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Abstract 

A fundamental problem in biology is how cells organize their resource investment. Cellular 

metabolism, for example, typically involves hundreds of enzymes and metabolites, but it is 

unclear according to which principles their concentrations are set. Reasoning that natural 

selection will drive cells towards achieving a given physiological state at minimal cost, we 

derive a general equation that predicts the concentration of a metabolite from the 

concentration of the most abundant and costly enzyme consuming it. Simulations of 

cellular growth as well as experimental data demonstrate that costs are approximately 

proportional to molecular masses. For effectively irreversible reactions, the cell maximizes 

its metabolic efficiency by investing equally into substrate and unbound enzyme molecules. 

Without fitting any free parameters, the resulting model predicts in vivo substrate 

concentrations from enzyme concentrations and substrate affinities with high accuracy 

across data from E. coli and diverse eukaryotes (R2=0.79, geometric mean fold-error 1.74). 

The corresponding organizing principle – the minimization of the summed mass 

concentrations of solutes – may facilitate reducing the complexity of kinetic models and will 

contribute to the design of more efficient synthetic cellular systems.  
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Introduction 

Optimality principles have been used to predict diverse complex cellular properties (1), such as 

the efficient use of metabolic networks to convert nutrients to biomass (2), the regulation of 

ribosome content during bacterial growth (3), or the partitioning of membrane occupancy 

between transporters and the electron transport chain (4). It is likely that in most cells, natural 

selection has favoured metabolic efficiency, i.e., a near optimal cost/benefit relationship for each 

active biochemical reaction. While the benefit corresponds to the maintenance of a desired 

reaction rate, the cost lies in the concentrations of the molecules supporting the reaction (5-7).  

It is still unclear what factors dominate the costs associated with concentrations of individual 

proteins or other molecule types. It has recently been argued that the major cost factor of 

metabolic reactions stems from protein production costs (8-11), including the allocation of 

cellular resources such as ribosomes and the consumption of ATP and carbon. Other recent 

publications have stressed the importance of volumetric costs related to the limited solvent 

capacity of cellular compartments. The summed volume concentration of solutes cannot exceed 

critical values, beyond which adequate diffusion would break down (5, 6). Based on the limited 

solvent capacity, it has been proposed that intermediate metabolite concentrations are minimized 

by natural selection (5, 6, 12). However, the majority of the cellular volume is occupied by 

proteins, while metabolites account for only a minor fraction; in E. coli, proteins outweigh 

metabolites 16:1. (13) Accordingly, some authors have argued that the solvent capacity limits 

enzyme rather than metabolite concentrations (14-16), a phenomenon termed macro-molecular 

crowding. Limiting the total enzyme concentration while maximizing biomass production indeed 

allows to predict different variants of overflow metabolism, such as the Crabtree and Warburg 

effects, at least qualitatively (14-16).  

While most previous researchers (8-11, 14-16) considered only the cost of enzymes, reaction 

rates are jointly determined by enzymes and their substrates. Thus, we propose that the action of 

natural selection on intracellular concentrations can only be appreciated fully when we consider 

costs incurred through both types of molecules simultaneously; this argument holds both for 

production costs (reflecting nutrient consumption) and volumetric costs (reflecting consumption 

of the limited solvent capacity).  
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Results 

To examine the consequences of this hypothesis on the balance between substrate and enzyme 

concentrations for individual reactions, we first consider an enzyme that converts a single 

substrate irreversibly into a product following Michaelis-Menten kinetics, where the substrate is 

not consumed by any other reaction. The reaction rate v is then proportional to the concentrations 

of unbound enzyme (𝐸!"##) and substrate (𝑀!"##), parameterized by the enzyme’s turnover 

number 𝑘!"# and Michaelis constant Km (inversely related to the enzyme’s substrate affinity): 

𝑣 = !!"#
!!

𝐸!"##𝑀!"## . The concentration of unbound enzyme molecules is approximated as a 

function of the total concentrations of enzyme (𝐸) and substrate (𝑀) as 𝐸!"## ≈
!

!!!/!!
 ; with 

𝑀!"## ≈ 𝑀, rearrangement results in the standard Michaelis-Menten equation.  

