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Abstract

Graphical models are frequently used to explore both static and dynamic functional brain networks from

neuroimaging data. However, the practical performance of the models has not been studied in detail for

brain networks. In this work, we have two objectives. Firstly, we compare several graphical model estimation

procedures and several selection criteria under various experimental settings. We discuss in detail the

superiority and deficiency of each combination. Secondly, in the same simulation study, we show the impact

of autocorrelation and whitening on the estimation of functional brain networks. We apply the methods

to a resting state functional magnetic resonance imaging (fMRI) data set. Our results show that the best

graphical model is the smoothly clipped absolute deviation (SCAD) estimating method in combination with

the Bayesian Information Criterion (BIC) and cross-validation (CV) selection method. In addition, the

presence of autocorrelation in the data adversely affects the estimation of networks but can be helped by

using the CV selection method. These results question the validity of a number of fMRI studies where

inferior graphical model techniques have been used to estimate brain networks.
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1. Introduction

In order to thoroughly understand brain function, researchers have begun to map the functional network.

Here the emphasis is on studying the interaction of brain regions, as a great deal of neural processing is

performed by an integrated network of several brain regions. This is sometimes referred to as functional

integration. In the analysis of functional magnetic resonance imaging (fMRI), positron emission tomography

(PET), electroencephalography (EEG) and Magnetoencephalography (MEG) time series data, functional

connectivity (FC) is the name given to the interaction, correlation or dependence between signals observed

from spatially remote brain regions (Friston et al., 1993). FC is a measure of dependence or “relatedness” but

does not comment on how the dependence is mediated. It is sometimes referred to as undirected association.

Estimating the FC between predefined brain regions or voxels allows for the characterization of interregional

neural interactions during particular experimental tasks or merely from spontaneous brain activity while

subjects are being scanned at rest. Using fMRI, researchers have been able to create maps of FC with

distinct spatial distributions of temporally correlated brain regions called functional networks.

The accurate estimation of FC networks is important as it has been shown that neurological disorders,

such as schizophrenia, depression, anxiety, dementia and autism, disrupt the FC or structural properties of

the brain (Menon, 2011). However, it is still unclear whether the disruptions are the cause or consequence

of the disorder. The estimation of FC and linking its structure to disorders is a good starting point for

treatment of the disorder. Calhoun et al. (2009) investigated the link between FC and schizophrenia with

the objective of finding biomarkers for the disorder. Buckner et al. (2009) found different static FC network

structures in subjects with Alzheimer’s disease compared to healthy subjects.

In general, to estimate FC, we carry out two major steps: we calculate the average voxel time series from

pre-specified brain regions and estimate the dependence between the time series. Typically, higher similarities

of the time courses between any given pair of brain regions indicate a higher chance of a FC between those

nodes. The simplest methods for estimating FC include the sample correlation matrix and the sample partial

correlation matrix. However, these methods are deficient since they are rarely estimated to be exactly zero

even if the data are independent. Alternatively, the FC or functional network can also be represented by

an undirected graphical model. Here, the nodes of the undirected graph represent the functional regions

of the brain, and the edges of the graph represent the connections between those functional nodes. The

estimate of a precision matrix (or inverse covariance matrix) can be illustrated using an undirected graph.

A non-zero estimated entry of the precision matrix corresponds to an edge of the undirected graph while

an absence of an edge between two functional nodes indicates conditional independence between them.

Also, the thickness of the edge of the undirected graph indicates a stronger conditional connection between

the corresponding functional nodes. Hence, the elements of a standardized precision matrix are equivalent

to partial correlations. A sparse undirected graph, where some edges are set exactly to zero, is usually
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preferred for its simplicity and ease of interpretation. Smith et al. (2011) pointed out that correlation does

not necessarily imply either the causality of a connection or whether it is direct. However, the partial

correlation can correctly estimate the true network, which captures direct connections only. Smith et al.

(2011) concludes that with respect to estimating FC networks, partial correlations are within the “Top

3” methods. Moreover, the partial correlation and the regularized precision matrix are very sensitive in

detecting the network connections on good quality fMRI data.

Several methods for estimating FC or brain networks using sparse graphical models have been proposed.

The estimation methods are all based on penalized log-likelihood methods, which apply a regularization

parameter to control the sparsity of the graph. For example, the graphical lasso or glasso (Friedman et al.,

2007b) is a method which is known for its computational speed, ease of implementation and its production of

a sparse undirected graph. A newly developed algorithm (Mazumder & Hastie, 2012), called the DP-glasso,

differs from glasso in that it solves for the precision matrix Ω and not the covariance matrix estimated

by glasso. The bootsrap glasso (BG: Cribben et al., 2013) estimating method, inspired by the stability

selection technique of Meinshausen & Bühlmann (2010), combines both glasso and the bootstrap resampling

procedure (Efron & Tibshirani, 1994) to improve the estimation performance. The estimating methods, the

Adaptive Lasso (AL) and the Smoothly Clipped Absolute Deviation (SCAD) are modifications of glasso in

the sense that the original l1-penalty is replaced respectively by the Adaptive Lasso penalty (Zou, 2006)

and the SCAD penalty (Fan & Li, 2001). Finally, Zhao et al. (2012) introduced the estimating method,

High-dimensional Undirected Graph Estimation (Huge) and a companion R package huge, which integrates

many functions for estimating graphical models such as semiparametric transformation, graph estimation

and model selection.

To find the optimal regularization parameter (which controls the sparsity of the graph) and hence the

optimal sparse undirected graph, several selection criteria have been proposed. For example, Akaike (1974)

proposed the well-known Akaike Information Criterion (AIC) to select the potential optimal model out of

a collection of candidate models. Schwarz (1978) proposed the Bayesian Information Criterion (BIC) which

also selects the potential optimal model out of a collection of candidate models but penalizes more for extra

parameters in the model than AIC. It has been shown that BIC consistently selects the optimal model. Fan

et al. (2009) introduced a K-fold cross validation score to conduct selection of the optimal graphical model.

Moreover, the Huge method is accompanied by three selection criteria: the Rotation Information Criterion

(ric: Lysen, 2009), Extended Bayesian Information Criterion (ebic: Foygel & Drton, 2010) and Stability

Approach for Regularization Selection (stars: Liu et al. 2010), all of which are provided by the function

huge.select() of the package huge (Zhao et al., 2012, 2014).

While some of these methods and selection criteria for estimating sparse graphical models have been

introduced to the neuroimaging community (Smith et al., 2011; Cribben et al., 2012; Grosenick et al., 2013;
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Pircalabelu et al., 2015; Cummine et al., 2016; Cribben & Fiecas, 2016), there has never been a thorough

validation and comparison study on their practical use in general, nor in particular for estimating FC

networks. Specifically, it is not known which combination of estimating method and selection criterion has

optimal performance under different experimental settings.

In this paper, we have two main objectives. Firstly, we compare several sparse graph estimation pro-

cedures and several selection criteria mentioned above under various simulation settings, such as different

dimensions or sample sizes, different types of data, and different sparsity levels of the true model structures to

find the optimal estimating methods and selection criteria combinations. We discuss in detail the superiority

and deficiency of each combination. Our evaluation is aimed at the performance of each combination, which

is an estimation method with a selection criterion. We compare their ability to correctly detect the existing

network connection, their ability to produce sparse estimates, and their robustness against the violation

of some assumptions for the estimation method or the selection criterion. We find that some estimation

methods and selection criteria are not effective and always provide undesirable results, but some others can

provide satisfactory results, even when some of the assumptions of the method are not met. Our focus is on

FC networks and we consider sparse estimation methods because a sparse network structure supports the

idea of economic brain organization (Bullmore & Sporns, 2009). Secondly, we discuss the impact of autocor-

relation/whitening on the estimation of FC networks. To this end, we compare the performance of the sparse

graph estimation procedures in combination with the selection criteria to independent multivariate normal

data (MVN) data and to multivariate normal data (MVN) data with an autocorrelation structure. This

comparison allows us to make conclusions about the effect autocorrelation in our data has on the estimated

FC networks. After our simulation study, we also apply some of the combinations which are more likely to

provide superior estimates to some real fMRI data to see how they perform in the real world. Our results

question the validity of a number of fMRI studies where inferior graphical model techniques have been used

to estimate brain networks.

Although the main focus of this work is on estimating methods that estimate static FC where the time

series data from each brain region is stationary, the methods can be easily incorporated into an algorithm for

estimating dynamic FC via a sliding window or for estimating FC change points in a similar vein to Cribben

et al. (2013, 2012).

The rest of this work is organized as follows. Section 2 and Section 3 explain the theoretical background

and features of the estimating methods and selection criteria. Section 4 is devoted to the simulations and

resting state fMRI data descriptions and the results from these are discussed in Section 5. In Section 6, we

discuss the strengths and weaknesses of each combination of estimating method and selection criterion and

some of the parameter choices in the methods. Finally, Section 7 provides a set of conclusions based on the

results.
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2. Materials and Methods

2.1. Notation

In this section, we introduce the required notation. Consider a p dimensional data set (e.g. time series

from several brain regions), XT×p = (X1, X2, . . . , Xp), with mean vector µp×1 and a covariance matrix

Σp×p = (σij)1≤i,j≤p. Let

Xi = (Xi1, Xi2, . . . , XiT ), i = 1, ..., p,

where T is the sample size. The (i, j)th entry σij of a covariance matrix Σp×p is the covariance between Xi

and Xj , where

σij = Cov(Xi, Xj) = E ((Xi − µi)(Xj − µj)) .

