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Abstract 13 

Recent experimental studies suggest that, in cortical microcircuits of the mammalian brain, 14 

the majority of neuron-to-neuron connections are realized by multiple synapses. However, 15 

it is not known whether such redundant synaptic connections provide any functional benefit. 16 

Here, we show that redundant synaptic connections enable near-optimal learning in 17 

cooperation with synaptic rewiring. By constructing a simple dendritic neuron model, we 18 

demonstrate that with multisynaptic connections, synaptic plasticity approximates a 19 

sample-based Bayesian filtering algorithm known as particle filtering, and wiring plasticity 20 

implements its resampling process. Applying the proposed framework to a detailed single 21 

neuron model, we show that the model accounts for many experimental observations, 22 

including the dendritic position dependence of spike-timing-dependent plasticity, and the 23 

functional synaptic organization on the dendritic tree based on the stimulus selectivity of 24 

presynaptic neurons. Our study provides a novel conceptual framework for synaptic 25 

plasticity and rewiring. 26 
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Introduction 31 

Synaptic connection between neurons is the fundamental substrate for learning and 32 

computation in neural circuits. Previous morphological studies suggest that in cortical 33 

microcircuits, often several synaptic connections are found between the presynaptic axons 34 

and the postsynaptic dendrites of two connected neurons (Deuchars et al., 1994; Markram 35 

et al., 1997; Feldmeyer et al., 1999). Recent connectomics studies confirmed these 36 

observations in somatosensory (Kasthuri et al., 2015), visual (Lee et al., 2016), and 37 

entorhinal (Schmidt et al., 2017) cortex, and also in hippocampus (Bartol et al., 2015). In 38 

particular, in barrel cortex, the average number of synapses per connection is estimated to 39 

be around 10 (Gal et al., 2017). However, the functional importance of multisynaptic 40 

connections remains unknown. Especially, from a computational perspective, such 41 

redundancy in connection structure is potentially harmful for learning due to degeneracy 42 

(Watanabe, 2001; Amari et al., 2006). In this work, we study how neurons perform learning 43 

with multisynaptic connections and whether redundancy provides any benefit, from a 44 

Bayesian perspective. 45 

 Bayesian framework has been established as a candidate principle of information 46 

processing in the brain (Knill and Pouget, 2004; Körding and Wolpert, 2006). Many results 47 

further suggest that not only computation, but learning process is also near optimal in 48 

terms of Bayesian for given stream of information (Behrens et al., 2007; Lake et al., 2015; 49 

Madarasz et al., 2016), yet its underlying plasticity mechanism remains largely elusive. 50 

Previous theoretical studies revealed that Hebbian-type plasticity rules eventually enable 51 

neural circuits to perform optimal computation under appropriate normalization (Soltani 52 

and Wang, 2010; Nessler et al., 2013). However, these rules are not optimal in terms of 53 

learning, so that the learning rates are typically too slow to perform learning from a limited 54 

number of observations. Recently, some learning rules are proposed for rapid learning 55 

(Aitchison and Latham, 2014; Gütig, 2016), yet their biological plausibility are still 56 

debatable. Here, we propose a novel framework of non-parametric near-optimal learning 57 

using multisynaptic connections. We show that neurons can exploit the variability among 58 

synapses in a multisynaptic connection to accurately estimate the causal relationship 59 

between pre- and postsynaptic activity. The learning rule is first derived for a simple neuron 60 
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model, and then implemented in a detailed single neuron model. The derived rule is 61 

consistent with many known properties of dendritic plasticity and synaptic organization, 62 

including a recent finding on the dendritic retinotopy in Layer 2/3 (L2/3) pyramidal neurons 63 

of rodent visual cortex (Iacaruso et al., 2017). Furthermore, the model reveals potential 64 

functional roles of anti-Hebbian synaptic plasticity observed in distal dendrites (Letzkus et 65 

al., 2006; Sjöström and Häusser, 2006).  66 

 67 

Results 68 

A conceptual model of learning with multisynaptic connections 69 

Let us first consider a model of two neurons connected with K numbers of synapses (Fig. 1A) 70 

to illustrate the concept of the proposed framework. In the model, synaptic connections 71 

from the presynaptic neuron are distributed on the dendritic tree of the postsynaptic neuron 72 

as observed in experiments (Markram et al., 1997; Feldmeyer et al., 1999). Although a 73 

cortical neuron receives synaptic inputs from several thousands of presynaptic neurons in 74 

reality, here we consider the simplified model to illustrate the conceptual novelty of the 75 

proposed framework. More realistic models will be studied in following sections. 76 

The synapses generate different amplitudes of excitatory postsynaptic potentials 77 

at the soma mainly through two mechanisms. First, the amplitude of dendritic attenuation 78 

varies from synapse to synapse, because the distances from the soma are different (Stuart 79 

and Spruston, 1998; Segev and London, 2000). Let us denote this dendritic position 80 

dependence of synapse k as vk, and call it as the unit EPSP, because vk corresponds to the 81 

somatic potential caused by a unit conductance change at the synapse (i.e. somatic EPSP per 82 

AMPA receptor). As depicted in Figure 1A, unit EPSP vk takes a small (large) value on a 83 

synapse at a distal (proximal) position on the dendrite. The second factor is the amount of 84 

AMPA receptors in the corresponding spine, which is approximately proportional to its spine 85 

size (Matsuzaki et al., 2004). If we denote this spine size factor as gk, the somatic EPSP 86 

caused by a synaptic input through synapse k is written as wk = gkvk. This means that even if 87 

the synaptic contact is made at a distal dendrite (i.e. even if vk is small), if the spine size gk is 88 

large, a synaptic input through synapse k has a strong impact at the soma (e.g. red synapse 89 

in Fig. 1A) or vice versa (e.g. cyan synapse in Fig. 1A).  90 
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Figure 1. A conceptual model of multisynaptic learning 91 
A) Schematic figure of the model consist of two neurons connected with K synapses. Curves 92 
on the left represent unit EPSP vk (top) and the weighted EPSP wk=gkvk (bottom) of each 93 
synaptic connection. Note that synapses are consistently colored throughout Figure 1 and 2. 94 
B) Schematics of non-parametric representation of the probability distribution by 95 
multisynaptic connections. In both graphs, x-axes are unit EPSP, and the left (right) side 96 
corresponds to distal (proximal) dendrite. The mean over the true distribution p(vc|x1:n,y1:n) 97 
can be approximately calculated by taking samples (i.e. synapses) from the unit EPSP 98 
distribution qv(v) (top), and then taking a weighted sum over the spine size factor gk 99 
representing the ratio p(vc|x1:n,y1:n)/qv(v) (bottom). C) Illustration of synaptic weight 100 
updating. When the distribution p(vc|x1:n+1,y1:n+1) comes to the right side of the original 101 
distribution p(vc|x1:n,y1:n), a synaptic weight gkn+1 become larger (smaller) than gkn at 102 
proximal (distal) synapses. D) An example of learning dynamics at K=10 and qv(v)=const. 103 
Each curve represents the distribution of relative spine size {gk}, and the colors represent the 104 
growth of trial number. E) Comparison of performance among the proposed method, the 105 
monosynaptic rule, and the exact solution (see A conceptual model of multisynaptic 106 
learning in Methods for details). The monosynaptic learning rule was implemented with 107 
η=0.01, 0.015, 0.02, 0.03, 0.05, 0.1, 0.2 (from gray to black), and the initial value was taken 108 
as vm0 = 1 2 . Lines were calculated by taking average over 104 independent simulations. 109 