 

Figure 1. For each Substrate concentration M, there is one enzyme concentration E that 
supports a given reaction rate v. The curve shown is for the GMP reductase enzyme 
(GuaC) and its substrate GMP in E. coli, color-coded according to the summed mass 
concentration of GuaC and GMP. The combination resulting in the smallest summed mass 
concentration is indicated by the circle; the green dot indicates the in vivo combination 
observed for E. coli growing on glycerol (23, 24). 

 

A reaction rate v per unit volume “demanded” by the current cellular state can be achieved in 

multiple ways: for each non-zero substrate concentration M, there is exactly one enzyme 

concentration E (and a corresponding 𝐸!"##) that results in the desired rate (Figure 1). The costs 
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associated with the enzymatic reaction will depend approximately linearly on E and M at least 

for small concentration changes (11); they can thus be expressed through the specific costs of 

enzyme and substrate molecules, 𝑐! and 𝑐!, respectively. Under natural selection for metabolic 

efficiency, the cell is expected to choose the combination of concentrations that minimizes the 

summed costs of enzyme and substrate. Because the reaction rate depends equally on the 

concentrations of unbound enzyme and metabolite, the optimally efficient metabolic state invests 

equally into these two types of molecules: 

 𝑐!𝐸!"## = 𝑐!𝑀   (1) 

(for a formal derivation and generalizations, see SI Text). Converting to total enzyme 

concentration E and defining the cost ratio of enzyme and substrate molecules 𝑎 ≔ 𝑐!/𝑐!, we 

can rewrite this as 

 𝑎𝐸 = 𝑀 1+ !
!!

  . (2) 

Strikingly, this optimal relationship between enzyme and substrate concentration depends only 

on the Michaelis constant Km and on the cost ratio a, but is independent of reaction rate and 

turnover number.  

Reality is of course more complex than the irreversible single-substrate reaction discussed so far. 

Cellular metabolism forms a highly interconnected network: many reactions involve more than 

one substrate, and many metabolites are consumed by more than one enzyme. When considering 

metabolic costs, we must therefore account for all metabolite and enzyme concentrations 

simultaneously. Using convenience kinetics to approximate general reaction kinetics (17), it is 

easy to show that we can consider each metabolite separately as long as the relevant reactions are 

effectively irreversible (SI Text). The resulting equation for a single metabolite relates its 

concentration to the concentrations of all enzymes consuming it, mediated by the corresponding 

Michaelis constants and the relative costs.  If one of the enzymes dominates this mathematical 

relationship, the terms corresponding to the other enzymes can be neglected; typically, the 

“dominant” enzyme has the largest aE, i.e., the highest total cost among all enzymes consuming 

the metabolite. This approximation results in an equation identical to Eq. (2) that considers only 

the dominant enzyme (SI Text). Note that the dominant enzyme in our terminology may not be 
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the enzyme responsible for the highest turnover of the metabolite, but is the one with the highest 

total cost in the current metabolic state.  

Generalizations to multifunctional enzymes, stoichiometries other than 1:1, reversible reactions, 

and Hill kinetics are derived and summarized in the SI Text.  All considered cases are well 

approximated by Eq. (2) or its generalization to other stoichiometries. 

To compare Eq. (2) to experimental data, we first need to determine the cost ratio a of enzymes 

and metabolites. Indirectly, such costs can be observed as growth rate reductions in experiments 

that force bacteria to overexpress unneeded proteins or metabolites (7, 10, 18, 19). However, 

these observations cannot be directly transformed into cost estimates: forced overexpression may 

cause major cellular reorganizations (20), and the reported effects are unlikely to represent 

metabolically efficient states (21).  

To nevertheless explore different approximations to the enzyme–metabolite cost ratio, we utilize 

a minimalistic in silico cell model (15). Our model is comprised of a small set of transport and 

enzymatic reactions that follow Michaelis-Menten kinetics and convert two nutrients (termed C 

and N) to precursors for the production of proteins, including a ribosome, and of lipids (Fig. S1a; 

for detailed methods see SI Text). The simulations search for a combination of protein and 

metabolite concentrations that maximizes balanced growth, where all cellular components are 

reproduced in proportion to their concentrations. This model fully accounts for molecular 

production costs as well as a solvent capacity limit on the summed volume concentration of all 

intracellular solutes. Model parameters are the external nutrient concentrations, kinetic constants 

of the biochemical reactions, protein and metabolite masses, and the cytosolic solvent capacity. 