The (i, j)th entry of the standardized covariance matrix is the correlation coefficient between Xi and Xj .

The sample covariance matrix Sp×p = (sij)1≤i,j≤p is an empirical statistic calculated from a sample data

set whose (i, j)th entry sij is the sample covariance between the set of observations of Xi and Xj and is

estimated using

sij =
1

T − 1

T∑
q=1

(xiq − x̄i)(xjq − x̄j), (1)

where T is the sample size of Xi and Xj . The precision matrix Ω = (ωij)1≤i,j≤p is the inverse of the

covariance matrix Σ and the (i, j)th entry of the standardized precision matrix is the partial correlation

between Xi and Xj . The estimate of the precision matrix is denoted Ω̂.

The precision matrix can also be represented by an undirected graph. Within this framework, graphical

models display the dependency structure of a random vector X using a graph G. Graphs are mathematical

structures that can be used to model pair-wise relationships between variables. Let G := (V,E) denote a

p-node undirected simple graph, where V := {1, . . . , p} and E := {(i, j), 1 ≤ i < j ≤ p} are the collections

of vertices and edges, respectively. The vertices (or nodes) represent a collection of random variables and

the edges represent the dependence among these random variables. From a practical point of view, the edge

connectivity in a graphical model is the quantity of interest and importance, since it offers an intuitive and

effective way of reflecting the underlying network and interplay of the node variables. In this paper, we focus

exclusively on undirected graphs which do not infer the directionality of dependence or FC between the

brain regions. Here, if the (i, j)th component of the precision matrix Ω = Σ−1 is zero, then variables i and

j are said to be conditionally independent, given the other variables, and no edge is included in the graph

between the variables. In other words, each entry of the standardization of a precision matrix is a partial

correlation coefficient of the corresponding random variables which quantifies their dependence with the

influence from all other variable removed. It has been shown that the precision matrix or partial correlations

obtains high sensitivity to network connection detection on good quality fMRI data (Smith et al., 2011).
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Thus, the central theme of this work is the estimation of a sparse (standardized) precision matrix or a sparse

undirected graphical model where some of the elements of the precision matrix (or edges in the undirected

graphs) are set exactly to zero. A sparse graphical model is usually preferred in practice for its simplicity

and ease of interpretation.

Finally, we do not distinguish between the terms ‘network’ and ‘graph’ in this paper and we will use

them interchangeably throughout.

2.2. Estimating Methods

In this work, our objective is to find the best method for precision matrix estimation in the context of FC

network estimation. We consider seven estimating methods: sample correlation matrix CS , sample partial

correlation matrix PS (these two are simply used as reference methods), Graphical Lasso (glasso), Bootstrap

Graphical Lasso (BG), Graphical Lasso with Adaptive Lasso Penalties (AL), Graphical Lasso with SCAD

penalties (SCAD) and High-dimensional Undirected Graph Estimation (Huge).

The glasso, BG, AL and SCAD methods estimate sparse precision matrices and are based on penalizing

the log-likelihood of a multivariate normal distribution. Specifically, they add various weighted l1-penalties

to the log-likelihood formula. The estimate of the precision matrix, Ω, is the solution to the following

formula:

max
Ω

log det Ω− tr(SΩ)−
p∑
i=1

p∑
j=1

pρij (|ωij |) , (2)

where tr denotes the trace of a matrix which is the sum of all elements on the main diagonal, and pρij (·)

is the penalty function on ωij with ρij being the corresponding regularization parameter that controls the

sparsity level. We now introduce the estimating methods.

2.3. Sample correlation matrix

The (i, j)th element, rij , of the sample correlation matrix CS = (rij)i,j≤p is the sample correlation

between the ith and the jth brain regions Xi and Xj . It measures the direction and strength of the linear

relationship and is estimated using

rij =

∑T
q=1 (xiq − x̄i) (xjq − x̄j)√∑T

q=1 (xiq − x̄i)2∑T
q=1 (xjq − x̄j)2

, (3)

where T is the sample size of the time series from brain regions Xi and Xj .

2.4. Sample Partial Correlation Matrix

The (i, j)th element, γij , of the sample partial correlation matrix PS is the sample partial correlation be-

tween brain regions, Xi and Xj . It measures the relationship between the two brain regions while controlling
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for the effect from other brain regions; hence, providing us with a conditional dependence measure between

these two brain regions. The partial correlation is an important measure of dependence when other brain

regions are very likely to have effects on Xi and Xj . In addition, γij can be estimated from the corresponding

elements in the precision matrix Ω (Pourahmadi, 2011) using

γij = − ωij√
ωiiωjj

. (4)

2.5. Graphical Lasso

The Lasso (l1-) penalty proposed by Tibshirani (1996) has been widely used to estimate sparse undirected

graphs. The penalized log-likelihood (2) with the lasso (l1-) penalty on Ω is given by

max
Ω

log det Ω− tr(SΩ)− ρ‖Ω‖1, (5)

where ‖Ω‖1 denotes the lasso (l1-) penalty on Ω and is the sum of the absolute values of the elements of Ω.

The l1-penalty induces sparsity and regularization on the elements of the estimated precision matrix. The

tuning parameter ρ controls the sparsity of the precision matrix with large values giving rise to a very sparse

precision matrix and small values giving rise to a very “full” precision matrix or graph.

Friedman et al. (2007b) developed an efficient algorithm, the blockwise coordinate descent approach

(Banerjee et al., 2008), for solving (5). The approach is simple, yet extremely fast, and is named the

Graphical Lasso (glasso). Some elements of Ω̂ can be shrunk exactly to zero by the glasso algorithm due

to the l1-penalty on Ω: in order to maximize (5), ρ‖Ω‖1 should be small to make the sum of all absolute

values of Ω small for a fixed ρ, hence some entries of Ω are shrunk to zero. The glasso algorithm proceeds

by estimating a single row (and column) of Ω in each iteration by solving a modified lasso regression.

The R package glasso (Friedman et al., 2007b) can be downloaded to run the above glasso algorithm.

The sample covariance matrix, S, and the regularization parameter, ρ, are two of its inputs. We can also

specify the maximum number of iterations of the outer loop (default 10, 000), the type of start (starting

values for Σ and Ω, with the default being the cold start S + ρI; another option, the warm start, provides

a customized starting value), and a threshold for convergence (default 1e− 4), in the package. The glasso

package can return Σ̂, Ω̂ (the maximized value from equation 5), the number of iterations of the outer loop

used by the algorithm, and many other outputs.

We denote the estimated precision matrix and covariance matrix from glasso as Ω̂G and Σ̂G, respectively.

2.6. Bootstrap glasso

The bootstrap glasso (BG: Cribben et al., 2013) is a hybridized algorithm of glasso and the bootstrap (re-

sampling scheme), which is inspired by a technique called Stability Selection (SS: Meinshausen & Bühlmann,
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2010). SS combines subsampling with existing high-dimensional structural selection schemes. Similarly, BG

is not a new variable selection technique, but simply aims to enhance existing methods, such as variable

selection methods, graphical modeling methods or cluster analysis methods. In particular, BG does not

choose one best model along the whole regularization path, instead, BG bootstraps the original data set a

number of times, then keeps structures or variables whose occurrences reach a certain threshold level. More

specifically, in graphical model estimation, edges with high selection probabilities remain in the estimate

when their selection probabilities are greater than a pre-defined cutoff 0 < πthr < 1, otherwise they will be

removed. The BG algorithm executes the following four steps for each regularization parameter ρi, where i

may be from 1 to 100:

Step 1. Apply glasso to the original data set XT×p and obtain the glasso estimate Ω̂G.

Step 2. Resample XT×p H times without changing the sample size, obtaining H resampled datasets, say

XB = (Xh
B)1≤h≤H .

Step 3. Apply glasso to each resampled dataset Xh
B and obtain new glasso estimates, Ω̂hG, h = 1, 2, . . . ,H.

Step 4. For a pre-defined threshold, 0 < πthr < 1 (usually set to a value between 0.75 and 0.9), the BG

estimate, Ω̂BG, is obtained by setting

Ω̂BG(i, j) =

Ω̂G(i, j), if F(i, j) ≥ πthr

0, if F(i, j) < πthr

, (6)

where F is the frequency matrix of a non-zero estimate for each element of the matrix Ω after resampling H

times. For example, if F(i, j) = 0.9, then 90% of the glasso estimations on the resampled data are non-zero

for Ω(i, j). Intuitively, Ω̂BG is at least as sparse as Ω̂G, since Ω̂BG only retains (removes) those non-zero

elements of Ω̂G which are estimated as non-zeros (zeros) with high frequency.

