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Abstract

Libraries of structural prototypes that abstract protein local structures are known as structural

alphabets and have proven to be very useful in various aspects of protein structure analyses and

predictions. One such library, Protein Blocks (PBs), is composed of 16 standard 5-residues long

structural prototypes. This form of analyzing proteins involves drafting its structure as a string of

PBs. Thus, predicting the local structure of a protein in terms of protein blocks is a step towards

the objective of predicting its 3-D structure. Here a new approach, kPred, is proposed towards this

aim that is independent of the evolutionary information available. It involves (i) organizing the

structural knowledge in the form of a database of pentapeptide fragments extracted from all

protein structures in the PDB and (ii) apply a purely knowledge-based algorithm, not relying on

secondary structure predictions or sequence alignment profiles, to scan this database and predict

most probable backbone conformations for the protein local structures.

Based on the strategy used for scanning the database, the method was able to achieve efficient

mean Q16 accuracies between 40.8% and 66.3% for a non-redundant subset of the PDB filtered at

30% sequence identity cut-off. The impact of these scanning strategies on the prediction was

evaluated and is discussed. A scoring function that gives a good estimate of the accuracy of

prediction was further developed. This score estimates very well the accuracy of the algorithm (R2

of 0.82). An online version of the tool is provided freely for non-commercial usage at

http://www.bo-protscience.fr/kpred/.

Keywords: structural alphabet, protein blocks, protein backbone, pentapeptides, database,

prediction algorithm
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Introduction 

Knowledge of protein structure considerably helps towards understanding protein function. The

Protein Data Bank (PDB) that serves as the central repository of knowledge for the protein

structural biology community contains more than 125,000 protein structures and its growth has

been considerable in the past decade1. This number is however still far below the ~70 million

protein sequences referenced in UniProt database2. Hence it is at stake to find methods to bridge

this considerable gap. Computational methods for predicting protein secondary and tertiary

structure have persistently tried to fill it. In this paper, we explore the ability of a structural

alphabet based prediction method to fulfill in part this role. 

Since the seminal works by Kabsch and Sander in 19843, one of the most popular and rewarding

computational method to predict and analyze protein structures is by breaking them down to their

constituent parts in the so-called fragment-based approach. Multiple fragment libraries have been

developed so far and they differ in the number of fragments, the length of the fragments, the

methods used for clustering and the criteria used for clustering. The first fragment library was

developed by Unger and co-workers4. There are reviews that give a good overview of the

different fragment libraries developed since then5,6. Also referred to as structural alphabets (SAs),

these have shed some light on the sub-secondary structure level intricacies in proteins 7. By

identifying redundant structural fragments found in proteins, structural alphabets help in

abstracting protein structures accurately. Such collections of fragments have also been used in

methods that attempt to reconstitute protein structures8-10.

In that respect, a SA called protein blocks (PBs) was developed for the purpose of describing and

predicting the local backbone structure of proteins11,12. This SA accounts for all local backbone

conformations in protein structures available in the Protein Data Bank (PDB). Since then, PBs

have been used in various applications11: for structural motif identification13–15, structural

alignments16,17 and fold recognition18,19. There have also been various efforts to use PBs to predict
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protein local structure. These approaches are based on the Bayes theorem9,12 support vector

machines20–22 and neural networks23. Some of these methods have used prior predictions of

classical three state secondary structures (svmPRAT22 uses YASSPP24, SVM-PB-Pred21 uses

GOR25 and Etchebest et. al.26 use PSI-PRED27) and sequence alignment profiles like position

specific scoring matrices (PSSMs) are used by LOCUSTRA20, SVM-PB-Pred21 and Dong and

coworkers methodology23. The currently available web-based tools that can predict local structure

in terms of protein blocks are LocPred28 and SVM-PB-Pred21. The former implements a Bayesian

methodology and the latter is SVM-based.

In this work we describe PB-kPRED, a purely fragment and knowledge-based approach to predict

local backbone structure of proteins in terms of protein blocks and a web-based tool that

implements the method. In essence, it takes no other inputs than the amino acid sequence of a

query and interrogates a database of pentapeptides extracted from protein structures, without

using evolutionary information. It returns the predicted local structures of the polypeptide chain

in the form of a sequence of protein blocks. Very importantly, PB-kPRED also implements a

scoring function that efficiently auto-evaluates the quality of the prediction.
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Methods

Dataset

All the protein chains from PDB1 were segregated into clusters culled at 30% sequence identity

using the BLASTClust algorithm28 resulting in a collection of 15,544 clusters. The dataset  which

we set-up comprises of 15,554 protein chains each corresponding to the best representative

structure available from each of these clusters and is hereafter termed as “PDB30 dataset”.

Preference was given to crystallographic structures over NMR and electron microscopy structures

and also preferring better resolution and lowest R-value structures. Out of these 15,544 structures,

14,207 are crystallographic structures, 1,128 are from NMR experiments and 209 are solved by

electron microscopy. Further, chains smaller than 100 residues were filtered out. We preferred to

keep the NMR and EM structures, as we wanted to investigate if the experimental method impact

on the quality of the predictions.  For each of these 15,544 proteins the subsets of PDB that were

homologous at 30%, 40%, 50%, 70%, 90%, 95% and 100% as reported by BLASTClust were

also calculated in order to implement the “Hybrid method with noise filtering” scheme.