 110 

 111 

 112 
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 5 

 On this model, we consider a simplified classical conditioning task as an example, 113 

though the framework is applicable for various inference tasks. Here, the presynaptic 114 

neuron activity represents the conditioned stimulus (CS) such as tone, and the postsynaptic 115 

neuron activity represents the unconditioned stimulus (US) such as shock. CS and US are 116 
represented by binary variables xn ∈ 0,1{ }  and yn ∈ 0,1{ } , where xn = 1 yn = 1( )  denotes the 117 

presence of the CS (US), and subscript n stands for the trial number (Fig. 1A). Learning 118 

behavior of animals and human in such a conditioning can be explained by the Bayesian 119 

framework (Courville et al., 2006). In particular, in order to invoke an appropriate behavioral 120 
response, the brain needs to keep track of the likelihood of US given CS vc ≡ p yn = 1| xn = 1( ) , 121 

presumably by changing the synaptic weight between corresponding neurons. Thus, we 122 

consider supervised learning of the conditional probability vc by multisynaptic connections, 123 

from pre- and postsynaptic activities representing US and CS, respectively. From finite trials 124 
up to n, this conditional probability is estimated as vcn = ′vcp ′vc | x1 : n,y1 : n( )d ′vc∫ , where 125 

x1:n={x1,x2,…,xn} and y1:n={y1,y2,…,yn} are the histories of input and output activities, and 126 
p vc | x1 : n ,y1 : n( )  is the probability distribution of the hidden parameter vc after n trials. 127 

Importantly, in general, it is impossible to get the optimal estimation of vcn+1  directly from 128 

vc
n , because in order to calculate vcn+1 = ′vcp ′vc | x1 : n+1,y1 : n+1( )d ′vc∫ , one first needs to calculate the 129 

distribution p vc | x1 : n+1,y1 : n+1( )  by integrating the previous distribution p vc | x1 : n ,y1 : n( )  and 130 

the new observation at trial n+1: {xn+1, yn+1}. This means that for near-optimal learning, 131 

synaptic connections need to learn and represent the distribution p vc | x1 : n ,y1 : n( )  instead of 132 

the point estimation vcn . But, how can synapses achieve that? The key hypothesis of this 133 

paper is that redundancy in synaptic connections is the substrate for the non-parametric 134 

representation of this probabilistic distribution. Below, we show that dendritic summation 135 

over multisynaptic connections yields the optimal estimation from the given distribution 136 
p vc | x1 : n ,y1 : n( ) , and dendritic-position-dependent Hebbian synaptic plasticity updates this 137 

distribution.  138 

 139 

Dendritic summation as importance sampling 140 

We first consider how dendritic summation achieves the calculation of the mean conditional 141 
probability vcn = ′vcp ′vc | x1 : n,y1 : n( )d ′vc∫ . It is generally difficult to evaluate this integral by directly 142 
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taking samples from the distribution p vc | x1 : n,y1 : n( )  in a biologically plausible way, because 143 

the cumulative distribution changes its shape at every trial. Nevertheless, we can still 144 

estimate the mean value by using an alternative distribution as the proposal distribution, 145 

and taking weighted samples from it. This method is called importance sampling (Robert 146 

and Casella, 2013). In particular, here we can use the unit EPSP distribution qv(v) as the 147 

proposal distribution, because unit EPSPs {vk} of synaptic connections can be interpreted as 148 
samples depicted from the unit EPSP distribution qv (Fig. 1B top). Thus, the mean vcn  is 149 

approximately calculated as 150 

   vcn = ′vcp ′vc | x1 : n,y1 : n( )d ′vc∫ ≈ 1
K

p vc = vk | x1 : n,y1 : n( )
qv vk( ) vk

k=1

K

∑ = gknvkk∑ = wk
n

k∑ ,   (1) 151 

where gkn =
p vc = vk | x1 : n,y1 : n( )

Kqv vk( ) . Therefore, if spine size gkn represents the relative weight of 152 

sample vk, then dendritic summation over postsynaptic potentials wk
n ≡ gk

nvk  naturally 153 

represents the desired value (vcn ≈ wk
n

k∑ ). For instance, if the distribution of synapses is 154 

biased toward proximal side (i.e. if the mean vcn  is overestimated by the distribution of unit 155 

EPSPs as in Fig. 1B top), then synapses at distal dendrites should possess large spine sizes, 156 

while the spine sizes of proximal synapses should be smaller (Fig. 1B bottom).  157 

 158 

Synaptic plasticity as particle filtering 159 

In the previous section, we showed that redundant synaptic connections can represent 160 

probabilistic distribution p(vc=vk|x1:n,y1:n) if spine sizes {gk} coincide with their importance 161 

gkn =
p vc = vk | x1 : n,y1 : n( )

Kqv vk( ) . But, how can synapses update their representation of the probabilistic 162 

distribution p(vc=vk|x1:n,y1:n) based on a new observation {xn+1, yn+1}? Because 163 

p(vc=vk|x1:n,y1:n) is mapped onto a set of spine sizes {gkn} as in Equation 1, the update of the 164 
estimated distribution p vk | x1 : n,y1 : n( )→ p vk | x1 : n+1,y1 : n+1( )  can be performed by the update of 165 

spine sizes gk
n{ }→ gk

n+1{ } . By considering particle filtering (Doucet et al., 2000) on the 166 

parameter space (see The learning rule for multisynaptic connections in Methods for details), 167 

we can derive the learning rule for spine size as 168 

  gkn+1 =
1+ f xn+1,yn+1;vk( )
1+ f xn+1,yn+1;wn( ) gk

n , f x,y;v( ) ≡ 2v −1( )x 2y −1( ) .   (2) 169 
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This rule is primary Hebbian, because the weight change depends on the product of pre- 170 

and postsynaptic activity xn+1 and yn+1. In addition to that, the change also depends on unit 171 

EPSP vk. This dependence on unit EPSP reflects the dendritic position dependence of synaptic 172 

plasticity. In particular, for a distal synapse (i.e. for small vk), the position-dependent term 173 

(2vk-1) takes a negative value (note that 0≤vk<1), thus yielding an anti-Hebbian rule as 174 

observed in neocortical synapses (Letzkus et al., 2006; Sjöström and Häusser, 2006).  175 

For instance, if the new data {xn+1, yn+1} indicates that the value of vc is in fact larger 176 

then previously estimated, then the distribution p(vc|x1:n+1,y1:n+1) shifts to the right side 177 

(upper panel of Fig. 1C). This means that the spine size gkn+1 becomes larger then gkn at 178 

synapses on the right side (i.e. proximal side), whereas synapses get smaller on the left side 179 

(i.e. distal side; bottom panel of Fig. 1C). Therefore, pre- and postsynaptic activity causes 180 

LTP at proximal synapses induces LTD at distal synapses as observed in experiments 181 

(Letzkus et al., 2006; Sjöström and Häusser, 2006). The derived learning rule (Eq. 2) also 182 
depends on the total EPSP amplitude wn ≡ wk

n
k∑ ≡ gk

nvkk∑ . This term reflects a normalization 183 

factor possibly modulated through redistribution of synaptic vesicles over the presynaptic 184 

axon (Staras et al., 2010). A surrogate learning rule without this normalization factor will be 185 

studied in a later section.  186 
We performed simulations by assuming that the two neurons are connected with 187 

ten synapses with the uniform unit-EPSP distribution (i.e. qv(v) = const.). At an initial phase 188 
of learning, the distribution of spine size {gkn} has a broad shape (purple lines in Fig. 1D), 189 
and the mean of distribution is far away from the true value (v=vc). However, the distribution 190 
is skewed around the true value as evidence is accumulated through stochastic pre- and 191 
postsynaptic activities (red lines in Fig. 1D). Indeed, the estimation performance of the 192 
proposed method is nearly the same as that of the exact optimal estimation, and much 193 
better than the standard monosynaptic learning rules (Fig. 1E; see Monosynaptic learning 194 
rule in Methods for details).  195 
 196 