To simulate a limiting nutrient, we considered 1000 random parameterizations with low external 

concentrations of N while allowing unlimited uptake of C.  

We first tried to approximate cost ratios through the relative molecular yield of enzyme and 

metabolite production from the limiting nutrient, aN, reflecting direct production costs. This 

resulted in a Pearson correlation of R2=0.78 between the simulated metabolite concentrations and 

those predicted from enzyme concentrations via Eq. (2) (Fig. 2B; geometric mean fold-error 

GMFE=1.83, considering only molecules that require N for their production). For comparison, 

we repeated this analysis using molecular weights as a proxy for the relative costs of enzymes 

and metabolites, am. Molecular weight appears a reasonable first approximation for production 

costs of different molecule species, even if this measure does not account for differences in 
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atomic composition, cofactor utilization, and length of required production pathways. Moreover, 

molecular volumes correlate strongly with molecular weights (22), and thus am directly reflects 

relative volumetric costs. Employing the mass ratio am in Eq. (2) resulted in significantly 

improved predictions (Fig. 2A; R2=0.85, GMFE=1.68; empirical P-value for the superiority of 

predictions from am compared to aN: P<10-15). Strikingly, the superiority of molecular mass as a 

proxy for total cost becomes most pronounced when we consider only those metabolites made up 

exclusively of the limiting nutrient N (am: GMFE=2.52; aN: GMFE=4.06). Simulations where C 

and N are equally growth limiting lead to very similar results (Fig. S1).  

 

Figure 2. Eq. (2) predicts metabolite concentrations from enzyme concentrations observed 
in the minimal in silico cell accurately when relative enzyme/metabolite costs are 
approximated through the mass ratio am (R2=0.85, GMFE=1.68) (a), but less accurately 
when approximated through molecular yields for production from the limiting nutrient 
(R2=0.78, GMFE=1.83) (b). Each smoothed scatter plot summarizes results across all 
intracellular reactions for 1000 random model parameterizations; colour intensity is 
proportional to data density, points shown individually are outliers. The black dashed lines 
indicate the expected identity; the upper and lower red dotted lines indicate deviations of 
×2 and ×0.5, respectively. 

 

We conclude that the behaviour of intracellular concentrations in the in silico cell is well 

described by Eq. (2) when approximating relative costs through mass ratios. Can the same model 

also predict the relationship between enzyme and metabolite concentrations in vivo? 

Experimental data for absolute intracellular concentrations are only available for a limited 

number of enzyme–metabolite pairs in Escherichia coli (23, 24) and in the yeast Saccharomyces 
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cerevisiae (25, 26), and for isolated reactions in red blood cells (27) and in the green alga 

Chlamydomonas reinhardtii (28). Application of Eq. (2) requires knowledge of Km for the 

dominant enzyme, further reducing the sample size.  

All available data accurately conforms to Eq. (2) (Fig. 3a,c). Dominant enzyme concentrations 

together with Km values and molecular mass ratios are sufficient to predict in vivo metabolite 

concentrations with a Pearson correlation of R2=0.79 (P<10-16) and a geometric mean fold-error 

GMFE=1.74 across the combined E. coli and eukaryotic data (Fig. 3b,d). We conclude (i) that 

the costs of intracellular concentrations can be approximated through molecular masses not only 

in the in silico cell but also in vivo, and (ii) that biological cells optimized for metabolic 

efficiency balance their enzyme and metabolite concentrations accordingly. The metabolite 

concentrations (26) in yeast were measured for a slightly different strain and on a different 

growth medium compared to the protein concentration measurements (25); this discrepancy may 

contribute to the larger deviation between predictions and measurements in the yeast data 

compared to other cell types (Fig. 3). Both the E. coli and the S. cerevisiae data includes tRNA-

charging reactions (Fig. S2), emphasizing the applicability of the proposed relationships also to 

non-metabolic enzymatic reactions.  