Protein Blocks

The set of protein blocks (PBs) is a structural alphabet composed of 16 structural prototypes each

representing backbone conformation of a fragment of 5 contiguous residues11,12. The 16 PBs are

represented by the letters a to p and were identified from a collection of 228 non-redundant

proteins. Clustering these pentapeptides was based on the 8 dihedral angles (ψ i-2, φi-1, ψi-1, φi, ψi,

φi+1, ψi+1, φi+2) that define their local backbone conformation. An unsupervised learning algorithm

(Kohonen algorithm) was used to arrive to an unbiased classification of the dihedral vectors and
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to the definition of standard dihedral angles for each PB. Protein blocks are assigned on the basis

of the dissimilarity measure called root mean square deviation on angular values (rmsda) between

observed dihedral angles and the standard dihedral angles for the 16 PBs. The PB with lowest

rmsda is assigned to the central residue of the pentapeptide region. The choice of fragment size as

5 and library size as 16 for the PBs was because 5 consecutive residues capture well the local

contacts in regular secondary structures (α-helices and β-strands) and 16-library size is a good

balance between the specificity and sensitivity of predictions12.

All the 15,544 protein chains from PDB30 dataset were encoded into their corresponding protein

blocks sequences (PB sequences) after comparing their backbone φ and ψ torsion angles with the

corresponding standard torsion angles for the 16 PBs11 using an in-house developed Perl script.

Sequence of PBs as observed in crystal and NMR structures were later used as a reference to

assess the accuracy of predicted PB sequences.

Database of pentapeptide conformations from protein structures

A database of pentapeptide conformations (PENTAdb) was developed using known 3-D

structures of proteins. PENTAdb is essentially the entire structural information contained in the

PDB, broken down into chunks of pentapeptides. A sliding window of 5 residues was used to

extract structural features for every overlapping pentapeptide of a polypeptide chain. The dihedral

vector associated with the five consecutive residues that is required to assign PBs as described in

the previous section was obtained from the DSSP29 program. All the information was stored as a

MySQL relational database. PENTAdb is maintained up-to-date; the update frequency

corresponds to the weekly updates of PDB. The protein chains from which the pentapeptides are

extracted are filterable at 30%, 40%, 50%, 70%, 90%, 95% and 100% sequence identity

thresholds.
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Prediction scheme

The overall scheme for predicting the local structure in terms of PBs is based on querying the

PENTAdb database for every constitutive pentapeptides of a query protein sequence using a

sliding window of 5 residues (Figure 1a). Hits from the database are reported as predicted protein

blocks (PBs). Predicted PBs are assigned to the central residue of each query pentapeptide. The

prediction results are presented at different levels of refinement. The prediction in the coarsest

form consists of the list of all the possible PBs for a particular pentapeptide of the query protein

sequence. This is the case when multiple hits from PENTAdb database are obtained for a

particular query pentapeptide (Figure 1b). The multiple hits correspond to the different

conformations, which the pentapeptide has been seen to adopt in protein structures (Figure 1b).

When the query pentapeptide is not found in PENTAdb, the information available for the

tetrapeptides covering the first four residues with a wildcard for the fifth position was used

(Figure 1b) to identify the list of possible PBs with first 4 amino acid residues matching this

query. The position of wildcard did not influence the outcome of the results (data not shown). The

list of hits thus obtained is referred as all possible PBs. This list serves as a framework from

which the most probable PB sequence is predicted.

[Fig. 1 about here]

Two methods were explored to predict the optimal PB sequence within the list of all the possible

PBs obtained after querying the database. The first method, termed as majority rule method, is

purely probabilistic and consists of simply picking up the most frequently observed PB for each

query pentapeptide. As shown in Figure 2, it corresponds to the PB that has highest S1 score,

where S1 scores are simply the raw counts of all possible PBs reported by PENTAdb database for
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the query pentapeptide. In cases when there is no decisive majority (two or more equi-probable

PB), both of them are reported as predictions.

However, it is known that the structure adopted by a short peptide can be highly dependent on its

local environment3. A second method that integrates contextual information was hence developed

and is hereafter termed as hybrid method. Here, to predict the local structure of a pentapeptide,

the information about the structural status (in terms of PBs) of the two immediately adjacent and

overlapping pentapeptides (preceding and succeeding) is also taken into account (see Figure 2). It

requires a normalized frequency look-up table for observed motifs of 3 consecutive PBs also

termed as tri-PBs (see “additional methods” section of the supplementary material). For each

query pentapeptide, in complement to the calculated S1 score, an additional S2 score is calculated

as follows. A list of all possible combinations of three successive PBs (tri-PB motifs) is built. This

is derived from the list of all possible PBs for the query pentapeptide and for its two adjacent

pentapeptides (Figure 2). For each possible tri-PB motif, their normalized frequencies (“odds” in

Figure 2) are looked up in the tri-PB normalized frequency table. S2 scores are calculated through

the summation of the odds of tri-PB motifs that have a common PB in the central position (Figure

2). The predicted PB for the query pentapeptide is determined after multiplying S1 scores by their

corresponding S2 scores and taking the highest value among these products (Figure 2). This

approach is called the hybrid method because it combines the majority rule method with

contextual information in the prediction process.  