Synaptogenesis as resampling 197 

As shown above, weight modification in multisynaptic connections enables a near optimal 198 

learning. However, to represent the distribution accurately, many synaptic connections are 199 

required (gray line in Fig. 2B), while the number of synapses between a excitatory neuron 200 
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pair is typically around five in the cortical microcircuits. Moreover, even if many synapses are 201 

allocated between presynaptic and postsynaptic neurons, if the unit EPSP distribution is 202 

highly biased, the estimation is poorly performed (gray line in Fig. 2C). We next show that 203 

this problem can be avoided by introducing synaptogenesis (Holtmaat and Svoboda, 2009) 204 

into the learning rule.  205 

Figure 2. Synaptic rewiring for efficient learning 206 
A) Schematic illustration of resampling. Dotted cyan circles represent an eliminated synapse, 207 
and the filled cyan circles represent a newly created synapse. B, C) Comparison of 208 
performance with/without synaptic rewiring at various synaptic multiplicity K (B), and bias 209 
in initial-sampling λB (C). For each bias parameter λB, the unit EPSP distribution {vk} was set 210 

as v ′k = − log 1− 1−e−λB⎡⎣ ⎤⎦
′k
K( ) , as depicted in the inset. Lines are the means over 104 simulations. 211 

 212 

In the proposed framework, when synaptic connections are fixed (i.e. when {vk} are 213 

fixed), some synapses quickly become useless for representing the distribution. For 214 

instance, in Figure 2A, (dotted) cyan synapse is too proximal to contribute for the 215 

representation of p(vc|x,y). Therefore, by removing the cyan synapse and creating a new 216 

synapse at a random site, on average, the representation becomes more effective (Fig. 2A). 217 

Importantly, in our framework, spine size factor gk is proportional to the informatic 218 

importance of the synapse by definition, thus optimal rewiring is achievable simply by 219 

removing the synapse with the smallest spine size. Ideally, the new synapse should be 220 

sampled from p(vc|x,y) for an efficient rewiring, yet it is not clear if such a sampling is 221 

biologically plausible, and indeed random resampling is sufficient as long as elimination is 222 

selectively performed as mentioned above. 223 

 By introducing this resampling process, the model is able to achieve high 224 
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 9 

performance even if the total number of synaptic connection is just around three (black line 225 

in Fig. 2B), or if the initial distribution of {vk} is poorly taken (black line in Fig. 2C). 226 

 227 

Detailed single neuron model of learning from many presynaptic neurons 228 

In the previous sections, we found that synaptic plasticity in multisynaptic connections can 229 

achieve non-parametric near-optimal learning in a simple model with one presynaptic 230 

neuron. To investigate its biological plausibility, we next extend the proposed framework to 231 

a detailed single neuron model receiving inputs from many presynaptic neurons. To this end, 232 

we constructed an active dendritic model using NEURON simulator (Hines and Carnevale, 233 

1997) based on a previous model of L2/3 pyramidal neurons of the primary visual cortex 234 

(Smith et al., 2013). We randomly distributed 1000 excitatory synaptic inputs from 200 235 

presynaptic neurons on the dendritic tree of the postsynaptic neuron, while fixing synaptic 236 

connections per presynaptic neuron at K=5 (Fig. 3A; see Morphology in Methods for the 237 

details of the model). We assumed that all excitatory inputs are made on spines, and each 238 

spine is projected from only one bouton for simplicity. In addition, 200 inhibitory synaptic 239 

inputs were added on the dendrite to keep the excitatory/inhibitory (E/I) balance (Froemke, 240 

2015). We first assigned a small constant conductance for each synapse, and then measured 241 

the somatic potential change, which corresponds to the unit EPSP in the model. As observed 242 

in cortical neurons (Stuart and Spruston, 1998), input at a more distal dendrite showed 243 

larger attenuation at the soma, though variability was quite high across branches (Fig. 3B).  244 

 245 
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Figure 3. A detailed model of multisynaptic learning with multiple presynaptic neurons 246 
A) Schematic figure of the detailed neuron model. Blue and red points on the dendritic trees 247 
represent excitatory and inhibitory synaptic inputs, respectively. B) Dendritic position 248 
dependence of unit EPSP. Each dot represents a synaptic contact on the dendritic tree. C) An 249 
example of the visual selectivity patterns of presynaptic neurons. Position and angle of each 250 
bar represent the receptive field (RF) and the orientation selectivity of each presynaptic 251 
neuron, where the RF was defined relative to the RF of the postsynaptic neuron (the central 252 
position). Colors represent the firing rates of presynaptic neurons when a horizontal bar 253 
stimulus is presented at the RF of the postsynaptic neuron. Here, the firing rates were 254 
evaluated as the expected number of spikes within 20ms stimulus duration (see Stimulus 255 
selectivity in Methods for details). The black circle shows the selectivity of the representative 256 
neuron depicted in G-I. D) Examples of input spike trains generated from the horizontal 257 
(target) and vertical (non-target) stimuli. Presynaptic neurons were sorted by their stimulus 258 
preference. Note that in the actual simulations, variables were initialized after each 259 
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 11 

stimulation trial. See Task configuration in Methods for details of the task. E) Somatic 260 
responses before and after learning. Thick lines represent the average response curves over 261 
100 trials and thin lines are trial-by-trial responses. F) The average learning curves over 50 262 
simulations (black line) and examples of learning curves (gray lines). G-I) An example of 263 
learning dynamics under the multisynaptic rule (see Results for details).   264 

 265 

Next, we consider a perceptual learning task in this neuron model. Each excitatory 266 

presynaptic neuron was assumed to be a local excitatory neuron, modeled as a simple cell 267 

having a small receptive field (RF) and a preferred orientation in the visual space (Fig. 3C). 268 

Axonal projections from each presynaptic neuron were made onto five randomly selected 269 

dendritic branches of the postsynaptic neuron regardless of the stimulus selectivity, 270 

because visual cortex of mice has a rather diverse retinotopic structure (Bonin et al., 2011). 271 

In this setting, the post-neuron should be able to infer the orientation of the stimulus 272 

presented at its RF from the presynaptic inputs, because cells having similar RFs or 273 

orientation selectivity are often co-activated (Simoncelli and Olshausen 2001; Geisler et al., 274 

2001). Thus, we consider a supervised learning task in which the postsynaptic neuron has to 275 

learn to detect a horizontal grading, not a vertical grading, from stochastic presynaptic 276 

spikes depicted in Figure 3D. In reality, the modulation of lateral connections in L2/3 is 277 

arguably guided by the feedforward inputs from layer 4 (Ko et al., 2013; Urbanczik and Senn 278 

2014). However, for simplicity, we instead introduced an explicit supervised signal to the 279 

postsynaptic neuron. In this formulation, we can directly apply the rule for synaptic plasticity 280 

and rewiring introduced in the previous section (see The learning rule for the detailed model 281 

in Methods). Here, in addition to the rewiring by the proposed multisynaptic rule, we 282 

implemented elimination of synapses from uncorrelated presynaptic neurons, to better 283 

replicate developmental synaptic dynamics. 284 

Initially, the postsynaptic somatic membrane potential responded similarly to both 285 

horizontal and vertical stimuli, but the neuron gradually learned to show a selective 286 

response to the horizontal stimulus (Fig. 3E). After 100 trials, the two stimuli became easily 287 

distinguishable by the somatic membrane dynamics (Fig. 3E and F; see Performance 288 

evaluation in Methods for details). Next, we examined how the proposed mechanism works 289 

in detail. To this end, we focused on a presynaptic neuron circled in Figure 3C, and tracked 290 
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 12 

the changes in its synaptic projections and spine sizes (Fig. 3G-I). Because the neuron has a 291 

RF near the postsynaptic RF, and its orientation selectivity is nearly horizontal, the total 292 

synaptic weight from this neuron should be moderately large after learning. Indeed, the 293 

Bayesian optimal weight was estimated to be around 1.5 mV in the model (vertical dotted 294 

line in Fig. 3H), under the assumption of linear dendritic integration. Overall, the unit EPSPs 295 

of the majority of synapses were initially around 1.0-1.5 mV, while smaller or larger unit 296 

EPSPs were rare due to dendritic morphology (Fig. 3B). To counterbalance this bias toward 297 

the center, we initialized the spine size in a U-shape (light gray line in Fig. 3H). In this way, 298 

the prior distribution of the total synaptic weight becomes roughly uniform (see also Fig. 1B). 299 