E. coli protein expression patterns may not be geared towards maximal metabolic efficiency in 

many conditions (29). When considering only the E. coli data for the two carbon sources most 

likely to be optimized for metabolic efficiency – those with the highest growth rates, glucose and 

fructose (23) – we obtain R2=0.90 (P=10-8) and GMFE=1.51, compared to R2=0.79 (P=10-16) and 

GMFE=1.67 when considering E. coli data across all growth conditions. Indeed, for most 

reactions, enzyme concentrations show little variation across conditions, while metabolite 

concentrations are much more variable (Fig. S2). This might indicate that for each of these 

reactions, enzyme levels are optimally regulated for growth on glucose and/or fructose regardless 

of the condition. This pattern would be consistent with an evolutionary strategy that shortens the 

lag-phase at the transition from an unpreferred to a preferred carbon source, minimizing 

associated changes in protein expression at the cost of non-optimal expression in unpreferred 

conditions (30).  
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Figure 3. (a) Eq. (2) holds accurately across available data from E. coli (orange: growth on 
glucose; blue: growth on fructose; grey: growth on other carbon sources). Concentrations 
of metabolites (24) and enzymes (23) are scaled as x=M/Km and y=amE/Km with molecular 
mass ratio am, such that all predictions follow y = x (1+x) (solid line). The diagonal (dotted 
line) indicates equal cellular mass concentrations of metabolite and enzyme (am E = M). 
Error bars are reported measurement errors. (b) Predicted vs. observed E. coli metabolite 
concentrations (Pearson’s correlation between log-transformed values R2=0.79, P=10-16; 
GMFE=1.67; data restricted to growth on glucose and fructose: R2=0.90, P=6×10-8, 
GMFE=1.51). The dashed line indicates the expected identity. The upper and lower red 
dotted lines indicate deviations of ×2 and ×0.5, respectively. For the x-axis, error bars are 
reported measurement errors; for the y-axis, error bars reflect the expected standard 
deviation based on reported measurement errors for enzyme concentrations. See Fig. S2 for 
the E. coli raw data and individual growth conditions. (c) Eq. (2) holds accurately across 
available data from diverse eukaryotes (yellow: yeast (Saccharomyces cerevisiae); red: red 
blood cell; green: green alga (Chlamydomonas reinhardtii)). Concentrations are scaled as 
in panel (a). (d) Predicted vs. observed eukaryotic metabolite concentrations (R2=0.80, 
P=4x10-5; GMFE=2.06).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 17, 2017. ; https://doi.org/10.1101/128009doi: bioRxiv preprint 

https://doi.org/10.1101/128009


 9 

Red blood cells have little room for enzymatic reactions, as hemoglobin makes up 97% of their 

cellular dry weight (31). Consequently, metabolite concentrations are much below Km in this cell 

type (27), and reaction rates are reduced to 2–8% of their values at saturation. As predicted by 

the asymptotic behaviour of Eq. (2), the total cellular mass of an enzyme and its substrate 

becomes very similar in this case (amE≈M; Fig. 3c): when most enzymes are in their unbound 

state, optimal investment is distributed equally across enzyme and substrate molecules. At the 

other end of the spectrum, Rubisco molecules in the green alga C. reinhardtii are highly 

saturated (M=83×Km) and outweigh their substrate ribulose 1,5 bisphosphate (RuBP) 75:1, (28) a 

relationship still accurately predicted by Eq. (2). While all other enzyme–substrate pairs 

considered here correspond to cytosolic reactions, Rubisco is located in algal chloroplasts, 

emphasizing the applicability of our results to cellular compartments other than the cytosol. 

Several of the reactions included in Fig. 3 are reversible (Table S1), and it is not obvious that Eq. 