2.7. glasso with Adaptive Lasso and SCAD penalties

Two major challenges in estimating sparse precision matrices are 1) constraining Ω to be positive definite

when optimizing the penalized log-likelihood, and 2) minimizing the bias arising from the penalties. For

example, it has been shown that glasso, which uses the lasso penalty on Ω, is biased (Fan & Li, 2001). To

remedy this, the nonconcave Smoothly Clipped Absolute Deviation (SCAD) penalty and the Adaptive Lasso

(AL) penalty, were proposed in by Fan & Li (2001) and Zou (2006), respectively. The AL penalty and the

SCAD penalty, have the following three desirable properties of an estimator:

1. sparse estimates

2. consistent model selections

3. unbiased estimates for large coefficients
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2.8. Adaptive Lasso (AL)

The AL assigns various weights to each element of Ω, where the weights depend on the magnitude of the

elements of a consistent estimate of Ω̂. Here, larger elements of Ω̂ are given smaller weights. Hence, the AL

is a properly weighted version of glasso. The penalized log-likelihood with an AL penalty is given by

max
Ω

log det Ω− tr(SΩ)− ρ
p∑
i=1

p∑
j=1

ωij (|ω̂ij |) , (7)

where wij is the adaptive weight function (penalty function) and ω̂ij is an estimate for Ω(i, j). Fan et al.

(2009) defined the adaptive weights to be

wij = 1/|ω̃ij |γ (8)

for tuning parameter γ > 0, where ω̃ij is the (i, j)th entry for any consistent estimate Ω̃ = (ω̃ij)1≤i,j≤p. AL

has good asymptotic properties including the property that as the sample size becomes large, the estimate

Ω̂ has the same sparsity pattern as Ω (Fan & Li, 2001).

The optimal estimate of Ω by AL, along a given regularization path, is denoted by Ω̂AL.

2.9. Smoothly Clipped Absolute Deviation (SCAD)

The log-likelihood (2) with the SCAD penalty is given by

max
Ω

log det Ω− tr(SΩ)−
p∑
i=1

p∑
j=1

SCADρ,a (|ωij |) , (9)

where we use ρij = ρ for convenience. Mathematically, the SCAD penalty is symmetric and a quadratic

spline on [0,∞), whose first order derivative is

SCAD′ρ,a(x) = ρ

(
I (|x| ≤ ρ) +

(aλ− |x|)+

(a− 1) ρ
I (|x| > ρ)

)
, (10)

for x ≥ 0, where I is an indicator function, with ρ > 0 and a > 2 being two tuning parameters. If a = ∞,

(10) becomes the lasso penalty.

By applying the local linear approximation approach (LLA: Zou & Li, 2008) to the SCAD penalty, the

original nonconcave penalized log-likelihood (2) is transformed into a series of weighted lasso penalized log-

likelihood problems, where the weights are controlled by the derivative of the SCAD penalty function. Thus,

optimizing the penalized log-likelihood subject to a positive definite Ω can be solved iteratively by the efficient

glasso algorithm. Consequently, the bias of the penalty is well controlled without losing computational

efficiency. Note that in the iterative procedure for SCAD, an estimated zero in Ω̂ in one step does not

necessarily mean it is zero in the next iteration step, whereas for AL, zero estimates will remain zero in each
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iteration step, hence the initial value will always provide denser estimates for AL. The optimal estimate of

Ω by SCAD, along a given regularization path, is denoted by Ω̂SCAD.

The AL and SCAD penalties are considered improvements over the glasso as both AL and SCAD can

obtain sparse estimates, consistent model selection and unbiased estimates simultaneously, all of which are

not achieved by glasso. However, the simple yet fast glasso algorithm can still be applied to AL and SCAD

penalties in order to estimate sparse Ω, as long as the SCAD penalty is locally linearly approximated.

2.10. DP-glasso

As we have already noted, glasso is a popular and efficient algorithm for estimating precision matrices for

brain networks (Cribben et al., 2012). However, glasso operates on the dual problem of (5) with the target

estimation matrix being the covariance matrix Σ, rather than the primal problem itself (the estimation of

Ω), which results in many undesirable outcomes. Consequently, Mazumder & Hastie (2012) proposed a

new method called DP-glasso which directly solves the primal problem by block coordinate descent, whose

optimized matrix is the precision matrix Ω and not the covariance matrix. Several advantages arise from

this new algorithm. Additionally, an R package called dpglasso allows us to implement this algorithm and

compare it with the other existing methods.

In the glasso package, the input regularization parameter ρ can either be a scalar or a matrix, thus

the AL and SCAD methods can be implemented easily in it. However, unlike glasso, the regularization

parameter required by dpglasso package has to be a scalar, which means the AL and SCAD cannot take

advantage of the DP-glasso algorithm directly. Therefore, in order to take advantage of the DP-glasso

algorithm, we use the DP-glasso estimated precision matrices as initial values for AL and SCAD, while the

glasso() function is used in the inner steps of AL and SCAD. This leads to another two algorithms which

we denote as DP-AL and DP-SCAD. For BG, dpglasso() is applied in every step in the procedure, resulting

in another method named DP-BG.

We denote the precision matrix estimated by DP-glasso as Ω̂DP . Unlike glasso, DP-glasso returns a

sparse and positive definite estimated precision matrix. Similar computational time is consumed by the

glasso and DP-glasso algorithms for large values of the regularization parameter. For smaller values of the

regularization parameters, DP-glasso is more efficient.

2.11. High-dimensional Undirected Graph Estimation (Huge)

Huge’s main objective is to estimate high-dimensional undirected graphs while incorporating the many

suggestions from Friedman et al. (2007a,b, 2010). Huge integrates many functions, such as data generating,

graph estimation, model selection, estimation visualization and more. Specifically, it merges many up-to-date

proposals and results, such as nonparanormal (for non-normal data) and correlation screening approaches

for estimating graphs (Liu et al., 2009; Fan & Lv, 2008), as well as the StARS approach for stability-based
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graphical model selection (Liu et al., 2010). Additionally, two screening rules are available, lossless screening

(Witten et al., 2011) and lossy screening. Huge is available to download as an R package, called ’huge’.

Three graph estimation methods are available in huge(): the Meinshausen-Bühlmann approximation (mb:

Meinshausen & Bühlmann, 2010), the graphical lasso algorithm (glasso: Friedman et al., 2007b; Banerjee

et al., 2008), and the thresholded correlation graph estimation method (ct). The speed of the first two

methods can be increased further by using the lossy screening rule which preselects nearby brain regions

to the regions of interest using the thresholded correlation before graph estimation (via the scr argument

in huge()). The third method is a variation that is computational efficient and has been widely used in

biomedical research (Langfelder & Horvath, 2008).

Finally, the function huge.npn() applies the nonparanormal method in Liu et al. (2009) for estimating

a semiparametric Gaussian copula model by truncated normal or normal score. It transforms XT×p to a

Gaussian distribution to help relax the normality assumption. The optimal precision matrix Ω̂ estimated by

huge, along the given regularization parameter path, is denoted by Ω̂Huge.

3. Selection Criteria

The penalized log-likelihood methods we have discussed above contain a regularization parameter which

controls the sparsity of the precision matrix. Typically, we estimate the precision matrix along a path of

regularization parameters, however, the optimal value of the regularization parameter is unknown. Hence,

we consider several selection criteria to choose the optimal regularization parameter among a set of possible

values. The selection criteria AIC, BIC and 5-fold Cross Validation are applied in conjunction with the

estimating methods glasso, BG, AL, SCAD, DP-glasso, DP-BG, DP-AL and DP-SCAD. For the Huge

method, we apply the following criteria: rotation information criterion (ric: Lysen, 2009), extended Bayesian

information criterion (ebic: Foygel & Drton, 2010) and stability approach for regularization selection (stars:

Liu et al., 2010) which are embedded in the huge package.

3.1. Akaike information criterion (AIC)

AIC is a model selection criterion based on combining the likelihood function with a penalty term that

guards against over-fitting. Hence, it balances the dual needs of adequate model fit and model parsimony.

The formula for AIC is

AICρ = 2k − 2 ln (L) , (11)

where k is be the number of non-zero elements in Ω̂ and ln (L) is the log-likelihood, namely (5) without the

penalized term ρ‖Ω̂‖1. The regularization parameter corresponding to the minimum AIC value gives rise

to the best estimation method selected by AIC. AIC does not consistently select regression models, that is,

if the true model is among the estimating regression models, the probability of selecting the true model by
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AIC does not approach 1 as n→∞. Hereafter, let ρa denote the optimal regularization parameter selected

by AIC.

3.2. Bayesian information criterion (BIC)

BIC is also a model selection criterion based on combining the likelihood function but penalizes more for

extra parameters in the model than AIC. The formula for BIC is

BICρ = k · ln (T )− 2 ln (L) , (12)

where T is the sample size, k is be the number of non-zero elements in Ω̂ and ln (L) is the log-likelihood

(Schwarz, 1978). The ρ value that gives rise to the minimum BIC value is optimal. An underlying assumption

of BIC is that the observations are independent and identically distributed (Schwarz, 1978). BIC consistently

selects regression models unlike AIC (Nishii, 1984). For linear regression models, the model chosen by BIC

is either the same or a simpler version than that chosen by AIC, due to the heavier penalty (Shao, 1993).

Hereafter, let ρb denote the optimal regularization parameter selected by BIC.

