyses	 reported	 location	 using	 a	 number	 of	 different	 atlases.	 Therefore,	 to	 compare	
accuracy	in	a	single	space,	we	mapped	all	reported	locations	to	the	AAL	atlas.	Analyses	that	
were	reported	with	centroid	coordinates,	from	either	an	ROI	or	a	roaming	searchlight	were	
assigned	to	AAL	regions	by	coordinate-lookup	 in	SPM12’s	AAL	template	 image.	 	Analyses	
that	did	not	report	coordinates	used	ROIs	coming	from	one	of	several	common	brain	atlases:	
Brodmann	79,	Destrieux	80,	Desikan-Kellaney	81,	Oxford-Harvard	(FSL).	These	analyses	were	
assigned	within	 AAL	 by	 a	 region-to-region	 correspondence	 table	 constructed	 by	 visually	
comparing	the	non-AAL	atlases	to	the	AAL	atlas	in	MRICRON	(Supplemental	Table	2)	
	
Within	 this	 region	 coding	 scheme,	 analyses	with	 small	 ROIs	 or	 those	 that	 reported	 peak	
coordinates	were	each	assigned	to	one	AAL	region,	whereas	analyses	with	larger	ROIs	were	
assigned	to	two	or	more	AAL	regions.	53%,	32%,	15%	of	the	analyses	were	assigned	to	one,	
two,	and	three	or	more	regions	respectively.	In	most	cases	where	accuracies	were	assigned	
to	two	AAL	regions,	these	were	the	left	and	right	hemisphere	counterparts	of	the	same	AAL	
region.	 Therefore,	 for	 the	main	 regression,	 analyses	 that	 had	 been	 assigned	 to	 two	 AAL	
regions	 were	 assigned	 to	 a	 bilateral	 region	 regressor.	 The	 accuracies	 not	 assigned	 to	 a	
bilateral	ROI	or	assigned	to	more	 than	2	regions	were	omitted	 from	the	main	analysis	 to	
maintain	 mutual	 exclusivity,	 leaving	 82%	 of	 the	 original	 data.	 These	 accuracies	 were	
included	in	follow-up	analyses	described	in	the	results	and	in	the	supplements.		
	
Information	 Type:	 The	 type	 of	 information	 decoded	 in	 each	 analysis	 can	 be	 broadly	
categorized	 as	 either	 perceptual,	 response,	 rule,	 or	 value.	We	 categorized	 an	 analysis	 as	
perceptual	 if	 trials	 were	 separated	 into	 classes	 so	 that	 they	 shared	 either	 a	 low-level	
perceptual	feature	such	as	color,	or	a	high-level	feature	such	as	object	category.	Importantly,	
trials	or	patterns	from	the	same	class	would	be	associated	with	different	actions.	In	contrast,	
we	categorized	an	analysis	as	response	if	trials	from	the	same	class	contained	the	same	action	
but	different	perceptual	features.	We	categorized	an	analysis	as	rule	if	trials	from	the	same	
class	shared	the	same	abstract	goal,	task	or	set	of	stimulus-response	mappings.	For	example,	
one	class	of	trials	might	require	objects	to	be	judged	on	their	size,	while	the	other	class	of	
trials	might	 require	 judgments	 of	 shape.	We	 considered	 an	 analysis	 as	 value	 if	 different	
classes	of	trials	were	associated	with	different	levels	of	subjective	value.	For	example,	classes	
of	 trials	might	 be	distinguished	based	on	 a	participant’s	 desire	 to	purchase	 an	object,	 or	
whether	they	experienced	a	win	or	loss	outcome.	Examples	of	each	type	of	analysis	can	be	
seen	in	Supplementary	Table	3.	
	
Analysis	 Procedure:	MVPA	 analyses	 varied	 along	 several	 dimensions	 at	 each	 step	 in	 the	
analysis	 pipeline	 from	 data	 collection	 and	 preprocessing	 to	 classification	 that	 could	
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ultimately	affect	outcome.		We	recorded	the	following	for	each	analysis	at	each	step	of	the	
procedure:	 scanner	 strength,	 number	 of	 subjects,	 coregistration,	 smoothing,	 temporal	
averaging,	 response	 normalization,	 and	 classifier	 used.	 Specific	 codes	 used	 and	 their	
definitions	are	elaborated	below.	
	
Coregistration.	 Coded	 as	 0-1	 and	 refers	 to	 whether	 the	 decoding	 analysis	 was	 conducted	 in	
native-subject	space	or	a	standard	space	such	as	MNI.		
	
Smoothing.	Coded	as	0-1	and	refers	to	whether	or	not	any	smoothing	kernel	was	applied	to	the	
fMRI	data	prior	to	the	decoding	analysis.		
	
Temporal	 Averaging.	Coded	 as	 one	of	 four	 types,	 referring	 to	 how	multiple	 fMRI	 images	 are	
combined	into	a	single	pattern	corresponding	to	an	experimental	event.	The	four	levels	were:		

1. no	temporal	averaging:	uses	every	TR	(repetition	time)	on	every	trial	as	a	pattern	
2. averaging	across	trials:	averages	data	across	trials,	but	maintains	a	separate	pattern	

for	each	TR;		
3. averaging	across	TRs:	averages	data	across	TRs	but	maintains	a	separate	pattern	for	

trial	(or	event)	
4. averaging	across	TRs	and	trials:	averages	data	across	both	trials	and	across	TRs.	This	

last	category	has	the	largest	degree	of	temporal	compression,	often	leading	to	only	a	
few	training	examples	per	class.		

	
Response	 normalization.	 Coded	 into	 3	 levels:	 no	 normalization,	 temporal	 normalization,	 and	
spatial	normalization.	Temporal	normalization	de-means	each	voxel	across	time	and	divides	by	
the	standard	deviation	either	within	class	or	across	all	classes.	Examples	using	this	method	are	
Studies	36,	25,	4.	Spatial	normalization	de-means	each	voxel	using	the	average	response	of	the	
surrounding	voxels.	An	example	using	this	method	is	Study	3.		
	
Classifiers.	Coded	as	one	of	6	types:	Gaussian	naive	Bayes	(gnb),	logistic	regression	(logreg),	linear	
discriminant	analysis	 (lda),	 linear	support	vector	machines	 (svm-lin),	nonlinear	support	vector	
machines	 (svm-nonlin),	 and	 correlation	 (correlation).	 Correlation	 accuracy	 is	 determined	 by	
assessing	whether	 the	within	class	correlation	 is	higher	 than	 the	between	class	correlation	 in	
random	splits	of	the	data.		
	
Data	and	Code	Availability:		
Our	 meta-analysis	 database	 and	 analoysis	 code	 is	 publicly	 available	 via	 the	 Open	 Science	
Framework	(OSF)	(https://osf.io/8dvzr/).		
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