After a short training, the most proximal spine (the blue one) was depotentiated, whereas 300 

spines with moderate unit EPSP sizes were potentiated (yellow and green ones on dark gray 301 

line in Fig. 3H). This is because, the expected distribution of the weight from this 302 

presynaptic neuron shifted to the left side (i.e. to a smaller EPSP) after the training, and this 303 

shift was implemented by reducing the spine size of the proximal synapse, while increasing 304 

the sizes of others (as in Fig. 1C, but here the change is to the opposite direction). Note that, 305 

the most distal spine (the brown one) was also depressed here, as the expected distribution 306 

got squeezed toward the center. Finally, after a longer training, the expected distribution 307 

became more squeezed, hence all but the green spine were depotentiated (black line in Fig. 308 

3H). Moreover, the most distal synapse was eliminated because its spine size became too 309 

small to make any meaningful contribution to the representation, and a new synapse was 310 

created at a proximal site (open and closed brown circles in Fig. 3G, respectively) as 311 

explained in Figure 2A. This rewiring achieve a more efficient representation of the weight 312 

distribution on average. Indeed, the new brown synapse was potentiated subsequently (top 313 

panel in Fig. 3I). Note that, in this example, red and blue synapses were also rewired shortly 314 

after this moment (vertical arrows above red and blue traces in Fig. 3I).  315 

 316 

The model reproduces various properties of synaptic organization on the dendrite  317 

While we confirmed that the proposed learning paradigm works well in a realistic 318 

model setting, we further investigated its consistency with experimental results. We first 319 

calculated spine survival ratio for connections from different presynaptic neurons. As 320 
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suggested from experimental studies (Ko et al., 2013; Iacaruso et al., 2017), more synapses 321 

survived if the presynaptic neuron had a RF near the postsynaptic RF after learning (Fig. 4A).  322 

Likewise, synapses having similar orientation selectivity to the postsynaptic neuron showed 323 

higher survival rates (Fig. 4B) as indicated from previous observations (Ko et al., 2013; Lee et 324 

al., 2016). However, this orientation dependence was evident only for projections from 325 

neurons with a RF in the direction of the postsynaptic orientation selectivity (blue line in Fig. 326 

4C), and the spines projected from neurons with orthogonal RFs remained to have uniform 327 

selectivity even after learning (green line in Fig. 4C), as reported in a recent experiment 328 

(Iacaruso et al., 2017). In contrast, both connections from neurons with nearby and faraway 329 

RFs showed clear orientation dependence, though the dependence was more evident for the 330 

latter in the model (Fig. 4D). The consistencies with the experimental results (Fig. 4A-D) 331 

support the legitimacy of our model setting, though they were achieved by the elimination 332 

of uncorrelated spines, not by the multisynaptic learning rule per se.  333 

Figure 4. Synaptic organization on the dendrite by the multisynaptic learning rule 334 
A) Survival ratio of spines with different receptive field (RF) distances from the postsynaptic 335 
neuron. B) Fraction of spines having various orientation selectivity before and after learning. 336 
C, D) Fraction of spines survived after learning, calculated for different orientation 337 
selectivity at co-axial/orthogonal RFs (C), and at nearby/faraway RFs (D). We defined the RF 338 
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of presynaptic neuron j being orthogonal if π
4 ≤ϕ j < 3π

4   or  5π
4 ≤ϕ j < 7π

4 , and co-axial otherwise. 339 
The RF of neuron j was defined as nearby if rj<0.5, but faraway if rj>1.0 (see Stimulus 340 
selectivity in Methods). E) Relationship between the dendritic distance and the relative 341 
weight at the dendrite gk and the soma gkvk/vmax. F) Relationship between the dendritic 342 
distance of a spine and its RF distance in the visual space. G) The same as F, but calculated 343 
for the dendritic branch order, not the dendritic distance. H) Dependence of normalized RF 344 
difference (red), and normalized orientation difference (black) on the between-spine 345 
distance were calculated for two synapses projected from different neurons. We used the 346 

Euclidean distance in the visual field 
 
ℓ ij = ri cosϕi − rj cosϕ j( )2 + ri sinϕi − rj sinϕ j( )2  for RF distance 347 

between presynaptic neurons i and j, and the normalization was taken over all synapse pairs. 348 
I) Distributions of dendritic distance between synapses projected from the same presynaptic 349 
neuron before and after learning. J) Relative spine size difference between spines projected 350 
from the same presynaptic neuron or different neurons calculated for pairs with different 351 
spine distance. The relative size difference between spine i and j was defined as |log(gi/gj)|. 352 
K) Standard deviation (SD) of spine size distribution at various orientation selectivity for 353 
synapses from presynaptic neurons with nearby RFs (rj<0.5). The distributions for short and 354 
long training were taken after learning from 10 and 1000 samples, respectively. All panels 355 
were calculated by taking averages over 500 independently simulated neurons, and the 356 
learning was performed from 1000 training samples.  357 

 358 

 We next investigated changes in dendritic synaptic organization generated by the 359 

multisynaptic learning. Overall, the mean spine size was slightly larger at distal dendrites 360 

(red line in Fig. 4E), but this trend was not strong enough to compensate the dendritic 361 

attenuation (black line in Fig. 4E), being consistent with previous observations in neocortical 362 

pyramidal neurons (Williams and Stuart, 2003). Importantly, neurons with RFs faraway from 363 

the postsynaptic RF likely formed synaptic projections more on distal dendrites than on 364 

proximal ones (Fig. 4F), and at higher dendritic branch orders than at lower ones (Fig. 4G), 365 

as observed previously (Iacaruso et al., 2017). This is because, in the proposed learning rule, 366 

if pre- and postsynaptic neurons have similar spatial selectivity, synaptic connections are 367 

preferably rewired toward proximal positions (Fig. 3G), and vice versa (Fig. 2A). Moreover, 368 

nearby spines on the dendrite showed similar RF selectivity even if multisynaptic pairs (i.e., 369 

synapse pairs projected from the same neuron) were excluded from the analysis (red line in 370 
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Fig. 4H), due to the dendritic position dependence of presynaptic RFs. On the other hand, 371 

similarity between nearby spines was less significant in orientation selectivity (black line in 372 

Fig. 4H), as observed previously in rodent experiments (Jia et al., 2010; Iacaruso et al., 2017). 373 

These results suggest a potential importance of developmental plasticity in 374 

somatic-distance dependent synaptic organization.  375 

 In the model, the position of a newly created synapse was limited to the branches 376 

where the presynaptic neuron initially had a projection, to roughly reproduce the spatial 377 

constraint on synaptic contacts. As a result, although there are many locations on the 378 

dendrite where the unit EPSP size is optimal for a given presynaptic neuron, only few of them 379 

are accessible from the neuron, hence synapses from the same presynaptic neuron may 380 

form clusters there. Indeed, by examining changes in multisynaptic connection structure, 381 

we found that the dendritic distance between two spines projected from the same 382 

presynaptic neuron became much shorter after learning (Fig. 4I), creating clusters of 383 

synapses from the same axon. This result suggests that clustering of multisynaptic 384 

connections observed in the experiments (Schmidt 2017) is possibly caused by 385 

developmental synaptogenesis under a spatial constraint. Furthermore, as observed in 386 

hippocampal neurons (Bartol et al., 2015), two synapses from the same presynaptic neuron 387 

had similar spine sizes if the connections were spatially close to each other, but the 388 

correlation in spine size disappeared if they were distant (red line in Fig. 4J). On the other 389 

hand, spine sizes of two synapses from different neurons were always uncorrelated 390 

regardless of the spine distance (black line in Fig. 4J). 391 

 Lastly, we studied the spine size distribution. In the proposed framework, the mean 392 

spine size does not essentially depend on presynaptic stimulus selectivity due to 393 

normalization, but the variance may change. In particular, the spine size variance is 394 

expected to be small if the presynaptic activity is highly stochastic, because the distribution 395 

of spine sizes stays nearly uniform in this condition, while the spine size variance should 396 

increase upon accumulation of samples. Indeed, in the initial phase of learning, the variance 397 

of spine size went up for projections from neurons with horizontal orientation selectivity 398 