[Figure 2 about here]

Evaluating PB-kPRED using different subsets of PENTAdb

Two evaluation schemes were developed to benchmark the PB-kPRED methodology. As
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mentioned above, the query dataset used here constituted of the 15,544 proteins from the PDB30

dataset. The schemes relied on the ability to control which subsection of PENTAdb will be

accessible to the prediction algorithm for every query. For example, allowing only pentapeptides

in PENTAdb from non-homologues to be accessible by the prediction algorithm emulates a

scenario of attempting to predict the local structure of a protein with no homologue of known

structure used. On the other hand, as in the case of other local structure prediction

methods12,20–22,26, it can be advantageous to have the ability to privilege information from

homologous structures when these are available to predict the local structure of a query protein.

Such a scheme can be emulated by allowing only pentapeptides in PENTAdb from closest

detectable homologues to be accessible by the search algorithm.

In first instance, the prediction methodology was assessed with increasing sequence identity cut-

offs ranging from 30%, 40%, 50%, 70%, 90%, 95% to 100%, named experiments A1-A8 (see

Figure 3a). This scheme is subsequently termed as “without noise filtering scheme”.

In second instance, an alternative assessment scheme hereby called the “with noise filtering

scheme” was applied to further assess the PB-kPRED methodology (experiments B1-B8, see

Figure 3b). It aimed at evaluating how privileging information from close homologues, when

available, contributed to the quality of the predictions. In brief, the algorithm initially searches for

a pentapeptide among the closest homologues first. If the search finds a hit, then the hit is used

for the prediction; otherwise the search space is increased to include the immediately next level of

more distantly related homologues. This process is repeated until a hit is obtained. Due to this

process of introducing more distant homologues in a conditional fashion, wrong pentapeptides

(noise) from PENTAdb were potentially filtered out, hence the name with noise filtering scheme.

In all the cases, care was taken to exclude the pentapeptides from the query proteins themselves.

[Figure 3 about here]
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Reducing the PB predictions into a binary outcome permits the use of classical Mathews

correlation coefficient (MCC) to compare our predictions to a random choice. MCCs for the 16

PBs were evaluated based on a confusion matrix similar. For each PB, MCC was calculated

according to Equation 1. 

MCC=
TP∗TN −FP∗FN

√ (TP+FP ) (TP+FN ) (TN+FP ) (TN+FN )
(1)

A scoring function to estimate the accuracy of the predictions

 A probabilistic scoring function was developed for the a posteriori analysis of the predicted PB

sequence through namely the analysis of its content in penta-PB motifs, with the objective of

providing a measure of how accurate PB-kPRED was performing. The principle of the analysis

relies on the fact that not all penta-PBs are commissioned by proteins at the same frequency.

Indeed, many successions of 5 consecutive PBs are highly improbable because they are

geometrically not allowed as explicated by the Ramachandran rules. The probabilistic function is

hence based on the look-up table of normalized frequencies of successive penta-PB motifs

observed in a non-redundant set of protein structures (see “additional methods” in supplementary

material). In brief, using a sliding window of 5 consecutive PBs (penta-PB motif) along the

predicted PB sequence, the normalized frequencies of all penta-PB motifs were looked-up in the

penta-PB frequency table. The logarithm of these normalized frequencies were then summed and

divided by the length of the predicted PB sequence to generate an accuracy score (A) as shown

here: 

A=
∑
i=1

l− 4

log (Ni)

l

(2)
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where A is the accuracy score for a predicted PB sequence, l is the length of the PB sequence, N

is the normalized frequency of the penta-PB motif observed at window position i in the PB

sequence. Since an overlapping sliding window of five consecutive PBs is used, the total number

of penta-PB motifs (i.e the number of windows) is l-4. In the case a particular penta-PB motif has

a null value in the frequency table (i.e it is never observed), a penalty of -5 was instead added to

the score.
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Results

PENTAdb, a database of pentapeptides from protein structures

A total of 68.84 million pentapeptides obtained from the 0.26 million protein chains and their

corresponding local structure represented as one of the 16 PBs were obtained and stored in

PENTAdb. Of these 68.84 million pentapeptides, 2.26 million are unique which represents 70.9%

of the total number theoretically possible 3.2 million (205) pentapeptides. The content of the

database accessible to PB-kPRED at these threshold values is given in Table 1. There is a 32-fold

decrease (from 68.62 to 5.13 million) in the number of pentapeptides in PENTAdb when PDB

chains not sharing more than 30% sequence identity are considered. Nevertheless, there is only a

1.3 fold decrease in the number of unique pentapeptides present in PENTAdb at this threshold.

[Table 1 about here]

Not all possible tri-PB combinations are observed in known protein structures

Out of all the theoretically  possible 4,096 (163) tri-PBs, a total of 1,375 (i.e 33.5%) were never

observed in the non-redundant PDB30 dataset. Likewise, out of all the 1.04 million (16 5)

theoretically possible penta-PB motifs, only 40,130 (3.8%) were observed in the PDB30 dataset.

These results are indicative of the possibility that many combinations of three or five consecutive

PBs are stereochemically unfavorable. The distributions of penta-PB motifs at other sequence

identity cut-offs i.e. 40%, 50%, 70%, 90%, 95%, 100% and the entire PDB were also computed

(Supplementary Table 1). Towards higher sequence identity cut-offs, there was a steady increase

in the penta-PB coverage. But this comes at the price of the addition of redundant data. Still the

entire PDB covered less than 10% of the total penta-PB space. For calculating the accuracy score,

the penta-PB frequency table derived from the PDB30 dataset was used even if it contained only
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40,130 penta-PB motifs. This might seem to be a small fraction but this was sufficient to

efficiently score PB sequences (see below).

