Abstract
Single-cell analysis is a rapidly evolving approach to characterize genome-scale molecular information at the individual cell level. Development of single-cell technologies and computational methods has enabled systematic investigation of cellular heterogeneity in a wide range of tissues and cell populations, yielding fresh insights into the composition, dynamics, and regulatory mechanisms of cell states in development and disease. Despite substantial advances, significant challenges remain in the analysis, integration, and interpretation of single-cell omics data. Here, we discuss the state of the field and recent advances, and look to future opportunities.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.