3.3. K-fold Cross Validation (CV)

The K-fold cross validation score (Fan et al., 2009) is given by

CV (ρ) =
K∑
k=1

(
nk log |Ω̂−k (ρ) | −

∑
i∈Tk

(
x(i)
)T

Ω̂−k (ρ)x(i)

)
(13)

where nk is the size of kth fold Tk and Ω̂−k (ρ) is the estimate of the precision matrix based on the sample(⋃K
k=1 Tk

)
\ Tk (the training data). The ρ that provides the minimum CV value is the best regularization

parameter. In our work, we use 5-fold CV to choose the optimal regularization parameter. As sample size

grows larger, minimizing the AIC is equivalent to minimizing the CV for any model, not just linear models

(Stone, 1974). Generally, CV does not consistently select models (Shao, 1993). CV performs poorly with

high-dimensional data, sometimes dramatically (Meinshausen & Bühlmann, 2010). Hereafter, let ρc denote

the optimal regularization parameter selected by CV.

3.4. Selection criteria for Huge

Huge provides three selection criteria for choosing the best estimate of the precision matrix: ric, ebic and

stars. ric is a newly developed and very efficient selection criterion. It directly chooses the best regularization

parameter ρ based on random rotations rather than finding the best ρ over the whole regularization path

using time consuming techniques such as cross validation or subsampling. More specifically, the brain regions

are randomly rotated several times so that the minimum ρ which generates all zeros estimated by using the
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rotated data will be selected. Thus far, there has been no theoretical proof for consistent selection by ric.

In addition, ric suffers from overselection and frequently from underselection. Hence, Zhao et al. (2014)

stated that if false negative levels (few missing selections) are expected, then the number of rotations for ric

should be increased, or the selection criterion stars should be applied. ric is available for all three estimation

methods provided by the R package, huge.

We denote ebic as BICγ , where 0 ≤ γ ≤ 1 is called the ebic parameter. The original BIC is equivalent

to BIC0(i.e. γ = 0). γ = 0.5 is the default setting in huge.select(). It has been shown in Chen & Chen

(2008) that BIC1 is consistent as long as the dimension p (or the number of brain regions) does not grow

exponentially with the sample size. In huge, we can only use ebic selection criterion for the glasso method.

stars selects the optimal precision matrix in a similar fashion to the subsampling procedure discussed

above. Hence, it is not computational efficient. Under certain conditions, stars is shown to be partially

consistent but suffers from the problem of overselection in estimating Gaussian graphical models while its

performance also depends on the regularization parameters used. Moreover, stars can be used for all three

estimation methods in huge, which are the Meinshausen-Bühlmann approximation (mb), glasso (glasso) and

thresholded correlation estimation (ct).

4. Simulations

The estimating methods and selection criteria described above have many theoretical results. However,

there has not been an extensive simulation study to compare the estimating methods in combination with

the selection criteria for exploring brain networks. In this work, we compare their performance using data

generated with different dimensions, sample sizes and underlying distributions. As neuroimaging data (fMRI,

EEG, MEG, ECoG) is inherently autocorrelated, we also consider this data structure. In what follows, we

describe the setup of our data and introduce evaluation criteria for comparing the combination of estimating

methods and selection criteria.

4.1. Simulation setup

Let Mq denote the qth estimating method, q = 1, . . . , 11, and let CAIC , CBIC , CCV , Cric, Cebic and

Cstars denote the selection criteria AIC, BIC, CV, ric, ebic and stars, respectively. Also, let Ω̂CcMq
(ρi) denote

the precision matrix estimated by method Mq using selection criteria Cc when the regularization parameter

is ρi. In addition, let ρ(Mq ? Cc) denote the best regularization parameter along the path ρ1, ..., ρ100 for

estimation method Mq and selection criteria Cc. The resulting estimated precision matrix Ω̂(Mq ?Cc) is the

best estimate using estimating method Mq and selection criterion Cc. The setup of our simulation study is

as follows:
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Step 1. Simulate a data set XT×p (where T and p represent the number of time points and brain re-

gions/voxels, respectively).

Step 2. Fix 100 equally spaced regularization parameters ρ ∈ [0.01, 1] with ρi = i× 0.01, i = 1, . . . , 100.

Step 3. Apply each estimating method Mq to XT×p and obtain 100 estimated precision matrices

Ω̂Mq
(ρ1), Ω̂Mq

(ρ2), ..., Ω̂Mq
(ρ100) (14)

corresponding to the 100 regularization parameters ρ1, ..., ρ100.

Step 4. Choose the estimate from Ω̂Mq
(ρ1), Ω̂Mq

(ρ2),..., Ω̂Mq
(ρ100) that minimizes the selection criteria

formula.

Step 5. For each method Mq and selection criterion Cc, repeat the above procedure L times. This provides

L best estimated precision matrices for each combination of estimating method and selection criterion.

Step 6. Use the L estimated precision matrices to evaluate the performance of the estimating methods in

combination with the selection criteria.

4.2. Evaluation Standards

The estimated precision matrices are compared to the true precision matrices using three evaluation

standards. The first two standards, called True Positive (TP) and True Negative (TN), are numeric and

measure the estimation accuracy. The third standard, named the Average Sparsity Pattern (ASP) plot, is a

plot that provides a visually depiction of the sparsity levels of the estimated matrices.

Our definition of True Positive (TP) is

TP =

(∑L
l=1

(∑p
i,j=1,i6=j Ωtpl (i, j)

))
/L

N2 − p
, (15)

where L is the number of simulations and N2 is the number of non-zeros in the true precision matrix. The

True Positive (TP) matrix Ωtpl for the lth simulation is defined by

Ωtpl (i, j) $

1, if Ω(i, j) 6= 0, Ω̂l(i, j) 6= 0,

0, otherwise,

, (16)

where Ω̂l is the estimated precision matrix in the lth repetition. If both the true and estimated entry in

(i, j)th position in the precision matrix are non-zeros, the (i, j)th entry of the TP matrix, Ωtpl , is equal to
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1, otherwise it is 0. Thus Ωtpl records whether each non-zero true entry is successfully detected in each

simulation. Note that  L∑
l=1

 p∑
i,j=1i 6=j

Ωtpl (i, j)

 /L (17)

is the percentage of times each non-zero entry in the precision matrix is correctly estimated to be non-zero

over all simulations. TP is a number between 0 and 1 and reflects the average proportion each combination

of methods estimate non-zero entries correctly. The larger the TP, the superior the combination method.

TP = 1 indicates that all the non-zero entries in Ω are estimated as non-zeros across all simulations. TP = 0

indicates that none of the true non-zero entries in Ω were estimated correctly, that is, all of the non-zero

entries were estimated as zeros across all simulations.

The second standard True Negative (TN) is defined similarly by

TN =

(∑L
l=1

(∑p
i,j=1,i6=j Ωtnl (i, j)

))
/L

N1
, (18)

where N1 is the number of zeros in the true precision matrix, Ω. The True Negative (TN) matrix Ωtnl for

the lth simulation is defined by

Ωtnl (i, j) $

1, if Ω(i, j) = Ω̂l(i, j) = 0,

0, otherwise,

. (19)

Similar to the TP matrix, the TN matrix marks down whether each zero entry in Ω is successfully estimated

to be zero. TN tells us how often zero entries are estimated as zeros. TN is also a numeric value between

0 and 1, with higher values indicating a superior combination method. Typically, larger TN means sparser

estimated graphs. We did not consider the F-1 score as the TP and TN matrices provide more detail on the

estimation of non-zeros and zeros.

The Average Sparsity Pattern (ASP) plot is obtained by plotting the Average Sparsity Pattern matrix,

ASPp×p. For each i, j = 1, ..., p, ASP(i, j) is defined by

ASP(i, j) =

∑L
l=1 ASPl(i, j)

L
, (20)

with the matrix ASPl(i, j) of the lth simulation defined by

ASPl(i, j) $

1, if Ω̂l(i, j) 6= 0

0, otherwise,

, l = 1, . . . , L. (21)
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Hence, the matrix ASPp×p shows the percentage of times each element of the precision matrix is estimated

as non-zero across all simulations. The larger the ASP value, the darker the corresponding rectangular area

in the plot. Hence, the more dense the estimated precision matrices, the darker the Average Sparsity Pattern

plot. This is an intuitive and clear way to show the overall sparsity levels of the precision estimates.

4.3. Simulation settings

BG parameters. For BG, we fix the number of resamples to 50 and the threshold value to πthr = 0.9.

AL parameters. For AL, we use γ = 0.5 in the penalty (7) as there is no obvious differences among estimates

using different γ values (Fan et al., 2009). As the AL requires consistent estimates, we can use the precision

matrix Ω̂G estimated by the glasso for the initial value of its penalty. That is, we set Ω̃ = Ω̂G and ω̃ij =

Ω̂G(i, j), 1 ≤ i, j ≤ p in the AL penalty (7). Fan et al. (2009) noted that we can use the inverse sample

covariance matrix S−1 for Ω̃ in low dimensional cases (p < n) and Ω̂G in the high dimensional cases (p ≥ T ).