Completeness of PENTAdb for knowledge-based prediction

A quantitative assessment of how often the correct PB can be found in the list of all possible PBs

reported for every query protein was performed. This represents the theoretical highest prediction

rate attainable for a query protein using the proposed knowledge-based approach. To this end, for

every query protein sequence, different portions of the pentapeptide database were made

accessible to the prediction algorithm. This is manageable, thanks to the hierarchical clustering at

different sequence identity levels by the BLASTClust algorithm 29. For each of the 15,544

unrelated query protein sequences (PDB30 dataset), only pentapeptides coming from a subset of

the PDB that shared sequence identities below an indicated cut-off values (from 30% to 100%)

and excluding the query itself were made accessible to PB-kPRED for prediction (see Table 1 for

size of the database for each subset). The results are detailed in Table 2. At 30% sequence identity

cut-off, the correct PB was found in 71.4% of the case and the success rate increased to 77.3%

when only “homologues” sharing 100% sequence identity to the queries were filtered out. When

full PDB was used (but excluding the query) as a database, the percentage times the correct PB is

in the list of all possible PBs topped to 99.93%. The PB-wise breakdown of these values are

further detailed in supplementary Table 2. 

[Table 2 about here]

Prediction accuracies 

The average prediction accuracies for the PDB30 query proteins using the majority rule method

and the hybrid method using the classic scheme for querying the database are given in Table 3.
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When homologues sharing ≥30% sequence identity with each of the queries were removed from

the database, PB-kPRED performed with an average Q16 accuracy of 39.2% and 40.8% for the

majority rule method and hybrid method respectively (Table 3). Surprisingly, the effect of

enlarging the database to include closer homologues sharing <95% sequence identity with the

queries improved only marginally the prediction accuracies reaching on average 40.4% and

42.4% for majority rule method and hybrid method respectively. Accuracy topped to 58.0% and

54.6% respectively when full PDB (excluding the query itself) was used as database for

prediction. This overall gain in accuracy is due to an incremental increase of accuracy across all

the 16 PBs.

[Table 3 about here]

As an attempt to improve the prediction rates, the hybrid method was tested using the noise

filtering scheme for querying the database whereby, for each query pentapeptide, data in

PENTAdb only coming from closest homologues was queried first (see Figure 3). Results are

detailed in Table 4. When compared to the without noise filtering scheme (Table 3), the prediction

rates improved to reach a maximum of 66.3%. Interestingly, for experiments B2 to B7 where

closest homologues to be queried first are in the range of <40% to <95% sequence identities, the

predictions remained high at a level of about 61.6%. Only in experiment B8 the prediction

accuracy rate dropped to 40.8%. This experiment is in fact identical to the one featured for <30%

threshold shown in Table 3 using the hybrid method and the without noise filtering scheme for

querying the database.

[Table 4 about here]
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All results further detailed hereafter are concerned with data obtained in experiment B1 where

hybrid method was applied using the noise filtering scheme for querying PENTAdb and where

best predictions were obtained.

The distribution of the prediction accuracies for experiment B1 (see Table 4) shows a bimodal

distribution (see Figure 4). A spike in frequency is observed at the >80% range representing the

set of queries which have closely related proteins of known structure available in the PDB and for

which the method is able to perform extremely well. At the other end of the spectrum, there is an

almost normal distribution with an average around the 35%-40% accuracy range. Hence, the

mean falls in between these two at 66.31% accuracy. This distribution did not substantially vary

when homologues sharing less than 100% to 40% sequence identity to the query corresponding to

experiments B2 to B7 respectively (see Figure 3) were queried first (data not shown). However,

once the twilight zone of 30% sequence identity is crossed, the accuracy distribution drastically

changes to that of a unimodal distribution with a very sharp peak at the 40% range and gradually

tapering tail towards the higher accuracies (supplementary Figure 1).

[Fig 4 about here]

The accuracy by the hybrid method using the noise filtering scheme was compared to the majority

rule method (Figure 5). As shown by the data points below the diagonal, the hybrid method

performed significantly better than the majority rule method for a total of 8,195 cases (52.7%) out

of the 15,544 protein queries. For remaining 7,245 cases, the majority rule method performed

slightly better than the hybrid method.

[Fig 5 about here]
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PB predictions

Results from the best performing condition (experiment B1 featured in Table 4 and Figure 3b)

were further analyzed for the PB-wise prediction rates and compared with published rates from

other methods (Table 5). The rates are heterogeneous across the 16 PBs. Top two best-predicted

PBs by PB-kPRED were PB m and PB a, with accuracies of 75.9% and 67.2%, respectively. On

the other hand, the two most badly predicted PBs by PB-kPRED were PB j and PB g with

prediction rates of 49.9% and 43.5% respectively. Analysis of the corresponding confusion matrix

(see supplementary Table 3) shows that, the prediction algorithm frequently gets confused

between the PBs c and d. PB c is wrongly predicted as PB d almost 31,000 times (22.4%). The

vice-versa, PB d being predicted as PB c is more than 42,000 times (16.9%).  These PBs are in

fact highly related (i) as seen from a pure structural point of view (low rmsda and similar

transitions)27 and (ii) as they have been seen to be highly interchangeable thanks to PB

substitution matrix31,32. As some PBs are highly similar, it is possible to relax the assessment, i.e.

considering two PB series as equivalent.  With such relaxed criteria, the accuracy increases from

66.31% to 68.87% (a 2.56% gain on average). Interestingly, significant increases in accuracies

were observed for PB g (from 43.5% to 67.4%) and for PB j (from 49.98% to 67.2%). 