(gray line Fig. 4K), though the spine size variance from other presynaptic neurons caught up 399 

eventually (black line Fig. 4K). In this regard, a recent experimental study found higher 400 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 29, 2018. ; https://doi.org/10.1101/127407doi: bioRxiv preprint 

https://doi.org/10.1101/127407
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

variability in postsynaptic density (PSD) areas for projections from neurons sharing 401 

orientation preference with the postsynaptic cell, though the data was from adult, not from 402 

juvenile mice (Lee et al., 2016).  403 

 404 

The multisynaptic rule robustly enables fast learning 405 

The correspondence with experiment observations discussed in the previous section 406 

supports the plausibility of our framework as a candidate mechanism of synaptic plasticity 407 

on the dendrites. Hence, we further studied the robustness of learning dynamics under the 408 

proposed multisynaptic rule. Below, we turn off the spine elimination mechanism that is not 409 

compensated by creation, as this process affects the learning dynamics. 410 

 In the proposed model, if the initial synaptic distribution on the dendrite qv(v) is 411 

close to the desired distribution pv(v), spine size modification is in principle unnecessary. In 412 

particular, the optimal EPSPs of most presynaptic neurons are small in our L2/3 model (Fig. 413 

3C); hence most synaptic contacts should be placed on distal branches on average. Indeed, 414 

when the initial synaptic distribution was biased toward the distal side, improvement in 415 

classification performance became faster (black vs blue lines in Fig. 5A). This result suggests 416 

that the synaptic distribution on the postsynaptic dendrite may work as a prior distribution. 417 

Figure 5. Dynamics of the multisynaptic learning rule under various conditions  418 
A) Learning dynamics under various initial synaptic distributions. The inset represents the 419 
unit EPSP distributions when synaptic connections are biased toward the distal dendrite 420 
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(black), unbiased (blue), and biased toward the proximal (light blue). B) Comparison with the 421 
monosynaptic learning. We set the learning rate as ηw=0.03, 0.1, 0.3, 1.0, from light gray to 422 
black lines. To keep the E/I balance, the inhibitory weight was set to γI=2.0 for ηw=1.0, and 423 
γI=1.25 for the rest. The magenta line is the same as the black line in A. C) Classification 424 
performance after learning with different numbers of synapses per connection with or 425 
without rewiring. For the E/I balance, the inhibitory weights were chosen as γI=2.0, 1.2, 0.75, 426 
0.6, 0.5, 0.4, 0.3, when the number of synapses per connections were K=2, 3, 5, 7, 9, 11, 13, 427 
respectively. D) The performance after learning with various synaptic failure probabilities. 428 
Both in panel C and D, the performance was calculated after 1000 trials. E) Learning 429 
dynamics under the surrogate rule. Thin gray lines represent examples. All panels were 430 
calculated by taking the means over 50 simulations.  431 

 432 

We next compared the learning performance with the standard monosynaptic 433 

learning rule in which the learning rate is a free parameter (see Monosynaptic rule for the 434 

detailed model in Methods). If the learning rate is chosen at a small value, the neuron took a 435 

very large number of trials to learn the classification task (light gray line in Fig. 5B). On the 436 

other hand, if the learning rate is too large, the learning dynamics became unstable and the 437 

performance dropped off after a dozen trials (black line in Fig. 5B). Therefore, the learning 438 

performance was comparable with the multisynaptic rule only in a small parameter region 439 

(ηw~0.1). By contrast, in the multisynaptic rule, stable fast learning was achievable without 440 

any fine-tuning (magenta line in Fig. 5B).  441 

As expected from Figure 2, the proposed learning mechanism worked well even if 442 

the number of synapses per connection was small (Fig. 5C). Without rewiring, the 443 

classification task required seven synapses per connection for an 80% success rate, but 444 

three was enough with rewiring (Fig. 5C). Moreover, the learning performance was robust 445 

against synaptic failure (Fig. 5D). Although local excitatory inputs to L2/3 pyramidal cells 446 

have a relatively high release probability (Branco and Staras, 2009), the stochasticity of 447 

synaptic transmission at each synapse may affect learning and classification. We found that 448 

even if the half of presynaptic spikes were omitted at each synapse (see Task configuration 449 

in Methods for details), the classification performance was still significantly above the 450 

chance level (Fig. 5D). 451 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 29, 2018. ; https://doi.org/10.1101/127407doi: bioRxiv preprint 

https://doi.org/10.1101/127407
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

 In the proposed model, competition was assumed among synapses projected from 452 

the same presynaptic neuron, but it is unclear if homeostatic plasticity works in such a 453 

specific manner. Thus, we next constructed a surrogate learning rule that only requires a 454 

global homeostatic plasticity. In this rule, the importance of a synapse was not compared 455 

with other synapses from the same presynaptic neuron, but was compared with a 456 

hypothesized standard synapse (see The surrogate learning rule in Methods). When the unit 457 

EPSP size of the standard synapse was chosen appropriately, the surrogate rule indeed 458 

enabled neuron to learn the classification task robustly and quickly (Fig. 5E). Overall, these 459 

results support the robustness and biological plausibility of the proposed multisynaptic 460 

learning rule.  461 

 462 

Discussion 463 

In this work, first we have used a simple conceptual model to show: (i) Multisynaptic 464 

connections provide a non-parametric representation of probabilistic distribution of the 465 

hidden parameter using redundancy in synaptic connections (Fig. 1AB); (ii) Updating of 466 

probabilistic distribution given new inputs can be performed by a Hebbian-type synaptic 467 

plasticity when the output activity is supervised (Fig. 1C-E); (iii) Elimination and creation of 468 

spines is crucial for efficient representation and fast learning (Fig. 2A-C). In short, synaptic 469 

plasticity and rewiring at multisynaptic connections naturally implements an efficient 470 

sample-based Bayesian filtering algorithm. Secondly, we have demonstrated that the 471 

proposed multisynaptic learning rule works well in a detailed single neuron model receiving 472 

stochastic spikes from many neurons (Fig. 3). Moreover, we found that the model 473 

reproduces the somatic-distance dependent synaptic organization observed in the L2/3 of 474 

rodent visual cortex (Fig. 4F and G). Furthermore, the model suggests that the dendritic 475 

distribution of multisynaptic inputs provides a prior distribution of the expected synaptic 476 

weight (Fig. 5A).  477 

 478 

Experimental predictions 479 

Our study provides several experimentally testable predictions on dendritic synaptic 480 

plasticity, and the resultant synaptic distribution. First, the model suggests a crucial role of 481 
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developmental synaptogenesis in the formulation of presynaptic selectivity-dependent 482 

synaptic organization on the dendritic tree (Fig. 4F and G), observed in the primary visual 483 

cortex (Iacaruso et al., 2017). More specifically, we have revealed that the RF-dependence of 484 

synaptic organization is a natural consequence of the Bayesian optimal learning under the 485 

given implementation. Evidently, retinotopic organization of presynaptic neurons is partially 486 

responsible for this dendritic projection pattern, as a neuron tends to make a projection 487 

onto a dendritic branch near the presynaptic cell body (Markram et al., 2015; Gal et al., 488 

2017). However, a recent experiment reported that RF-dependent global synaptic 489 

organization on the dendrite is absent in the primary visual cortex of ferrets (Scholl et al., 490 

2017). This result indirectly supports the non-anatomical origin of the dendritic synaptic 491 

organization, as a similar organization is arguably expected in ferrets if the synaptic 492 

organization is purely anatomical.  493 

Our study also predicts developmental convergence of synaptic connections from 494 

each presynaptic neuron (Fig. 3G and Fig. 4I). It is indeed known that in adult cortex, 495 

synaptic connections from the same presynaptic neuron are often clustered (Kasthuri et al., 496 