However, S−1 might be inconsistent if p increases as the same rate as T . The requirement for a consistent

initial value is one of the drawbacks of AL. The R package glasso is convenient for implementing the AL

algorithm. We first calculate the AL penalty matrix for each ρ, then apply this penalty matrix using the

rho argument in the package glasso to conduct the estimations by AL.

SCAD parameters. In order to minimize the Bayes risk, Fan & Li (2001) recommended using a = 3.7 in

(10), which we use in our simulations. The precision matrix Ω̂G estimated by the glasso is employed as

the initial value for SCAD. The precision matrix estimation by SCAD can also take the advantage of the

package glasso. Similar to AL, we first calculate the SCAD penalty matrix for each ρ, then set this as the

rho argument in the package glasso. We then choose the best ρ that minimizes a selection criterion and

use this optimal ρ to iteratively obtain a new estimated precision matrix. We stop the iterative procedure

when the difference between the sum of the absolute values between the two estimated precision matrices is

less than a threshold, which we set to be 1e− 04.

Huge parameters. In the function huge(), we choose glasso for the method argument and set scr = FALSE,

so the lossy screening rule is not applied to preselect the neighborhood before graph estimation. After running

the function huge(), an object with class S3 is returned and contains values including icov, a list of p × p

estimated precision matrices corresponding to each regularization parameter, and loglik, a vector with

the same length as ρ which contains the log-likelihood values along the regularization path. To implement

huge.select(), the S3 class object from huge() is the first required argument. Accordingly, huge.select()

picks the best estimate along the whole regularization path. All three Huge criteria (ric, ebic, stars) provided

by huge.select() are applied in our simulation study.
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Data settings. The number of simulations, N , is 100. Specifically, we apply each combination of estimating

method and selection criterion to the same 100 different data sets for various data types, and then observe

how the combinations perform on average over the 100 simulations. Hence, the differences between the

results only arise from the estimating methods and selection criteria themselves.

Regularization path settings. In all our simulations, 100 equally spaced regularization parameters ρ are used,

namely ρ ∈ [0.01, 1] and ρi = i × 0.01, i = 1, . . . , 100. A possible drawback of setting ρ ∈ [0.01, 1] is that

there may exist some smaller ρs that could provide superior estimates than our best estimate. Another

drawback is that our regularization parameters are discrete. Hence, it may be the case that some other ρs

which are not a multiple of 0.01 (e.g. 0.233) could produce better estimates. Nevertheless, we believe our

regularization parameter choices and working procedures are convincing and the estimating methods are

comparable. All the methods are supplied with the same path of ρs and they work under the same level of

parameter precision and carry out the same operations. In addition, our working regularization parameters

are relatively dense and have a wide range.

Low dimension simulations. As some brain imaging studies consider only a small number of brain regions

in their network analysis, we include simulations that are of small dimension. For these cases, we choose

p = 5 (5 brain regions). The true precision matrix Ω we study is of general form and is given by



1 0 0 0.6 0.5

0 1 0.4 0 0

0 0.4 1 0 0.6

0.6 0 0 1 0

0.5 0 0.6 0 1


. (22)

The data types we consider in the low dimensional case include multivariate normal data (MVN) and

the multivariate normal data where every brain region (or column) has an AR1 auto-correlation structure

(MVNAR1). The two data types are studied using four different sample sizes (T = 100, 200, 500, 1000)

to observe how the results vary for different sample sizes. The two data types allow us to look into how

the autocorrelation structure affects the network estimation. In particular, they allow us to evaluate the

deterioration in performance of the estimating methods if prewhitening of the time series data from each

brain region is not carried out. In the simulation study, we consider two extremes, completely independent

data and strongly autocorrelated data, hence, we set the autocorrelation parameter equal to 0.8 (φ1 = 0.8).

High dimension simulations. As many neuroimaging studies consider only a moderate number of brain

regions in their analysis, our high dimensional case examines p = 30 brain regions. In this case, we study

three different true precision matrices – tridiagonal matrix, the exponential decay matrix and the general
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matrix – and evaluate how each combination performs. We now detail the schemes for generating these

matrices.

For the tridiagonal case, where dependence between the brain regions is high close to the main diagonal

and zero everywhere else, the (i, j)th element of Ω is defined to be

ωij = exp (−a |si − sj |) , (23)

where a is a positive constant and si, sj are random values such that s1 < s2 < · · · < sp and

si − si−1
i.i.d.∼ Unif(0.5, 1), i = 2, . . . , p. (24)

Obviously, a larger a value produces smaller off-diagonal elements in Ω. Here, we employ the tridiagonal

matrix with a = 1.7 which results in non-zero entries in the precision matrix close to 0.3.

For the exponential decay case, where dependence between the brain regions decays the further from the

main diagonal, no element in the precision matrix Ω is exactly zero, but it contains a number of entries close

to 0. The (i, j)th element of the true exponential decay precision matrix is defined to be

ωij = exp(−2 | i− j |), (25)

which can be extremely small when | i− j | is large. Since none of the entries of the true exponential decay

matrix Ω are exactly zero, we set a threshold of 1e − 03 when calculating the TP and TN. Otherwise the

TN will have value NA and the TP will be dramatically small, which will obscure the results. However, the

true Ω without thresholding is still used to generate the original data set. Also in the sparsity pattern (SP)

plots, a threshold is applied to the true precision matrix, Ω.

For the general matrix case, we generate an upper triangular matrix first. Each element in the upper

triangular matrix is generated uniformly over [−5,−1] ∪ [1, 5]. Then the smallest 50% of the entries to

set to zero and the remaining non-zeros in the matrix are randomly dispersed. By symmetrizing this upper

triangular matrix, we get a matrix with main diagonals equal to 0. We set the (i, i)th entry in this symmetric

matrix to be a multiple of the sum of the absolute values of the ith row elements. Here we choose a multiple

of 2 in order to ensure the resulting Ω is positive definite. The following table gives a summary of the entries

of the three precision matrices generated as above. Figure 1 shows the sparsity patterns of the three true

precision matrices.

4.4. fMRI data

We apply the combination of estimating methods and selection criteria to a resting-state fMRI data

set, as described in Habeck et al. (2012). Participants (n = 40) are instructed to rest in the scanner for
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smallest largest 0.1 to 1 0.01 to 0.1 less than 0.01
Tridiagonal 0.191 (except 0) 0.425 0.067 0 0.933

Exponential decay 6.470·e− 26 0.59 0.067 0.064 0.869
General 0.019 0.621 0.057 0.443 0.499

Table 1: Summary of the entries of the tridiagonal matrix with a = 1.7, the exponential decay matrix and the absolute values
of the general matrix.

5 minutes, with the instruction to keep their eyes open for the duration of the scan. Functional images

were acquired using a 3.0 Tesla magnetic resonance scanner (Philips) using a field echo echo-planar imaging

(FE-EPI) sequence [TE/TR = 20 ms/2000 ms; flip angle = 72; 112×112 matrix; in-plane voxel size =

2.0 mm×2.0 mm; slice thickness = 3.0 mm (no gap); 37 transverse slices per volume]. In addition, a T1-

weighted turbo field echo high resolution image was also acquired [TE/TR = 2.98 ms/6.57 ms; flip angle =

8; 256×256 matrix; in-plane voxel size = 1.0 mm×1.0 mm; slice thickness = 1.0 mm (no gap); 165 slices].

The individual time series data were bandpass-filtered between 0.009 and 0.08 Hz, motion corrected and

co-registered to the structural data, with a subsequent spatial normalization to the MNI template. The

voxel time courses at white-matter and CSF locations are submitted to a Principal Components Analysis

and, together with the motion parameters, we use all components with an eigenvalue strictly greater than

1 as independent variables in a subsequent nuisance regression. Each voxels time series is residualized with

respect to those independent variables, that is, it was regressed against the independent variables, and the

model prediction was subtracted from the time series voxel to form a residual time series for each subject at

each voxel location. The residual time series images are then smoothed with an isotropic Gaussian kernel

(FWHM = 6mm). We apply the Anatomical Automatic Labeling (Tzourio-Mazoyer et al., 2002) atlas to

the adjusted voxel-wise time series and produce time series for 29 Regions of Interest (ROIs) for each subject

by averaging the voxel time series within the ROIs. The 29 ROIs contain 9 regions from the default mode

network (precentral L, precentral R, parietal superior L , occipital superior R, parietal inferior L, parietal

inferior R, temporal inferior L, temporal inferior R, cingulum posterior L), 8 regions from the attentional

network (frontal superior medial L, angular L, angular R, temporal middle L, temporal mid R, thalamus L,

cerebellum crus1 L, cerebellum crus1 R), 5 regions from the executive network (frontal superior medial L,

frontal inferior triangular R, parietal inferior L, parietal inferior R, frontal middle orbital L) and 7 regions

the salience network (cingulum anterior L, frontal mid L, frontal middle R, insula L, insula R, supramarginal

L, supramarginal R ). In total, each ROI time series is made up of 150 time points (5 minutes with TR =

2).
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5. Results

5.1. MVN data

Low dimension. Table 2 displays the TP for the multivariate normal (MVN) data set with dimension p = 5

for four different sample sizes. It is clear that large non-zero entries of the precision matrix are easy to estimate

correctly, especially when the number of time points, T , is large, with less than 1% missed detections across

all the combinations of estimating methods and selection criteria. Only SCAD provides zero estimates for

non-zero entries. All the selection criteria perform similarly in estimating non-zeros. In addition, the newly

proposed DP-glasso algorithm does not show obvious improvements over glasso, AL, SCAD and BG. For low

dimensional data, T = 100 is sufficiently large to estimate large value non-zero entries. Moreover, increasing

the number of time points does not appear to notably improve the results.