[Table 5 about here]

PB-kPRED globally outperformed two other PB prediction methods (see Table 5). Its predictions

were better for all the 16 PBs when compared to the Bayes method and better than almost all PBs

when compared to LOCUSTRA. Only PBs d and m were better predicted by this latter method20.

A MCC close to +1 indicates a good agreement between the observed and the predicted outcomes
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and a MCC of close to -1 otherwise. For our analysis all the 16 PBs had MCCs between 0.5 and

0.7. PBs a and m were close to 0.7, PB g at 0.51 and the remaining fluctuated around the 0.6

mark. The sensitivity and specificity ranges were 0.4-0.7 and 0.9-1.0 respectively. A common

pattern is observed in the case of PBs corresponding to the regular secondary structure elements

(PBs d and m): in both these cases, the sensitivity values peak while the specificity values

plummet. Although the sensitivity values varied between 0.4 and 0.8, the specificity values were

consistently above 0.9 indicating that the method was able to achieve a very high true negative

rate.

Measure of accuracy

A probabilistic scoring function was developed for the a posteriori analysis of the predicted PB

sequences so as to provide a measure of how accurate the hybrid method using the noise filtering

scheme was performing. An assessment of the scoring function is provided in Figure 6. It shows

that the score is correlated with the accuracy of the prediction with a Pearson’s correlation

coefficient of 0.82 (Figure 6a). The two distinct clusters of data points correspond to those

featured in the histogram in Figure 4. As a further assessment of the scoring function, the scores

for the predicted PB sequences were compared with the scores for the actual PB sequences

(Figure 6b). It shows that in case of more accurate predictions (rates above 60%), the two scores

correlated very well (red points along the diagonal in Figure 6b) with both score values mostly

ranging between +1 and +3. In the case of less accurate predictions (rates below 60%), the two

scores were no more correlated (green dots below the diagonal in Figure 6b) and scores for

predicted PB sequences ranged mostly between -2 and +1.

[Fig. 6 about here]
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Case studies

Here were considered the predictions for 5 specific cases to look at the strengths and limitations

of the PB-kPRED algorithm namely in presence or absence of homologues of known structure.

Results are reported in Table 6 and further described below. These case studies correspond to

counter intuitive prediction instances where (i) prediction accuracy is high despite not having any

close homologues and (ii) prediction accuracy is low despite having sequences of PBs of closely-

related proteins in PENTAdb.

[Table 6 about here]

Regarding prediction in employing information from homologues of known structure, three

contrasting cases were studied. The first case relates to chain A of a hypothetical DNA binding

protein from Salmonella cholera (PDB id 2HX0_A) which has a homologue from Salmonella

typhimurium (PDB id 2NMU) that is 100% identical, 100% accuracy was achieved as shown by

the high accuracy score of 2.81. Both structures aligned very well with a RMSD of 0.14 Å

(Supplementary Figure 2a). The second case relates to an energy-coupling factor transporter

transmembrane protein EcfT from Lactobacillus brevis (PDB id 4HUQ_T) which has two other

“homologues” (PDB id 4RFS_T and 4HZU_T) that are 100% identical to the query. Here, the

prediction accuracy is 73.4% only with an accuracy score of 1.31. 3-D structural alignment with

these two “homologues” resulted in RMSDs 1.41 Å and 1.90 Å respectively displaying some

structural variations (Supplementary Figure 2b) despite being 100% identical at the amino acid

sequence level. These structural variations were due to rigid body movement. The third case is

chain A of a pyrimidine deaminase / uracil reductase from Thermotoga maritima (PDB id

2HXV_A) which had only ten very distantly related proteins that shared less than 30% sequence
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identity in the PDB. Prediction rate is even lower here with accuracy reaching a value of 39.1%

as shown by the low accuracy score of 0.30.

As for predictions in absence of homologues of known structure, two contrasting cases were

studied. The first case is about a human hydroxysteroid dehydrogenase and the second case is a

membrane protein associated with Ecf transporter from Lactobacillus brevis. The prediction

performed quite well in the first case with an accuracy of 75.4% as shown by the high accuracy

score of 1.99 while in the second case, the prediction almost completely failed with the accuracy

of only 9.37% and also shown by the unfavorable  accuracy score of -0.28.

Implementation of the PB-kPRED methods as a web-tool

The PB-kPRED methodology has been implemented as a web-tool that is freely available to the

community at http://www.bo-protscience.fr/kpred/. Both majority rule a n d hybrid methods

without the noise filtering scheme for querying the database have been implemented. The tool

provides a predicted PB sequence for each query amino acid sequence and also provides the

accuracy score that serves as an a posteriori estimation of the prediction accuracy. In case the

prediction score value is below -1, the prediction accuracy cannot be estimated and the user is

notified. Users can provide multiple query protein sequences. All results are downloadable as

FASTA formatted flat files. Optionally when submitting numerous query sequences, the user can

provide an email address to which a notification will be sent when the job is completed.
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Discussion

The exponential growth in the structural knowledge of proteins has warranted the necessity of

competent knowledge-based prediction algorithms for local structure prediction. At the level of

short protein segments like pentapeptides, this increase in structural knowledge invariably brings

with it an unprecedented signal to noise ratio for deciding on the most probable local

conformations. Indeed, it is well established that similar pentapeptides can adopt different local

conformations3,33. This is verified when the content of PENTAdb is inspected. 