2015; Schmidt, 2017). Our model interprets synaptic clustering as a result of an 497 

experience-dependent resampling process by synaptic rewiring, and predicts that synaptic 498 

connections are less clustered in immature animal. In particular, our result suggests that 499 

synaptic clustering occurs in a relatively large spatial scale (~100μm; as shown in Fig 5I), not 500 

in a fine spatial scale (~10μm). This may explain a recent report on the lack of fine clustering 501 

structure in the rodent visual cortex (Lee et al., 2016).  502 

Furthermore, our study provides an insight on the functional role of anti-Hebbian 503 

plasticity at distal synapses (Letzkus et al., 2006; Sjöström and Häusser, 2006). Even if the 504 

presynaptic activity is not tightly correlated with the postsynaptic activity, that does not 505 

mean the presynaptic input is not important. For instance, in our detailed neuron model, 506 

inputs from neurons having a RF faraway from the postsynaptic RF still helps the 507 

postsynaptic neuron to infer the presented stimulus (Fig. 3). More generally, long-range 508 

inputs are typically not correlated with the output spike trains, because the inputs usually 509 

carry contextual information (Bittner et al., 2015), or delayed feedback signals (Manita et al., 510 

2015), yet play important moduratory roles. Our study indicates that anti-Hebbian plasticity 511 
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at distal synapses prevents these connections from being eliminated, by keeping the 512 

synaptic connection strong. This may explain why modulatory inputs are often projected to 513 

distal dendrites (Bittner et al., 2015; Manita et al., 2015), though active dendritic 514 

computation shuold also be crucial especially in case of Layer 5 or CA1 pryramidal neurons 515 

(Segev and London, 2000). 516 

 517 

Related works 518 

Previous theoretical studies often explain synaptic plasticity as stochastic gradient descent 519 

on some objective functions (Pfister et al., 2006; Nessler et al., 2013; Urbanczik and Senn, 520 

2014; Hiratani and Fukai, 2016), but these models require fine-tuning of the learning rate 521 

for explaining near-optimal learning performance observed in humans (Behrens et al., 522 

2007; Lake et al., 2015) and rats (Madarasz et al., 2016), unlike our model. Moreover, in this 523 

study, we proposed synaptic dynamics during learning as a sample-based inference process, 524 

in contrast to previous studies in which sample-based interpretations were applied for 525 

neural dynamics (Orbán et al., 2016). 526 

On the anti-Hebbian plasticity at distal synapse, previous modeling studies have 527 

revealed its potential phenomenological origins (Graupner and Brunel, 2012), but its 528 

functional benefits, especially optimality, have not been well investigated before. Particle 529 

filtering is an established method in machine learning (Doucet et al., 2000), and has been 530 

applied to artificial neural networks (Freitas et al., 2000), yet its biological correspondence 531 

had been elusive. 532 
Previous computational studies on dendritic computation have been emphasizing 533 

the importance of active dendritic process (Segev and London, 2000), especially for 534 
performing inference from correlated inputs (Ujfalussy et al., 2015), or for computation at 535 
terminal tufts of cortical layer 5 or CA1 neurons (Urbanczik and Senn, 2014). Nevertheless, 536 
experimental studies suggest the summation of excitatory inputs through dendritic tree is 537 
approximately linear (Cash and Yuste, 1999; Hao et al., 2009). Indeed, we have shown that a 538 
linear summation of synaptic inputs is suitable for implementing importance sampling. 539 
Moreover, we have demonstrated that even in a detailed neuron model with active dendrites, 540 
a learning rule assuming a linear synaptic summation works well.  541 
 542 
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Methods 543 

A conceptual model of multisynaptic learning 544 

The learning rule for multisynaptic connections 545 

In the model, CS (eg. tone stimulus) and US (eg. electric shock) were represented by binary 546 
variables xn ∈ 0,1{ }  and yn ∈ 0,1{ } . At each trial n, CS was delivered with Pr xn = 1[ ] = π x , and US 547 

was given only when xn=1, with probability Pr yn = 1| xn = 1[ ] = vc . For this task, the update rule 548 

for the spine size factor gkn+1 = 1
Kqv vk( ) p vc = vk | x1 : n+1,y1 : n+1( )  is given as, 549 

gkn+1 = 1
Kqv vk( ) p vc = vk | x1 : n+1,y1 : n+1( )

∝ 1
Kqv vk( ) p xn+1,yn+1 |vc = vk( )p vc = vk | x1 : n,y1 : n( )

∝ p yn+1 | xn+1,vc = vk( ) 1
Kqv vk( ) p vc = vk | x1 : n,y1 : n( )( )

= p yn+1 | xn+1,vc = vk( )gkn.

 550 

In particular, in our problem setting, vc does not provide any information about yn when 551 

xn=0, thus approximately (see the proof of convergence below), 552 

 
p yn+1 | xn+1,vc = vk( ) ≈ xn+1 vkyn+1 + 1−vk( ) 1− yn+1( )⎡⎣ ⎤⎦ +

1
2 1− xn+1( )

∝1+ 2vk −1( )xn+1 2yn+1 −1( ).
  553 

Because the normalization factor is determined by 554 

1= p ′vc | x1 : n,y1 : n( )d ′vc∫ ≈ 1
K

p ′vc = vk | x1 : n,y1 : n( )
qv vk( )k∑ = gknk∑ , 555 

the sum of {gkn+1} should also be normalized to 1. Thus the update rule is given as 556 

 gkn+1 =
1+ f xn+1,yn+1;vk( )⎡⎣ ⎤⎦gk

n

1+ f xn+1,yn+1;v ′k( )⎡⎣ ⎤⎦g ′k
n

′k∑
=
1+ f xn+1,yn+1;vk( )
1+ f xn+1,yn+1;wn( ) gk

n ,  557 

where f x,y;v( ) ≡ 2v −1( )x 2y −1( )  and wn ≡ wk
n

k∑ = gk
nvkk∑ . As for the resampling process, at 558 

every trial n, if spine k satisfied gk < gth, unit EPSP was resampled uniformly from [0,1), and 559 

the spine size was set to gk = gth.  560 

 561 

Proof of convergence 562 

The derived learning rule can be rewritten as 563 
logp vc = vk | x1 : n,y1 : n( ) = log 1+ 2vk −1( )x ′n 2y ′n −1( )⎡⎣ ⎤⎦′n∑ + const ,  564 

so in order to prove convergence, we need to show that ϕ v( ) ≡ log 1+ 2v −1( )x ′n 2y ′n −1( )⎡⎣ ⎤⎦ ′n
 is 565 

maximized at true vc. By considering Taylor expansion, the above equation is expanded as 566 
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log 1+ z( ) = −1( )m+1

m zm
m=1

∞∑ . In this form, the average is calculated as 567 

2v −1( )x ′n 2y ′n −1( )( )m = 2v −1( )m x ′n y ′n + −1( )m x ′n 1− y ′n( )
= 2v −1( )mvcπ x + 1− 2v( )m 1−vc( )π x

  568 

Note that (xn)m=xn if m>0, because xn=0 or 1. Thus, by substituting the above equation into 569 

the Taylor expansion form, 570 

 
ϕ v( ) = π xvc log 1+ 2v −1( )⎡⎣ ⎤⎦ +π x 1−vc( )log 1+ 1− 2v( )⎡⎣ ⎤⎦

= π x vc logv + 1−vc( )log 1−v( )⎡⎣ ⎤⎦ + const.
  571 

Therefore, φ(v) is maximized at v = vc. 572 

 573 

Monosynaptic learning rule 574 

 For comparison, we implemented a monosynaptic learning rule. By expanding the 575 
exact solution vcn = x ′n y ′n′n∑ x ′n′n∑ : 576 

 vcn = xnyn + x ′n y ′n′n =1

n−1∑( ) xn + x ′n′n =1

n−1∑( ) ≈vcn−1 1+ xn yn −vcn−1( ) x ′n y ′n′n =1

n−1∑( ).   577 

Hence, by using a single variable vmn, the learning rule is given as vmn = vmn−1 1+ηxn yn −vmn−1( )( ) , 578 

where η represents the learning rate. In the optimal learning depicted in Figure 1E, vc was 579 

estimated as vcn = 1+ x ′n y ′n′n∑( ) 2 + x ′n′n∑( ) . 580 

 581 

Details of the conceptual model 582 

In the simulations, we used πx=0.3, and vc was randomly chosen from [0,1) 583 

uniformly at each simulation (not at each trial). The number of connections was kept at 584 