T = 100 T = 200 T = 500 T = 1000

TP TP TP TP

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 1 1 1 1

PCM 1 1 1 1

glasso 1 1 1 1 1 1 1 1 1 1 1 1

AL 1 1 1 1 1 1 1 1 1 1 1 1

SCAD 0.999 1 0.993 0.995 0.996 0.999 1 1 1 1 1 1

DP

glasso 1 1 1 1 1 1 1 1 1 1 1 1

AL 1 1 1 1 1 1 1 1 1 1 1 1

SCAD 0.999 0.998 0.998 0.996 0.99625 0.999 1 1 1 1 1 1

BG

H = 50 1 1 1 1 1 1 1 1 1 1 1 1

DP-boo 1 1 1 1 1 1 1 1 1 1 1 1

Huge

ric 1 1 1 1

stars 1 1 1 1

ebic 1 1 1 1

Table 2: The TP for the MVN (p = 5) data for 4 different sample sizes.

Table 3 presents the TN for the MVN data with dimension p = 5 for the four different samples sizes. It

is clear that the zero entries of the true precision matrix Ω are more difficult to estimate than the non-zero

entries, even for low dimensional data with a large number of time points. In general, the results indicate

that increasing T enhances the estimation of zeros correctly. SCAD is the best method for detecting zero

entries, especially when combined with the BIC selection criterion. AL’s and BG’s performance is marginally

inferior to SCAD. More specifically, in combination with AIC and BIC, BG estimates more zeros than AL,

while AL outperforms BG when combined with CV. glasso’s performance is always inferior to AL, BG and

SCAD at capturing zeros. Again, as in the TP case, the DP-glasso algorithm appears to have no obvious
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improvements over glasso, AL, SCAD and BG. Huge’s performance for estimating zeros is always inferior to

glasso. Generally, all estimating methods improve as T increases.

Overall, the BIC selection criterion correctly estimates the largest number of zero entries for the glasso,

BG, AL and SCAD estimating methods (as well as for DP-glasso, DP-BG, DP-AL and DP-SCAD) across

essentially all cases, with the only exception being glasso and AL methods when T = 100. In this case, CV

correctly selects marginally more zeros than BIC. AIC always selects less zero entries than BIC and CV for

estimating methods glasso, AL and SCAD. However, BG behaves differently in combination with AIC, it

correctly selects more zeros than CV when T < 1000, but remains inferior to BIC overall.

In general, the ebic criterion correctly estimates the most zeros among the three selection criteria for Huge.

However, the Huge?ebic combination is only marginally superior to the glasso estimates and considerably

inferior to the SCAD?BIC combination. There is no noticeable improvement in the TN for Huge?ric as the

number of time points increases. Also, the TN decreases when the number of time points increases from

100 to 200 for Huge?ric. stars is the only criterion in Huge that the TN increases with the number of time

points.

To conclude, in terms of TN, SCAD is the best estimating method compared to glasso, AL, BG and

Huge. We regard AL as the second best approach if we take into consideration the computational time.

BG provides competitive estimates to AL, while glasso and Huge are less effective. For selection criteria,

BIC selects the best estimates for glasso, BG, AL and SCAD in most cases. ebic can be considered the

best criterion for Huge. SCAD in combination with any of AIC, BIC or CV criterion outperforms all other

combinations, except BG?BIC performs better than SCAD?AIC when T ≤ 200, which is an indication that

the superiority of a selection criterion can remedy the inefficiency of an estimating method.

High dimensional case. Figure 1 shows the sparsity patterns of the three true precision matrices: the tridi-

agonal matrix with the constant a = 1.7 in (23), the exponential decay matrix and the general matrix.

Figure 2 displays the ASP plots for the sample correlation matrices (CM) and the sample partial correlation

matrices (PCM), which are almost identical across all dimensions, Ω types and number of time points: all

the entries of both matrices are always non-zero, which is a strong reason that they are not effective for

estimating sparse brain networks. Thus we don’t show the ASP plots for CM and PCM hereafter.

Figure 5 contains the ASP plots and Table 4 contains the exact TP and TN for all the combinations

of the estimating methods and the selection criteria applied to the high dimensional MVN (p = 30) data

set generated from the tridiagonal true precision matrix with a = 1.7. The table is consistent with the

conclusions drawn from the ASP plots. Generally, the larger the TP, the darker the ASP plots and the

denser the estimates. Similarly, the larger the TN, the lighter the ASP plots and the sparser the estimates.

All the methods perform similarly in terms of TP but SCAD outperforms the rest in terms of TN. As can be

seen from Figure 5, the SCAD?BIC and SCAD?CV combinations produce the most sparse estimates without
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T = 100 T = 200 T = 500 T = 1000

TN TN TN TN

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 0 0 0 0

PCM 0 0 0 0

glasso 0.213 0.333 0.335 0.143 0.295 0.241 0.193 0.353 0.249 0.24 0.353 0.25

AL 0.499 0.646 0.678 0.52 0.673 0.649 0.687 0.815 0.73 0.843 0.854 0.843

SCAD 0.708 0.9 0.855 0.75 0.91 0.868 0.937 0.982 0.943 0.955 0.976 0.963

DP

glasso 0.213 0.33 0.335 0.143 0.297 0.245 0.193 0.352 0.248 0.242 0.352 0.252

AL 0.499 0.645 0.678 0.52 0.672 0.648 0.687 0.815 0.73 0.842 0.853 0.842

SCAD 0.708 0.902 0.857 0.755 0.912 0.868 0.937 0.982 0.943 0.955 0.977 0.963

BG

H = 50 0.672 0.858 0.558 0.595 0.836 0.496 0.7 0.877 0.695 0.828 0.893 0.83

DP-boo 0.673 0.858 0.56 0.593 0.837 0.5 0.702 0.878 0.697 0.702 0.878 0.697

Huge

ric 0.252 0.17 0.172 0.175

stars 0.243 0.29 0.353 0.374

ebic 0.4 0.338 0.353 0.374

Table 3: The TN for the MVN (p = 5) data for 4 different sample sizes.

losing the true graphical structure. For these combinations, almost 90% of the zero entries are successfully

captured. BG?BIC performs marginally worse than the best SCAD combinations, with a detection rate of

the zeros at 85%. AL?BIC, glasso?BIC, glasso?CV, BG?CV and AL?CV result in denser estimates with

approximately 80% correctly estimated zeros. SCAD is the only estimating method in combination with

AIC that does not lead to overly dense estimates. Furthermore, BG?AIC and glasso?AIC estimates are so

dense, it becomes more difficult to differentiate the true graphical structure from the noise. For non-zero

elements in the precision matrix, all combinations work well in that they seldom estimate the non-zero entries

to be zero. This indicates that non-zero entries of a precision matrix that are greater than 0.19 are large

enough to be sensitively detected by glasso, BG, AL and SCAD, where 0.19 is the smallest entry value of

the tridiagonal matrix with a = 1.7.

DP-glasso performs very similarly to glasso, as does DP-BG to BG, DP-AL to AL, and DP-SCAD to

SCAD, hence offering no improvement. Huge estimates are either excessively dense or excessively sparse.

Huge?ebic shrinks the original entries of the precision matrix to such a degree that all of their estimates

are zeros, thus it completely loses the true model structure. Since 0.425 is the largest non-zero entry of

the tridiagonal matrix, the Huge?ebic ASPs indicate that an entry value of 0.425 may be not large enough

to be successfully detected, hence Huge?ebic may not be adequate for estimating brain networks given

the magnitude of partial correlations in neuroimaging. Contrarily, Huge?stars produces too many non-zero

estimates; it is only able to estimate 11.6% of the true zero entries, which results in extremely dense estimated

matrices. Huge?ric is more capable of detecting non-zero entries than Huge?ebic; it correctly estimates 58.2%
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Figure 1: The true sparsity patterns of the A) tridiagonal matrix with a = 1.7, B) the exponential decay matrix and C) the
general matrix, for the MVN data (p = 30).

Figure 2: The ASP plots for A) the sample correlation matrix and B) the sample partial correlation matrix.

of non-zeros. Huge?ric also has the best TN amongst all method combinations. As can be seen from its

ASP plot, the dark areas in the first row above and below the main diagonal have relatively large non-zero

values (> 0.25). This reflects the fact that the Huge?ric combination has the most potential for correctly

distinguishing between zeros and non-zero entries amongst all three criteria for Huge. However, its capacity

is restricted to relatively large non-zero entries (e.g. > 0.25) with smaller non-zero entries (e.g. less than

0.25) often being missed. Specifically, we find that if an entry is larger than 0.31 it is very likely that this

entry will not be missed by Huge?ric.