Hazout’s team along with defining the protein blocks also predicted the local structure in terms of

PBs using a Bayesian approach12. They achieved an accuracy of 34.4% using a 15-residue

window and this increased to 40.7% upon supplementing the Bayesian predictor with sequence

profiles in the form of sequence families. In 2005, Etchebest and colleagues26 used a combination

of statistical optimization procedure and improved sequence family data to bump up the accuracy

to 48.7%. Incorporating secondary structure predictions from PSI-PRED into the PB prediction

process did not contribute much to improve the accuracy i.e only 1% gain resulting in 49.9%.

Machine learning techniques have also been used to predict protein local structure in terms of

PBs. Support vector machine based methods like LOCUSTRA20, svmPRAT22 and SVM-PB-Pred21

achieve mean accuracies of 61.0%, 67.0% and 53.0% respectively. A dual layer neural network

based prediction method achieved 58.5% accuracy24. The most refined version of the PB-kPRED

method proposed here, i.e hybrid method with noise filtering scheme, outperformed most of the

previously developed methods for PB prediction except for svmPRAT where it performed

equivalently. Although all the methods evaluated their accuracies on non-redundant sets of

proteins, an even comparison is hindered by difference in datasets, varying training regimes for

the machine learning methods and different levels of sequence identity used as input in the

prediction process. This motivated us to perform a battery of tests on the algorithm to estimate the
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prediction accuracy when incremental levels of sequence identities are made available in

PENTAdb for the prediction (see Table 4). Importantly, to our knowledge, this is the first report of

a querying scheme that dynamically filters out, on a per query basis, homologues at different cut-

off values so that the portion of the PENTAdb that is made accessible for prediction is calculated

on the fly. For the each of the 15,544 query sequences of PDB30, 16 experiments were performed

amounting a total of 248,704 datasets building. This is computationally intensive and was

performed using extensive MySQL querying. Thanks to the noise filtering strategy, PB-kPRED

was able to efficiently weed out the noise present in the database due to redundancy and hence to

narrow down the search in the database to find the most appropriate local structure for a given

pentapeptide. Hence, filtering out from the database the pentapeptides from proteins that shared

less than 30% sequence identity with the query indeed improves the prediction efficiency.

When the majority method and the hybrid method (Figure 5) were compared, two distinct clusters

were noticed. Upon further investigating the reason for this distinct clustering, we note that,

irrespective of the sequence identity cut-off, the points below the diagonal were found in more

populated clusters while the points above the diagonal were found in least populated clusters

Hence the hybrid method using the noise filtering scheme will perform better when there are some

closely-related protein structures to look-up to in PENTAdb. In a real-life scenario, this will not

be always the case. Indeed, proteins for which we want to predict the structure and which do not

have any homologues even at 30% sequence identity are not so uncommon. This brings us to the

conclusion that even though overall the hybrid method performs better, we cannot ignore the

majority rule method all together.

Nonetheless, this method still has room for improvement as it can be seen from the values in

Table 2. The list of all possible PBs reported by the PB-kPRED algorithm after querying
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PENTAdb database indeed shows that the good PB was present in more than 70% of the cases.

However, owing to the scoring functions S1 and S2 (Figure 2), the decision rules implemented in

both majority rule and hybrid methods failed to pick up these good PBs as predictions in several

instances. 

Interestingly, once the local backbone of a protein was predicted in the form of a PB sequence, we

were able to provide an a posteriori assessment of how accurate was the prediction. The method

used here to achieve this relied on the simple idea that successions of PBs should follow the rule

that not all combinations of PBs would be allowed. This intuition turned out to be correct since

there was a remarkable correlation between the score and the accuracy of the predictions.

Noteworthy, the accuracy scores for actual (native) PB sequences are overwhelmingly distributed

between +1 and +3, while poorly predicted PB sequences have scores below +1. This scoring of

PB sequences could also serve as an indicator towards improving predictions. Because the

calculation of the score of a PB sequence is very fast, one could imagine implementing a score-

guided optimization procedure to climb the prediction accuracy gradient using Monte-Carlo or

genetic algorithms for example.

The case studies documented in this work (see Table 6) indicate that the relationship between

local structure predictability and the number of homologues of the query available in PDB are not

very straightforward. Optimistically, in spite of not having any homologues, the PB-kPRED

algorithm can perform a good prediction if the pentapeptides constituting the query adopt

consensus local structures for the respective pentapeptides. Two such examples were provided but

with contrasting outcomes, one achieving good accuracies and the other failing to predict

correctly the PB sequence. Interestingly, the accuracy scores provided by our scoring function

helped to reliably differentiate one prediction from the other. On the other hand, even if a query
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has multiple homologues in the PDB, its prediction accuracy will take a hit if the homologues are

contrasting structural analogues of the query. For example, the activation of human pancreatic

lipase involves considerable conformational transition in the form of a 'lid movement'. The

hypothetical prediction case when the query is the 'lid open form' and PENTAdb has

pentapeptides from the 'lid closed form' would confuse the prediction algorithm despite both the

forms of lipase being identical in amino acid sequences. Hence these case studies establish two

take home messages: (i) there are exceptions to the general observation that the presence of

homologues improves the prediction accuracy of PB-kPRED and (ii) the accuracy score used to

evaluate the predictions is a reliable gauge for estimating the accuracy of the method as illustrated

in Figure 6. 