K=10 except for Figure 2B in which K=2 to 20 were used. Initial value of k-th connection vk 585 

was set as vk=(k+0.5)/K except for Figure 2C in which the initial distribution was biased by 586 

choosing vk as v ′k = − log 1− 1−e−λB⎡⎣ ⎤⎦
′k
K( )  where λB is the bias parameter. Resampling was 587 

performed with the threshold gth=0.0001, and a new unit EPSP vk was uniformly sampled 588 

from [0,1). In Figure 2B and C, the errors were calculated after learning from 104 trials. 589 

 590 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 29, 2018. ; https://doi.org/10.1101/127407doi: bioRxiv preprint 

https://doi.org/10.1101/127407
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

Detailed single neuron model 591 

Morphology 592 

We constructed a detailed neuron model based on a model of L2/3 pyramidal neuron with 593 

active dendrites (Smith et al., 2013) using NEURON simulator (Hines and Carnevale, 1997). 594 

Here, we used the original reconstructed morphology without scaling. We distributed 1000 595 

excitatory synaptic inputs from 200 presynaptic neurons randomly on the dendrite. Synaptic 596 

input was modeled as a double exponential conductance change with the rise time 597 

τrise=0.5ms, the decay time τdecay=2.5ms, and the reversal potential was set to 0mV. For each 598 

synapse k from presynaptic neuron j, we first applied a synaptic input with a constant weight 599 

factor γg=2.5nS, and then determined the unit EPSP vjk of synapse k by measuring somatic 600 

membrane potential change. The minimum and the maximum value of the unit EPSP of the 601 

given model were vmin=0.57mV and vmax=2.39mV, respectively. In the simulation of the task, 602 

using malleable spine size factor gjk, we set the weight factor of synapse k as γggjk. Similarly, 603 

200 inhibitory synaptic inputs were uniformly distributed on the dendrite, and the rise and 604 

decay time of conductance was set as 0.5ms and 2.5ms, and the reversal potential was set to 605 

-90mV. The inhibitory weight factor was chosen as γI=0.75nS. 606 

 607 

Stimulus Selectivity 608 

We hypothesized that all excitatory presynaptic neurons are simple cells having direction 609 

selectivity {θj} at receptive field (RF) {(rj, φj)}. Here, the position of RF in the visual field was 610 

defined by the relative position to the postsynaptic neuron in the polar coordinate (Fig. 3C). 611 

We modeled the mean firing rate of presynaptic neuron j for a stimulus θ at the RF of the 612 

postsynaptic neuron (i.e. at r=0) as  613 

 ρ j θ( ) = ρ ′θ ;θ j( ) ⋅
0

2π

∫ p ′θ  at {rj ,ϕ j } |θ  at r = 0( )d ′θ .  614 

The first term ρ ′θ ;θ j( )  is the mean response of the neuron with orientation selectivity θj 615 

when orientation θ’ is presented at its own RF, hence using a von Mises distribution, the 616 

response is approximately given as ρ ′θ ;θ j( ) ≡ ρo exp κ o cos 2 ′θ −θ j( )⎡⎣ ⎤⎦( ) 2πIo (κ o )( )  (Swindale, 617 

1998). The second term is the probability of observing a stimulus with orientation θ’ at the 618 

position (rj, φj) given stimulus θ at the center. The orientation θ’ at (rj, φj) should be similar 619 
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to the orientation θ at the center if rj ~ 0, or φj ~ θ due to continuity and contour statistics 620 

(Simoncelli and Olshausen 2001; Geisler et al., 2001). Hence, we modeled the conditional 621 

probability as  622 
 p ′θ  at {rj ,ϕ j } |θ  at r = 0( ) ≡ exp − rj ro +κ j

r cos 2 ′θ −θ( )⎡⎣ ⎤⎦( ) 2πIo (κ j
r )( )   623 

where κ j
r θ( ) ≡ ro

rj +rmin exp κϕ cos 2 ϕ j −θ( )⎡⎣ ⎤⎦( ) . Note that the marginalized probability exp(-ri/ro) is 624 

smaller than one as an explicit stimulus may not exist at (rj, φj) if the RF is far away from the 625 

center. By calculating the integral, the mean firing rate is derived as 626 

 
ρ j θ( ) = ρoIo !κ j( ) 2πIo κ o( )Io κ j

r( )⎡⎣ ⎤⎦( )e−rj ro  where 
 
!κ j ≡ (κ o )2 + (κ j

r )2 + 2κ oκ j
r cos 2 θ j −θo⎡⎣ ⎤⎦( ) . In the 627 

simulation, we used κo=2.0, κφ=4.0, ρo=1.5π, rmin=0.01exp(κφ), and ro=1.0. The selectivity 628 

of each presynaptic neuron was uniformly sampled from the ranges: 0≤rj<3, 0≤φj<2π, and 629 

0≤θj<π. 630 

 Based on the selectivity described above, we modeled the spiking activity of 631 

presynaptic neuron j as a Poisson process with the rate ρ=ρj(θ) under the presence of 632 

stimulus θ=θ+ or θ-. In addition, we assumed that all presynaptic neurons follow a Poisson 633 

process with the rate ρ=ρsp in the spontaneous activity. In the simulation, we set ρsp=0.01ρo. 634 

 635 

Task configuration 636 

We next consider the activity of the postsynaptic neuron. A sensory neuron should decode 637 

the presented stimulus given stochastic spiking spikes of presynaptic neurons. In particular, 638 

here we consider decoding of stimulus orientation θ given spike counts from M presynaptic 639 

neurons s1:Mt={s1t,s2t,…,sMt}. As the spikes were generated from Poisson processes in the 640 

model, the log-likelihood ratio of θ=θ+ against the spontaneous activity ϕ is given as  641 

 log
p θ+ | s1:Mt( )
p φ | s1:Mt( ) = sj

t log
ρ j (θ+ )
ρsp

⎛

⎝⎜
⎞

⎠⎟j=1

M

∑ + ρsp − ρ j (θ+ )( )
j=1

M

∑ = w j
∗sj

t

j=1

M

∑ +C.,   642 

where w j
∗ ≡ log ρ j (θ+ ) ρsp( ) . Hence, if the synapses projected from presynaptic neuron j learn to 643 

represent wj* jointly, the somatic membrane potential naturally represents the 644 

log-likelihood of the stimulus being θ+, assuming passive dendritic integration.  645 

 In this task configuration, the estimated log-likelihoods are on average the same 646 

for two perpendicular stimuli θ=θ+ and θ- before learning, but the estimated log-likelihood 647 
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becomes significantly larger for θ=θ+ once the correct weight structure is acquired. Hence, 648 

we evaluated the learning performance by a classification between θ=θ+ and θ-, using θ- as 649 

a control.  650 

 In the simulation, we first generated the spike counts of each presynaptic neurons 651 

{s1t, s2t, …,sMt} by sampling from Poisson distributions with the rates {ρ1, ρ2, ..., ρM} where 652 

ρj=ρj(θ+) or ρj(θ-) depending on the task. Based on the spike count sjt, spike timings of the 653 
m-th spike from presynaptic neuron j at trial t was determined as tmj ,t = ζU

j ,t +m −1( )Δtstimulus s j
t  654 

where Δtstimulus=20ms, and ζUj ,t  is a random variable uniformly depicted from [0,1). In the 655 

presence of synaptic failure, we instead defined a spike count at each synapse k by sjkt ~ 656 