(2) can be applied in these cases. For one of the reactions, Fumarase A (fumA) consuming 

fumarate (FUM) in E. coli, we also have concentration measurements for the product (L-malate) 

as well as the full kinetic constants of the reversible Michaelis-Menten equation (32). In all 

assayed conditions, the ratio of product/substrate concentrations is much smaller than the 

equilibrium constant for this reaction, Keq=11.0 (Table S1). As long as the product is not strongly 

saturating the enzyme, which is the case for the majority of conditions (P/Km
P ≤ 2.5), the 

predictions derived from Eq. (2) do not differ substantially from those derived with its equivalent 

for reversible reaction kinetics, Eq. (S50). During growth on succinate, however, the product is 

strongly saturating (P/Km
P=15.0); here, employing the reversible prediction reduces the mean 

fold-error from 4.71 to 1.22 (Fig. S3). The overall excellent match between observed metabolite 

concentrations and those predicted via Eq. (2) (Fig. 3) suggests that the FUM-fumA case is 

representative for reversible reactions in general: across most growth conditions, generally 

reversible reactions may be rendered effectively irreversible by metabolite concentrations that 

provide an adequate thermodynamic driving force. This notion agrees with previous 

considerations of the effect of thermodynamic driving forces on expected metabolite 

concentrations (11, 12), and with a detailed analysis of the relationship between metabolite 

concentrations and measurements of forward to backward flux ratios (26). 

Our hypothesis of natural selection on minimal cellular reaction costs makes two specific 

predictions when considering one metabolite across different growth conditions. First, if the 

dominant enzyme remains the same across conditions, then we expect the corresponding points 
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to follow the prediction line from Eq. (2), with different positions corresponding to differences in 

the flux through the reaction across conditions. This can be seen for galactose-1-phosphate 

uridylyltransferase (GalT): this enzyme is expressed at very low levels except in growth on 

galactose, where its substrate shows a correlated increase (Fig. S2e). Second, if an enzyme is 

dominant for a given substrate only in some of the assayed conditions, we expect to see strong 

deviations from Eq. (2) in those conditions where other enzymes that consume the same 

substrate become more costly (have higher amE). This can also be observed in the E. coli dataset. 

1-phosphofructokinase (FruK) is dominant for beta-D-fructofuranose 1-phosphate (F1P) during 

growth on fructose and predicts the observed F1P concentration within a factor of 1.71. 

However, FruK contributes only 2.0% and 2.6% to the total enzyme mass consuming this 

substrate on acetate and glucose, respectively. According to the multi-enzyme relationship (Eq. 

(S25) of the SI Text), we thus expect the intracellular substrate concentration to be higher than 

what would be “predicted” from FruK concentrations alone. This is indeed what we find: the 

observed concentrations are 4.0-fold and 12.7-fold higher, respectively, than “predicted” from 

Eq. (2) (Table S1). 

Discussion 

Estimating reaction costs through the total mass of the molecules involved can only provide a 

rough approximation to the real cellular expenditure. It is likely that for some metabolite-enzyme 

pairs, specific biophysical or biochemical constraints lead to further deviations from our 

predictions. First, natural selection may favour lower concentrations for toxic metabolites than 

those predicted here. Second, the concentration of metabolites that enter the cell through passive 

diffusion cannot exceed extracellular concentrations. Third, as examined in the Fumarase A 

example above, the optimal concentrations of metabolites according to Eq. (2) may provide an 

insufficient thermodynamic driving force for some reversible reactions, and the generalization 

given in Eq. (S50) of the SI Text will be more appropriate. Finally, we emphasize that our 

predictions will only hold for cells whose transcriptional regulation of enzymes and transporters 

has been optimized by natural selection for metabolic efficiency in the specific condition 

examined.  

Because the same reaction rates can be achieved with different combinations of enzyme and 

metabolite concentrations (Fig. 1), current metabolic models that account for reaction kinetics 

are either highly underdetermined or must be constrained by experimental data (33). The 
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organizing principle exemplified by Eq. (2) – a minimal summed mass concentration of solutes – 

has the potential to massively reduce the complexity of such models, as it provides an objective 

function capable of distinguishing between alternative kinetic solutions (11). For enzymatic 

subsystems composed of effectively irreversible reactions, Eq. (2) and its generalizations provide 

one-to-one correspondences between reaction rates and dominant enzyme as well as metabolite 

concentrations; the substrate concentration of a non-dominant enzyme can be treated as a 

constant set by the substrate’s dominant reaction, resulting again in a one-to-one correspondence 

between reaction rate and enzyme concentration. Such improved kinetic modelling, together with 

a general appreciation of the cellular organizing principle of minimal summed mass 

concentrations, will allow the design of more efficient cellular systems and will thereby facilitate 

further progress in synthetic biology (34). 