Figure 6 are the ASP plots and Table 5 are the exact TP and TN for the (high dimensional) exponential

decay matrix. Surprisingly, Huge?ebic is the best combination that balances having both a large TP and

TN. It also has the closest estimated structure to the true structure but with denser off-diagonal entries. The

next best combinations are SCAD?BIC and SCAD?CV: they provide very sparse estimates (largest TN),

with only entries in the first row next to the main diagonal being estimated to be non-zeros (lowest TP).

However, it doesn’t capture the true exponential structure along the diagonal, its estimates are closer to the

tridiagonal structure. SCAD?CV appears to have marginally more white space. BG?BIC and SCAD?AIC
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Ω tri a = 1.7

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

glasso 0.995 0.958 0.967 0.172 0.783 0.741

AL 0.983 0.950 0.958 0.452 0.819 0.798

SCAD 0.961 0.915 0.925 0.661 0.908 0.897

DP

glasso 0.995 0.958 0.967 0.172 0.783 0.741

AL 0.983 0.950 0.958 0.451 0.819 0.798

SCAD 0.958 0.915 0.925 0.684 0.908 0.897

BG

H = 50 0.989 0.932 0.962 0.267 0.855 0.756

DP-boo 0.965 0.9 0.948 0.497 0.899 0.799

Huge

ric 0.582 0.998

stars 0.997 0.116

ebic 0 1

Table 4: The TPs and TNs for the tridiagonal matrix with a = 1.7 for the MVN (p = 30) data.

also perform adequately; they capture most of the main diagonal structure and the off-diagonal elements

have a lighter shade. AL?AIC captures the true main diagonal structure well but the off-diagonal entries

are too dense. Alternatively, AL?BIC and AL?CV lead to sparse off-diagonal entries but the main diagonal

structure is not clearly defined. The DP-glasso algorithm does not improve the glasso, BG, AL, or the SCAD

methods in general. Huge?ric does not return an estimated precision matrix across all N = 100 repetitions.

Huge?stars performs adequately; it identifies most of the main diagonal structure but suffers from severe

overselection, resulting in extremely dense estimates.

Figure 7 corresponds to the ASP plots and Table 6 are the exact TP and TN for the MVN data with p = 30

generated from the general precision matrix. Most of the non-zero entries of this general matrix are less

than 0.1 with its largest value being 0.6207, and all entries are randomly spread. The best combinations are

SCAD?BIC, SCAD?CV, AL?CV, AL?BIC, BG?BIC, BG?CV and Huge?ebic but for very different reasons.

SCAD?BIC, SCAD?CV provide the sparsest estimates, with around 24% detections of the non-zeros and

88% for the zero entries, providing non-zero estimates only for the relatively large entries. AL?CV AL?BIC,

and BG?CV behave similarly to SCAD?BIC, SCAD?CV but have marginally more detections of the non-

zeros and marginally less detections of the zero entries. BG?BIC and Huge?ebic also perform similarly

but estimate less zeros but they balance the detection of non-zeros and zeros. AIC results in dense graphs,

especially glasso?AIC. This is also the case for Huge?stars. Huge?ric suffers from severe underselection again

with only approximately 2.4% of the non-zeros correctly estimated. Nevertheless, almost all zero entries are

detected. The DP-glasso algorithm has equivalent TP and TN as glasso, with very similar TP and TN also
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Ω exp

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

glasso 0.94 0.671 0.621 0.111 0.487 0.549

AL 0.773 0.515 0.471 0.393 0.727 0.773

SCAD 0.677 0.46 0.415 0.627 0.887 0.926

DP

glasso 0.94 0.669 0.621 0.11 0.488 0.548

AL 0.774 0.518 0.471 0.393 0.722 0.772

SCAD 0.677 0.461 0.417 0.626 0.889 0.925

BG

H = 50 0.72 0.497 0.523 0.472 0.78 0.713

DP-boo 0.721 0.496 0.524 0.472 0.782 0.712

Huge

ric NA NA

stars 0.641 0.497

ebic 0.621 0.781

Table 5: The TPs and TNs for the exponential decay matrix for the MVN (p = 30) data.

for DP-BG, DP-AL and DP-SCAD.

5.2. MVNAR1 data

We now apply the estimation methods in combination with the selection criteria to the multivariate

normal data with autocorrelation. To construct the autocorrelation structure we add an AR(1) model to the

marginal time series from each brain region (or voxel). The results from this section should be compared to

the results from the previous section (MVN data). If we fail to pre-whiten the time series from each region,

we obtain results similar to this section. However, if we pre-whiten our time series, we obtain results similar

to the previous section, and thus a superior performance.

Low dimensional cases. Table 7 contains the TP of the low dimension MVN with an AR1 auto-correlation

structure added to each of its time series (MVNAR1 for short hereafter), for the four different sample sizes.

As expected, compared to the MVN data, there are indeed decreases in the TP for some of the combinations.

The decreases mainly occur to the AL combinations at T = 100, 200, SCAD combinations (especially using

CV) and Huge?ric at all four different sample sizes. However, as T increases, the decreases in the TP become

smaller, or equivalently, increasing T also increases the power to detect the non-zeros for autocorrelated data.

Table 8 contains the TN for the low dimension MVNAR1 data for the four sample sizes. When these

results are compared with the results for the MVN data for all sample sizes (Table 3), it is evident that all of

the estimating methods in combination with selection criteria AIC and BIC have smaller TN. For a number

of combinations, the TN are half the rates of the MVN data. These results indicate the inferiority of the
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Ω gen

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

glasso 0.874 0.443 0.426 0.15 0.661 0.683

AL 0.627 0.342 0.302 0.437 0.775 0.82

SCAD 0.435 0.248 0.233 0.649 0.876 0.893

DP

glasso 0.875 0.443 0.426 0.149 0.662 0.683

AL 0.627 0.341 0.302 0.436 0.775 0.82

SCAD 0.436 0.249 0.233 0.645 0.875 0.893

BG

H = 50 0.566 0.235 0.325 0.494 0.87 0.782

DP-boo 0.566 0.235 0.325 0.494 0.87 0.782

Huge

ric 0.024 0.997

stars 0.807 0.22

ebic 0.274 0.853

Table 6: The TPs and TNs for the general matrix for the MVN (p = 30) data.

estimating methods when autocorrelation is added to the data (or the data has not been pre-whitened). In

general, the TN for the estimating methods in combination with AIC or BIC applied to the MVNAR1 data

increases as the number of time points increases. Overall, the SCAD estimating method appears to perform

the best under the assumption of autocorrelation in the data, or it can be considered the most robust method

to the addition of autocorrelation. Although AL provides good estimates for the MVN data with a relatively

high TN, the results for AL applied to the autocorrelated data has the largest decline in TN, especially for

the AIC selection criterion. However, AL’s TN is still superior to glasso’s TN. Moreover, while both AL

and BG provide similar results in terms of TN for the MVN data when T is large, BG provides far superior

results than AL for the MVNAR1 data when they are combined with AIC and BIC. This may be due to the

fact that BG bootstraps the data several times, thus removing the autocorrelation structure. Therefore, for

the low dimensional case, SCAD has the best performance, followed by BG, AL and glasso.

In terms of the selection criteria for the MVNAR1 data, BIC correctly estimates more true zeros than AIC,

however, CV outperforms both AIC and BIC. Indeed, glasso?CV at all sample sizes, AL?CV at T = 200 and

SCAD?CV at T = 100, 200 have higher TN for the MVNAR1 data than for the MVN data. This indicates

that if the data contains autocorrelation, which violates the independent assumption for all the estimating

methods, CV combinations detect more zero entries in the precision matrices than the MVN data, for some

estimating methods. By cross-validating the data, the autocorrelation structure is diluted, thus in some

cases, providing results very similar to the best combinations for the MVN data. However, interestingly, the

BG?CV combination has lower TN at all number of time points for the MVNAR1 data compared to the
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n = 100 n = 200 n = 500 n = 1000

TP TP TP TP

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 1 1 1 1

PCM 1 1 1 1

glasso 1 1 0.99 1 1 1 1 1 1 1 1 1

AL 0.99 0.988 0.973 0.998 0.998 0.998 1 1 1 1 1 1

SCAD 0.9825 0.963 0.865 0.998 0.995 0.94 1 0.998 0.998 1 0.998 0.996

BG

H = 50 0.9875 0.97 0.978 0.998 0.998 0.998 1 1 1 1 1 1

Huge

ric 0.393 0.419 0.648 0.938

stars 1 1 1 1

ebic 1 1 1 1

Table 7: The TP for the autocorrelated MVNAR1 (p = 5) data for 4 different sample sizes.

MVN data, which indicates that the resampling procedure neutralizes the advantage of CV.

Oddly, the TN for Huge?ric is smaller for the MVN data compared to the MVNAR1 data and Huge?ric’s

TN decreases as the sample size increases. However, Huge?ric’s performance competes with the other best

combinations for the MVNAR1 data set with very high TP and TN. For Huge?ebic and Huge?stars, the TN

is larger for MVN data compared to the MVNAR1 data across all sample sizes, while their TN increases

as the sample size increases as expected. Huge?ric correctly estimates significantly more zero entries than

Huge?ebic and Huge?stars at all sample sizes.

