Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Genomic regression of claw keratin, taste receptor and light-associated genes inform biology and evolutionary origins of snakes

View ORCID ProfileChristopher A. Emerling
doi: https://doi.org/10.1101/127654
Christopher A. Emerling
Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christopher A. Emerling
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Regressive evolution of anatomical traits corresponds with the regression of genomic loci underlying such characters. As such, studying patterns of gene loss can be instrumental in addressing questions of gene function, resolving conflicting results from anatomical studies, and understanding the evolutionary history of clades. The origin of snakes coincided with the regression of a number of anatomical traits, including limbs, taste buds and the visual system. By studying the genomes of snakes, I was able to test three hypotheses associated with the regression of these features. The first concerns two keratins that are putatively specific to claws. Both genes that encode these keratins were pseudogenized/deleted in snake genomes, providing additional evidence of claw- specificity. The second hypothesis is whether snakes lack taste buds, an issue complicated by unequivocal, conflicting results in the literature. I found evidence that different snakes have lost one or more taste receptors, but all snakes examined retained at least some capacity for taste. The final hypothesis I addressed is that the earliest snakes were adapted to a dim light niche. I found evidence of deleted and pseudogenized genes with light- associated functions in snakes, demonstrating a pattern of gene loss similar to other historically nocturnal clades. Together these data also provide some bearing on the ecological origins of snakes, including molecular dating estimates that suggest dim light adaptation preceded the loss of limbs.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted April 15, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Genomic regression of claw keratin, taste receptor and light-associated genes inform biology and evolutionary origins of snakes
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Genomic regression of claw keratin, taste receptor and light-associated genes inform biology and evolutionary origins of snakes
Christopher A. Emerling
bioRxiv 127654; doi: https://doi.org/10.1101/127654
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Genomic regression of claw keratin, taste receptor and light-associated genes inform biology and evolutionary origins of snakes
Christopher A. Emerling
bioRxiv 127654; doi: https://doi.org/10.1101/127654

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4687)
  • Biochemistry (10370)
  • Bioengineering (7689)
  • Bioinformatics (26358)
  • Biophysics (13544)
  • Cancer Biology (10708)
  • Cell Biology (15449)
  • Clinical Trials (138)
  • Developmental Biology (8507)
  • Ecology (12831)
  • Epidemiology (2067)
  • Evolutionary Biology (16875)
  • Genetics (11406)
  • Genomics (15488)
  • Immunology (10631)
  • Microbiology (25242)
  • Molecular Biology (10233)
  • Neuroscience (54556)
  • Paleontology (402)
  • Pathology (1670)
  • Pharmacology and Toxicology (2898)
  • Physiology (4349)
  • Plant Biology (9262)
  • Scientific Communication and Education (1587)
  • Synthetic Biology (2558)
  • Systems Biology (6785)
  • Zoology (1470)