PB-kPRED web-server could form a vital link in the pipeline of PB based structure analysis tools.

Namely, it can be bridged with PB-based fast structure comparison tools like iPBA 17 and

PBalign1 6 and help to mine for similar structures and map the fold space. It can also be used to

predict the occurrence of structural motifs in protein sequences. Indeed, the alpha version of the

server which was made available on-line earlier, has already been used by some research groups

for the structural characterization of RNA binding sites in protein structures and predicting

proteins sequences that contain RNA binding sites34,35 and also in predicting β-turns and their

types36.

The web-based tool currently does not feature the hybrid method with noise filtering scheme

because it would require running an instance of BLASTClust on every query. We plan to

implement this functionality in a future improvement to the tool.
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Supplementary material

Additional methods file: additional_methods.pdf

Supplementary tables file: supplementary_tables.pdf

Supplementary figures file: supplementary_figures.pdf
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Figures legends

Figure 1. The knowledge-based methodology behind PB-kPRED. (a) Οverview of the scheme

followed by PB-kPRED for the prediction process. (b) Τhe different outcomes possible when

PENTAdb database is queried for a pentapeptide sequence: hits are reported as a single PB or

multiple PBs.   
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Figure 2. Details of the scoring schemes underlying the majority rule method and the hybrid 

method. S1 scores are simply the raw counts of all possible PBs reported by PENTAdb database 

for a given query pentapeptide. S2 scores are calculated through the summation of the odds of tri-

PBs that have a common PB in the central position. For the majority rule method, predictions are 

based only on the ranking of the S1 scores. For the hybrid method, predictions are based on the 

ranking of the product of scores S1 and S2.
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Figure 3. Diagrammatic representations of the schemes used by PB-kPRED for querying

PENTAdb with (a) representing the so-called “classic” or “without noise filtering scheme”

and (b) representing the “with noise filtering scheme”. Sections of the database accessible are

indicated in green and those not accessible in red. The sections are delimited by sequence identity

thresholds. In both schemes, eight different experiments (A1 to A8 and B1 to B8) were

performed. See “additional methods file” in supplementary material for detailed legend of this

figure.
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Figure 4. Histogram depicting the distribution of the observed prediction accuracies for

15,544 query proteins by hybrid method using noise filtering scheme. 
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Figure 5. Comparison of the majority rule method without noise filtering scheme and the

Hybrid method with noise filtering scheme. Shown are the predictions accuracies for the 15,544

query proteins from PDB30 dataset. The diagonal line separates the points where the majority

method performs better and the points where the hybrid method performs better. Points lying

along the diagonal (bisector) represents the situation where both the methods perform equally.
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Figure 6. Assessment of the ability of the scoring function to estimate the prediction

accuracy of PB-kPRED. (a) Scatterplot of score versus accuracy for the 15,544 query proteins

of PDB30 dataset. (b) Scatterplot of scores for predicted versus actual PB sequences for the

15,544 query proteins of PDB30 dataset. Datapoints are coloured based on level of accuracy of

predictions. 
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Table 1. Content of the different subsets of PDB in terms of pentapeptides accessible to PB-

kPRED. Shown here are the total number of pentapeptides and unique pentapeptides for the full

PDB and for subsets of PDB filtered at different sequence identity cut-off values.

Seq. identity cut-off

values (%)

Total number of

chains

Total number of

unique pentapeptides

Total number of

pentapeptides

<30 24,564 1,742,890 5,126,423

<40 28,590 1,881,813 6,153,846

<50 32,588 1,985,203 7,074,571

<70 37,741 2,095,663 8,336,277

<90 42,594 2,148,064 9,351,888

<95 44,714 2,157,239 9,768,748

<100 64,129 2,189,924 14,791,285

Full PDB 274,920 2,268,307 68,621,454
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Table 2. Assessment of the richness of PENTAdb towards knowledge-based prediction of

protein backbone in terms of protein blocks. Shown is the percentage of pentapeptide queries

for which the correct local conformation was found in the list of all possible PBs reported by the

PB-kPRED algorithm after querying PENTAdb. A total number of 15,544 query proteins not

sharing more that 30% sequence identity (PDB30 dataset) was used in this assessment.

Sequence identity cut-off values

(%)
Correct PB found in the list of all possible PBs (%)

<30 71.4%

<40 71.5%

<50 71.6%

<70 71.9%

<90 72.5%

<95 72.8%

<100 77.3%

FULL PDB* 99.93%

* all PDB chains (FULL PDB) were accessible for prediction by PB-kPRED but excluding the query

protein.
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Table 3. Evaluation of performance of PB-kPRED knowledge-based approach to predict

local conformations of protein backbone in terms of protein blocks. Shown are the accuracies

for the PDB30 dataset using both the majority rule method and hybrid method. For each of the

15,544 query protein sequences, the portion of PENTAdb accessible for prediction was

dynamically determined using MySQL queries: only pentapeptides coming from protein chains in

PDB that shared sequence identities below the indicated cut-off values were accessible to PB-

kPRED for prediction of local structures in terms of PBs. 