It is commonly assumed that in vivo enzyme and metabolite concentrations are not governed by a 

general optimization principle, but are determined by the biochemical properties of each 

metabolite and of the enzymes by which it is consumed (12, 35, 36); reaction rates are often 

assumed to be governed by enzyme concentrations alone (2, 9, 14, 16). In contrast, theoretical 

considerations of optimal enzyme properties (37) and large-scale modelling studies (11, 33) as 

well as metabolite (38) and flux (26) measurements and perturbation experiments (21) indicate 

that reaction rates are jointly determined by enzyme and metabolite concentrations. Our results 

explain and quantify this relationship: metabolite and dominant enzyme pools are tightly 

balanced according to a simple organizing principle, likely reflecting natural selection for the 

parsimonious use of cellular resources.  
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Materials and Methods 

E. coli data 

We obtained Escherichia coli strain BW25113 enzyme concentrations (23) and metabolite 

concentrations (24) from two recent publications. Metabolite concentrations in µmol/gCDW (24) 

were converted to cytosolic molar concentrations based on the same conversion factor between 

cytosol volume and cell dry weight (2.3 ml/gCDW) used by the original authors (24). Enzyme 

concentrations in protein mass/cell (23) were converted to cytosolic molar concentrations based 

on: (i) protein molecular weight (23); (ii) cell dry weight (CDW) estimated based on the 

relationship PDW/CDW=-0.27869µ+0.64034, derived from Table S1 in Ref. (39), with growth 

rate µ (in units of 1/h) and total protein dry weight (PDW) measured in each condition (23); (iii) 

the same conversion factor between cytosol volume and cell dry weight (2.3 ml/gCDW) used for 

the metabolite concentrations (24). Metabolite molecular weights were obtained from EcoCyc 

(40).  

We collected the Michaelis constants (Km) of wild-type enzymes from EcoCyc (40), BRENDA 

(41), and UniProt (42). All experimental values are from E. coli, with the exception of four 

metabolite-enzyme pairs where only data from other organisms are available: D-ribulose 5-

phosphate–ribose-5-phosphate isomerase A (Ru5P–rpiA), 1,3-bisphospho-D-glycerate–

phosphoglycerate kinase (13DGP–pgk), ADP–phosphoglycerate kinase (ADP-pgk), and 

glycerone phosphate–fructose bisphosphate aldolase (DHAP-fbaA); we did not consider Km 

values of the extremophile Sulfolobus solfataricus, as these were obtained from measurements at 

70°C. If more than one Km was listed across the databases (Table S1), we first checked if these 

values were mostly within the same order of magnitude (i.e., if the geometric standard deviation 

was ≤10); in this case, we used the geometric mean of all available values. Otherwise, we 

considered the available data for Km to be too unreliable to be included. The data for pairs of 

metabolites and dominant enzymes is listed in Table S1.  

S. cerevisiae data 

We obtained metabolite concentration data from Ref. (26), in which Saccharomyces cerevisiae 

derived from prototrophic strains S288C and W303 were grown at 30 °C in 2% w/v glucose 

medium containing Yeast Nitrogen Base (YNB) without amino acids. Enzyme concentration 

data is from Ref. (25), in which S. cerevisiae strain BY4741 was grown at 30 °C in 2% w/v 
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glucose supplemented with YPD medium (with amino acids).  The Enzyme concentrations in 

molecules/cell were converted to cytosolic molar assuming cytosol volume of 21 fl, based on: (i) 

average cell volume of 42 fl when growing on YPD medium Ref. (43); (ii) cytosol volume is 

about half of the cell volume Ref. (44). Metabolite molecular weights were obtained from 

BioCyc. Michaelis constants Km were collected from Ref. (26), as they are the geometric mean of 

all available values in BRENDA for S. cerevisiae; we confirmed that in each case, the geometric 

standard deviation was <10, i.e., all reported values were of the same order of magnitude. In 

almost all cases were no Km value from S. cerevisiae was available, there were also no 

measurements from other organisms. The Km for fumarate-URA1 (dihydroorotate 

dehydrogenase) is missing from BRENDA and from Ref. (26), and was obtained from BioCyc 

instead. The data for pairs of metabolites and dominant enzymes is listed in Table S1.  