Binomial(sjt, 1-rsf), where rsf is the failure rate. Inhibitory spikes were calculated in the same 657 

way, but the spike probability was defined by the total excitatory inputs as ρInh
t = sj

t Minhj

M∑  658 

to achieve the E/I balance. 659 

 660 

The learning rule for the detailed model 661 

We next derived the multisynaptic learning rule for this task. The optimal estimation of the 662 

weight from presynaptic neuron j at trial t is given as 663 

 w j
t = ′w ⋅p w j

t = ′w | sj1 : t ,θ1 : t( )d
wmin

wmax

∫ ′w = γ w ′v ⋅p w j
t = γ w ′v | sj1 : t ,θ1 : t( )d

vmin

vmax

∫ ′v .  664 

Here, we introduced a scaling factor γw to represent a dimensionless value w by a unit EPSP v 665 

[mV]. In the simulation, we used γw=wmax/vmax. By importance sampling, 666 

w j
t = γ w ′v

p w j
t = γ w ′v | sj1 : t ,θ1 : t( )

q ′v( ) q ′v( )d
vmin

vmax

∫ ′v ≈ 1
K

γ wv jkp w j
t = γ wv jk | sj1 : t ,θ1 : t( )
q v jk( )k=1

K

∑ = γ w g jk
t v jk

k=1

K

∑ , 667 

where g jk
t ≡ p w j

t = γ wv jk | sj
1 : t ,θ1 : t( ) Kq(v jk )( )  represents the relative spine size of spine k from 668 

presynaptic neuron j, and K is the total number of synapses per presynaptic neuron. 669 

Therefore, considering a Bayesian filtering, the update of {wtj} is done by the following 670 

update of spine size {gtjk}: 671 
 

 
!g jk
t = g jk

t ⋅p sj
t |θt ,w j = γ wv jk( ),  g jk

t+1 = !g jk
t !g j ′k

t
′k∑ , 672 

where p sj
t |θt ,w j = γ wv jk( ) = δ θt = θ+( ) ⋅exp γ wv jk + logρsp⎡⎣ ⎤⎦sj

t − ρspe
γwv jk( ) sj

t !( ) , and δ x( )  is a function 673 
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that returns 1 if x is true, but returns 0 otherwise. 674 

 At every trial, synapses with spine size gjkt < gth was removed with 20% chance. If a 675 

synapse is removed, a new synaptic contact from the corresponding presynaptic neuron was 676 

simultaneously created on one of the dendritic branches to which the neuron initially had 677 

projections. Probability of selecting a branch was set to be proportional to the length of the 678 

branch. Spine size of a newly created synapse was set to gjkt=1/K. This rewiring procedure is 679 

slightly different from the one in the conceptual model, because rewiring becomes too 680 

frequent if we directly apply the latter.  681 

 In addition to rewiring of synaptic connections, we also included an elimination 682 

process that is not compensated by new connections, as the total number of synaptic 683 

connections is known to decreases during development (Holtmaat and Svoboda, 2009). In 684 

particular, inactive synapses are expected to be more fragile (Wiegert and Oertner, 2013). 685 

Hence, we tracked the firing rate of presynaptic neuron during the training phase by 686 
rj
t = 1−1 τ r( )rjt−1 + sjt τ r . At every trial, if the presynaptic firing rate satisfies rjt < rel-th, we 687 

eliminated the synaptic contact with 20% chance. Throughout the simulation, we used gth = 688 

0.001, τr=10.0, and rel-th=0.05.  689 

 690 

Monosynaptic learning rule for the detailed model 691 

As presynaptic neurons follow stationary Poisson processes, the learning rule for 692 

monosynaptic connection was defined as 693 

 g j
t = g j

t−1 +ηw sj
t exp −2γ wv j⎡⎣ ⎤⎦ − ρsp( ) , 694 

where ηw is the learning rate parameter (Nessler et al., 2013; Hiratani and Fukai, 2016), and 695 

vj is the unit EPSP of the synaptic connection from neuron j. To ensure stability, we bounded 696 

the spine size between 0 < gjt < 1, and doubled the scaling factor from γw to 2γw.  697 

 698 

The surrogate learning rule 699 
In the surrogate rule, each synapse estimates the mean unit EPSP by v jk

o = 1− g jk
t( )vo + g jk

t v jk , 700 

where vo is the standard unit EPSP. Subsequently, a synapse updates its spine size by 701 

g jk
t+1 = g jk

t exp sjt log ρ jk ρ jk
o,t⎡⎣ ⎤⎦ − ρ jk − ρ jk

o,t⎡⎣ ⎤⎦( ) Zt   702 
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where ρ jk = ρsp exp γ wv jk( ) , ρ jk
o,t = ρsp exp γ wv jk

o,t( ) , and Zt = exp
1

M ⋅K
sjt log ρ jk ρ jk

o,t⎡⎣ ⎤⎦ − ρ jk − ρ jk
o,t⎡⎣ ⎤⎦( )

j ,k
∑⎡

⎣
⎢

⎤

⎦
⎥.  703 

The normalization term Zt is global in a sense that the term is given by the summation over 704 

all the excitatory synapses projected to the postsynaptic neuron. To ensure the stability, we 705 
bounded the spine size factor as 0 ≤ g jk

t ≤1 2 , and set vo=1.5vmin (≈0.9mV).  706 

 707 

Performance evaluation 708 

During the training phase, only the target (i.e. horizontal stimulus θ=θ+) was presented. In 709 

the test phase, we presented 200 stimuli, of which 100 stimuli were the horizontal stimulus 710 

(θ=θ+), while the other half were the vertical stimulus (θ=θ-). In Figure 3F, 5A, 5B and 5E, we 711 

stopped the training at every 10 trials, and measured the performance. The classification 712 

performance was measured by the ratio of horizontal trials in which the maximum EPSP 713 
height Δvn

h  exceeded the threshold vθ = mh σ h
2 +mv σv

2( ) 1σ h
2 +1σv

2( ),  to the total of 100 trials, 714 

where mh =E Δvn
h⎡⎣ ⎤⎦  and σ h

2 = Var Δvn
h⎡⎣ ⎤⎦  were calculated over 100 test stimuli (n=1, 2, …,100). 715 

Although the evaluations were made solely on false negatives, we also observed significant 716 

decrease of false positives during learning (Fig. 3E). When a postsynaptic action potential 717 

was emitted, we used the estimated membrane threshold Δvth=25mV as the maximum EPSP 718 
height Δvn , but such a trial was rare (<1%) in our model setting. 719 

 720 

Details of the NEURON simulations 721 

 Initial values of spine sizes {gjk} were chosen such that gjk~1/qv(vjk) is satisfied. To 722 

this end, we first estimated the unit EPSP density at v=vjk through a sample-based 723 

approximation: 724 

 
qv v j

k( )∝ δ v j
k − 1

2dv ≤vm
i <v j

k + 1
2dv⎡⎣ ⎤⎦i=1

K∑m=1

M∑ ≡ !qv v j
k( ),  725 

where dv=(vmax-vmin)/10. Then we calculated gjk by 
 
g j
k =

1 !qv v j
k( )

1 !qv v j
′k( )′k∑

. In Figure 5A, to 726 

generate a biased synaptic distribution, we randomly sampled a position from the whole 727 

dendritic tree with probability ′L
Lmax( )λB −1 ⋅ ′L

Lmax( )1−λB 10 ⋅B λB,2 − λB( ) , and added a synapse until 1000 728 

synapses are created on the dendritic tree. Here, L’ is the distance from the soma, Lmax is its 729 
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maximum length, λB is the bias parameter, and B(x,y) is the Beta function.  730 

Presynaptic selectivity and initial synaptic contacts were randomly generated for 731 

each simulation, while the dendritic morphology was fixed. Further details of the model are 732 

available at ModelDB (http://modeldb.yale.edu/225075 with access code ”1234”). 733 
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