Experiment 

number

Sequence identity

cut-off values (%)
Majority rule method

Hybrid method

without noise filtering

A1 FULL PDB* 58.0%±12.9 54.6%±22.0

A2 <100 44.0%±14.7 48.0%±18.7

A3 <95 40.4%±12.7 42.4%±16.1

A4 <90 40.1%±12.5 42.0%±15.9

A5 <70 39.7%±12.5 41.4%±15.8

A6 <50 39.4%±12.5 41.0%±15.9

A7 <40 39.3%±12.5 40.9%±15.9

A8 <30 39.2%±12.5 40.8%±15.9

* All PDB chains (FULL PDB) were accessible for prediction by PB-kPRED but excluding the

query protein.
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Table 4. Assessment of the performance of PB-kPRED using the hybrid method with noise

filtering scheme for querying the database. For each query protein, the portion of the database

accessible to the algorithm is first restricted to the closest homologues and if no hits were found,

only then the more distant homologues are made accessible progressively. Eight results shown

here correspond to the eight experiments represented schematically in Figure 3. Shown are the

prediction rates (or Q16) averaged over 15,544 query proteins from the PDB30 dataset that was

used in this assessment.

Experiment Closest homologues to be queried

first

Average prediction rate or Q16 (%)

B1 100 % 66.31±27.62

B2 <100 % 61.61±24.50

B3 <95 % 61.60±24.49

B4 <90 % 61.59±24.48

B5 <70 % 61.59±24.48

B6 <50 % 61.59±24.47

B7 <40 % 61.58±24.47

B8 <30 % 40.79±15.90
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Table 5. Assessment of the performance of PB-kPRED and comparison with other

previously reported methods. Shown are the PB-wise prediction accuracies for experiment A8

of the majority method and four different experiments of hybrid method with noise filtering.

These are compared with PB-wise results from LOCUSTRA19 and the method using Bayesian

approach developed by Etchebest et al25. Experiment B1 PB-wise accuracies were compared with

the other two methods and corresponding cell values in bold represent the best accuracy achieved

between the experiment B1 of hybrid method, LOCUSTRA and Bayes method.

PBs

PB

frequency

Majority

method
Hybrid method Other methods

Expt

A8

Expt

B8

Expt

B4

Expt

B2
Expt B1 LOCUSTRA 

Bayes

method

Accuracies Specificity MCC Accuracies

a 3.68% 34.40% 45.93% 64.60% 64.60% 67.20% 98.15% 0.69 58.16% 56.60%

b 4.29% 15.19% 18.99% 44.52% 44.58% 52.15% 97.72% 0.56 26.14% 20.90%

c 8.31% 23.45% 28.76% 51.62% 51.66% 58.53% 95.95% 0.58 44.81% 32.90%

d 18.68% 39.24% 40.09% 61.83% 61.85% 67.00% 94.12% 0.63 71.58% 54.00%

e 2.18% 21.78% 28.59% 52.30% 52.38% 57.45% 98.96% 0.62 44.74% 38.60%

f 6.45% 24.87% 29.49% 54.64% 54.64% 60.30% 97.21% 0.61 41.45% 30.90%

g 1.14% 10.33% 14.94% 36.79% 36.87% 43.45% 99.19% 0.51 26.84% 30.10%

h 2.10% 24.25% 33.02% 56.90% 56.89% 61.05% 98.82% 0.64 38.45% 40.90%

i 1.49% 20.69% 30.45% 55.36% 55.35% 59.17% 99.18% 0.63 36.87% 38.10%

j 0.83% 15.48% 20.81% 42.57% 42.68% 49.98% 99.40% 0.56 48.19% 49.70%

k 5.25% 30.46% 35.59% 59.30% 59.32% 63.93% 97.67% 0.65 46.46% 33.40%

l 5.20% 26.56% 31.88% 54.87% 54.93% 59.99% 97.69% 0.62 42.71% 35.50%

m 32.89% 60.96% 55.68% 72.38% 72.40% 75.89% 91.03% 0.67 83.76% 70.60%

n 1.78% 26.48% 35.40% 58.16% 58.21% 62.15% 99.05% 0.65 52.08% 50.00%

o 2.44% 29.62% 38.40% 59.49% 59.52% 63.19% 98.70% 0.66 55.10% 48.10%

p 3.29% 23.22% 31.72% 54.27% 54.28% 59.24% 98.25% 0.62 40.80% 29.20%
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Table 6. Impact of the availability of known homologues on the accuracy of PB-kPRED. Query PDB chains with known homologues and with no

known homologues are featured. The hybrid method with noise filtering scheme for querying the database was applied for the prediction whereby the

conditions were identical to experiment B1 as featured in Figure 3 and Table 6. The queries themselves were excluded from the database prior to

prediction. Shown here are the accuracies of the predictions and the numbers of known homologues for different sequence identity thresholds.

Queries with known homologues in PDB Queries with no known homologues in PDB

Sequence identity

thresholds (%)

2HX0_A 
(hypothetical DNA 

binding protein)

4HUQ_T
(energy-coupling factor

transporter EcfT)

2HXV_A
(deminase/ reductase)

1A27_A
(hydroxysteroid dehydrogenase)

4HZU_S
(transmembrane protein

associated with Ecf transporter)

100 2 3 1 1 1

95 2 3 1 1 1

90 2 3 1 1 1

70 2 3 1 1 1

50 2 3 1 1 1

40 2 5 1 1 1

30 2 5 10 1 1

Accuracy (%) 100% 73.41% 39.13% 75.44% 9.37%

Accuracy score 2.81 1.31 0.30 1.99 -0.28
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