The genomes of the yeast strains S288C/W303 and BY4741 are highly similar (45), so that their 

intracellular concentrations of enzymes and metabolites are likely to be comparable if assayed 

under the same conditions. However, the two growth media employed by Park et al. (26) and 

Kulak et al. (25) differ substantially: while YNB (26) is a defined medium that contains no 

amino acids, YPD (25) contains peptone and yeast extract, making it rich in amino acids. The 

different growth conditions are likely to induce different intracellular concentrations of enzymes 

and metabolites, especially of those molecule types involved in amino acid synthesis. 

Accordingly, we expect to see more deviations between predicted and measured concentrations 

in yeast than in the other cell types examined; however, no better matching absolute enzyme and 

metabolite concentration data is available.  

Red blood cell data 

We obtained molecular weights, number of binding sites, and binding site concentrations of 

enzymes, as well as metabolite concentrations for red blood cells from Ref. (27). Albe et al. (27) 

considered fructose 6-phosphate to be the substrate of pgi; we changed this to glucose 6-

phosphate in agreement with the direction of glycolysis. Enzyme concentrations were determined 

dividing the binding site concentration by the number of binding sites of each enzyme. Km values 

were obtained from BRENDA. The values are listed in Table S1. 

Green alga data 

We obtained the molar concentration of Rubisco binding sites and its substrate ribulose-1,5-

biphosphate (RuBP) in the green alga Chlamydomonas reinhardtii from Ref. (28). We calculated 
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the Rubisco molar concentration dividing the reported binding site concentration by the number 

of binding sites according to BRENDA. We considered the concentrations during steady-state in 

the wild type cell under constant low light intensity (28), using the geometric mean for RuBP 

concentration (which was measured twice). The molecular weight of C. reinhardtii Rubisco was 

obtained from BRENDA, and the Km for  RuBP from Ref. (46). The values are listed in Table 

S1. 

Identification of dominant enzymes in E. coli 

For an automated identification of dominant enzymes, we used the sybil and sybilSBML (47) 

packages in R (48), with the EcoCyc metabolic model for E. coli exported as an SBML file using 

Pathway Tools 19.5 (49). For each metabolite measured in Ref. (24), we first identified all 

reactions using it as a substrate according to the metabolic model. The gene-reaction associations 

given in the EcoCyc model through b-numbers were used to map the reactions to the proteins 

measured in Ref. (23), identified by P-numbers. The concentration of enzymes was determined 

from the protein concentrations and the enzyme protein stoichiometries obtained from Ref. (50) 

(assuming stoichiometries of 1 for enzymes not listed in (50)).  

For each substrate assayed in Ref. (24), we determined a dominance score (hereafter referred to 

simply as “dominance”) for each enzyme consuming it that was assayed in Ref. (23). The 

dominance of an enzyme was defined as the fraction it contributes to the total mass concentration 

of all assayed enzymes using the substrate. An enzyme was considered “dominant” for the 

substrate if its dominance was >0.5, i.e., its molecules constituted more than half of the total 

protein mass consuming the substrate. We only attempted to assess dominance if more than half 

of the enzymes consuming a given substrate were assayed in Ref. (23). We excluded membrane-

bound and periplasmic enzymes based on Gene Ontology annotations (51) (GO categories 

0016020 (membrane), 0005886 (plasma membrane), 0005887 (integral component of plasma 

membrane), 0042597 (periplasmic space)), as in these cases the estimated enzyme concentrations 

will not correspond to actual cytosolic concentrations. If the reaction catalyzed by the dominant 

enzyme was reversible according to the EcoCyc model, this substrate–enzyme pair was only 

considered further if the flux through the reaction was measured in the corresponding direction in 

Ref. (24). Cyclic AMP (cAMP) was not included in the analysis, as the major role of cAMP is 

not metabolic. cAMP regulates transcription through varying concentrations of cAMP-CPR; 
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accordingly, the only enzyme using it as a substrate (cAMP phosphodiesterase) is unlikely to 

have a major impact on cAMP concentrations. 

Identification of dominant enzymes in S. cerevisiae 

We determined dominant enzymes in S. cerevisiae using the same automatic procedure as for E. 

coli, using the Yeast v. 7.6 model Ref. (52) (yeast.sourceforge.net) in SBML format. For each 

metabolite measured in Ref. (26), we first identified all reactions using it as a substrate according 

to the metabolic model. The concentration of enzymes was determined from the protein 

concentrations in Ref. (25), assuming stoichiometries of 1 for enzyme complexes.  

For each substrate assayed in Ref. (26), an enzyme was considered “dominant” if its dominance 

was >0.5. We only attempted to assess dominance if more than half of the enzymes consuming a 

given substrate were assayed in Ref. (25). We excluded membrane-bound and periplasmic 

enzymes based on Gene Ontology annotations (51) (GO categories 0016020 (membrane), 

0005886 (plasma membrane), 0005887 (integral component of plasma membrane), 0042597 

(periplasmic space)), as in these cases the estimated enzyme concentrations will not correspond 

to actual cytosolic concentrations. For the same reason, we only considered the enzymes 

dominant if they are located in the “cytoplasm” compartment in the metabolic model and 

assigned as a component of “cytoplasm” in the Yeast Genome Database Ref. (45). If the reaction 

catalyzed by the dominant enzyme was reversible according to the BioCyc (53) S. cerevisiae 

model (the Yeast v. 7.6 model doesn’t contain information about reversibility), this substrate–

enzyme pair was only considered further if the flux through the reaction was measured in the 

corresponding direction in Ref. (26). 

Identification of dominant enzymes in red blood cells and green algae 

We used the HumanCyc (54) database to identify the enzymes involved in consuming each 

metabolite measured in Ref. (27). High-throughput enzyme MS/MS measurements and 

molecular weights for human red blood cells were obtained from Ref. (55) (Table S1). As in the 

E. coli and S. cerevisiae analysis, we attempted to determine dominance only for those substrates 

for which more than half of the consuming enzymes were assayed. Enzymes were considered 

dominant if their dominance score was >0.5. According to the BioCyc database, RubisCO is the 

only enzyme consuming D-ribulose-1,5-bisphosphate (RuBP) in Chlamydomonas reinhardtii, so 

it is the dominant enzyme by default. 
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Empirical P-value 

To test if the predictions for the in silico cell model are statistically significantly better when 

using the molecular mass ratio am than when using molecular yield for the limiting nutrient, N, 

we estimated an empirical P-value as follows. As a null model, we assumed that both sets of 

predictions come from the same distribution (i.e., both predictions are equally good). We 

randomly re-assigned the two predictions using am and aN for each observed data point to two 

groups and calculated the difference in geometric mean fold-error (GMFE) between the groups; 

this was repeated n=10’000 times. In all of the 10’000 repetitions, the GMFE difference was 

smaller than the GMFE difference observed in the in silico cell simulations (0.15). The 

randomized GMFE differences were normally distributed. Accordingly, we estimated the P-

value based on the mean value (2.32×10-6) and the standard deviation (2.19×10-4) of the 

randomized GMFE differences. The z-score of the GMFE difference observed in the in silico cell 

simulations is 68, and thus P<10-15. 

Generation of Figure 1 

The reaction rate v of the GMP reductase reaction (GMP–guaC) in E. coli growing on glycerol 

(green dot in Fig. 1) was calculated through the corresponding Michaelis-Menten equation (Eq. 

(S1)), assuming saturation of the enzyme with the other substrates, NADPH and H+, the 

experimentally determined concentrations of enzyme (4.69×10-7 Molar) (23) and metabolite 

(6.58×10-5 Molar) (24), and the kinetic parameters kcat=0.28s-1, Km=2.30×10-6Molar obtained 

from the EcoCyc and BRENDA databases (the Km value is the geometric mean over the available 

values, SI Table 1). The optimal enzyme concentration (circle in Fig. 1) was calculated using Eq. 

(2) with the GMP/guaC molecular weight ratio am=413.76. The curve corresponds to Eq. (S3), 

with the colour code representing the summed mass concentration of GMP and guaC (Eq. (S4) 

with molecular weights mE=149454.2 Da, mM=361.21 Da). 
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