T = 100 T = 200 T = 500 T = 1000

TN TN TN TN

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 0 0 0 0

PCM 0 0 0 0

glasso 0.083 0.14 0.387 0.067 0.125 0.367 0.083 0.17 0.313 0.074 0.173 0.263

AL 0.192 0.288 0.675 0.202 0.333 0.707 0.247 0.388 0.677 0.275 0.427 0.683

SCAD 0.358 0.518 0.858 0.386 0.593 0.902 0.532 0.668 0.846 0.777 0.845 0.885

BG

H = 50 0.314 0.473 0.528 0.335 0.518 0.501 0.369 0.544 0.418 0.339 0.556 0.382

Huge

ric 0.905 0.882 0.830 0.568

stars 0.145 0.17 0.238 0.288

ebic 0.204 0.228 0.243 0.288

Table 8: The TN for the MVNAR1 (p = 5) data for 4 different sample sizes.

High dimensional case. Figures 8, 9 and 10 are the ASP plots and Tables 9, 10 and 11 contain the detailed

TPs and TNs for the high dimensional MVNAR1 data with a tridiagonal, exponential decay and general

structure, respectively. The tables show identical conclusions to their corresponding ASP plots. In this case,

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2017. ; https://doi.org/10.1101/128488doi: bioRxiv preprint 

https://doi.org/10.1101/128488
http://creativecommons.org/licenses/by-nc-nd/4.0/


all the estimating methods in combination with the selection criteria AIC and BIC become significantly

denser and lose the structure compared to the MVN data. While BIC can provide both accurate and sparse

estimates for the high dimensional MVN data, when the time series contain autocorrelation the results

deteriorate dramatically, with the estimated matrices almost as dense as the matrix estimated using the AIC

selection criterion. It is also evident from the ASP plots that even BIC loses some of the true graphical

structure, even for the tridiagonal matrix which contains many large entries in the precision matrix. For

all the AIC/BIC combinations, SCAD is the only estimating method that does not completely lose the

actual graphical model structure. However, only the basic graphical structure can be captured by the SCAD

method. For all the estimating methods the TP for the MVNAR1 data is comparable to the MVN data but

the TN declines significantly.

Ω tri a = 1.7

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

glasso 0.991 0.982 0.62 0.049 0.078 0.792

AL 0.951 0.944 0.551 0.217 0.253 0.857

SCAD 0.87 0.844 0.397 0.483 0.545 0.945

BG

H = 50 0.943 0.936 0.6 0.247 0.269 0.849

Huge

ric NA NA

stars 0.976 0.123

ebic 0 1

Table 9: The TP and TN for the tridiagonal matrix with a = 1.7 for the MVNAR1 (p = 30) data.

Interestingly, we obtain the opposite effect for the CV selection criterion; almost all of the TP decrease

and all of the TN increase for all the three precision matrices, leading to sparser estimates for the MVNAR1

data when compared to the MVN data. Surprisingly, this pattern even occurs for BG. For the tridiagonal

matrix with a = 1.7, the ability of CV to detect non-zeros declines significantly. It not only declines more

than both the AIC and BIC, but it also declines the most among all three precision matrices examples,

which indicates that when the data is not independent, CV is more inclined to overshrink the entries of the

precision matrix, even for relatively large entries. This confirms again that CV estimates are more likely to

result in sparser estimates of the graph. Moreover, across all CV estimates, the SCAD?CV combination is

still the most sparse.

For the Huge estimation method on the MVNAR1 data, the Huge?ebic combination performs similarly

when applied to the MVN data but the estimates remain excessively dense for the exponential decay and

general matrices but extremely sparse for the tridiagonal matrix. No estimated precision matrices from the

package Huge in R was returned from Huge?ric for all the 100 repetitions. This may indicate that adding a
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Ω exp

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

glasso 0.972 0.958 0.631 0.044 0.064 0.633

AL 0.875 0.861 0.44 0.197 0.219 0.837

SCAD stuck

DP

glasso 0.973 0.958 0.631 0.042 0.064 0.633

AL 0.875 0.861 0.44 0.197 0.219 0.837

SCAD stuck

BG

H = 50 0.872 0.859 0.477 0.205 0.224 0.786

DP-boo 0.898 0.879 0.481 0.169 0.196 0.783

Huge

ric NA NA

stars 0.708 0.41

ebic 0.657 0.591

Table 10: The TPs and TNs for the exponential decay matrix for the MVNAR1 (p = 30) data.

autocorrelation structure to the data may disrupt the algorithm for Huge?ric. Finally, Huge?stars applied

to MVNAR1 data performs similarly to the application to the MVN data, it returns very dense estimates.

5.3. fMRI results

In Figures 3 and 4, we show the ASP plots for the resting state fMRI data averaged over the 40 subjects

without and with pre-whitening of the ROI time series, respectively. Elements 1–9, 10–17, 18–22, and 23–29

on the x-axis (and y-axis) of the ASP plot coincide with the 9, 8, 5, and 7 regions from the default mode

network, the attentional network, the executive network and the salience network, respectively. As expected,

the ASP plots of the pre-whitened ROI time series are less dense than the ASP plots of the ROI time series

with autocorrelation. This is especially evident for AL and SCAD in combination with all three selection

criteria, AIC, BIC and CV. As noted in the simulation study, the reason for this is that the TP is higher for

the data with autocorrelation compared to the independent data while the TN declines significantly.

For the ROI time series with autocorrelation (Figure 3), SCAD is the only estimating method that

captures the true block diagonal structure of the network across all three selection criteria, AIC, BIC and

CV. The block diagonal structure is somewhat evident in the AL plots but the remaining estimating methods

fail to capture it. Huge in combination with ebic has a tridiagonal structure with a very sparse off-diagonal

structure while its combination with ric and stars provides a very dense structure. glasso in combination

with CV is less dense than glasso in combination with AIC and BIC. As we outlined in the simulation study,

by cross-validating the data, the autocorrelation structure is diluted, thus in some cases, providing less dense

results. BG provides similar results across all three slection criteria.
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Ω gen

TP TN

AIC BIC CV AIC BIC CV

CM 1 0

PCM 1 0

glasso 0.96 0.931 0.357 0.045 0.08 0.729

AL 0.818 0.776 0.233 0.209 0.255 0.858

SCAD 0.68 0.495 0.139 0.361 0.559 0.951

DP

glasso 0.96 0.931 0.357 0.045 0.081 0.729

AL 0.818 0.777 0.233 0.209 0.253 0.858

SCAD stuck

BG

H = 50 0.812 0.781 0.266 0.205 0.242 0.822

DP-boo 0.817 0.784 0.266 0.2 0.241 0.822

Huge

ric NA NA

stars 0.819 0.201

ebic 0.414 0.668

Table 11: The TPs and TNs for the general matrix for the MVNAR1 (p = 30) data.

For the ROI time series that have been pre-whitened (Figure 4), both SCAD and AL in combination with

AIC, BIC and CV capture the true block diagonal structure of the network. Their results are very similar

across all three slection criteria are very similar. However, the estimates of SCAD are less dense than AL.

As in the simulation study, SCAD in combination with CV produces a sparse ASP plot for the data with

autocorrelation compared to the data that has been pre-whitened. The reason is that the TP decreases and

the TN increases leading to sparser estimates for the data with autocorrelation. CV is inclined to overshrink

large entries of the precision matrix.

6. Discussion

6.1. Computation

In Section 5 we considered the performance of the sparse network estimating methods in combination

with selection criteria in terms of correctly estimated non-zero (TP) and zero (TN) elements of the precision

matrices. Here, we discuss the computational cost of the combinations which is also a very important practical

criterion. To compare the computational time for each combination Mq ? Cc, we fixed the repetition time

(N = 100), the number of time points (T = 100), and the path of the regularization parameters (ρ) for

each combination to be ρ = 0.01 × i for i = 1, . . . , 100. In addition, for the BG and DP-BG estimating

methods, we fixed the resampling number to be H = 50 and the threshold to be πthr = 0.9. Table 12 shows

the computational time (in seconds) for each combination, Mq ?Cc, to complete N = 100 repetitions of each

combination, Mq ? Cc. Specifically, it is the time to estimate the true precision matrix Ω based on N = 100
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glasso

BG

AL

SCAD

Huge

Figure 3: The ASP plots for the resting state fMRI data (without pre-whitening).

different data sets by estimating method Mq and then selecting the best estimate by selection criterion

Cc among all of the 100 estimated precision matrices produced by the 100 regularization parameters. The

glasso algorithm is by far the most computationally efficient, but balancing the computational cost and

the performance of the algorithm, both SCAD and AL in combination with BIC perform best. While BG

performs well, it is very slow computationally given that it has to resample the data many times and estimate

the precision matrix using glasso. The DP algorithms are also considerably less efficient across all estimating

methods.
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Figure 4: The ASP plots for the resting state fMRI data (with pre-whitening).

6.2. BG algorithm parameter choices

Next we consider the optimal choices for the parameters of the BG: the number of bootstrap resamples H

and the threshold probability πthr. Since we obtain TP = 1 across almost all methods for the simulated low

dimensional MVN data set, we concentrate our comparison on the TN of the methods. Table 13 illustrates

the TN of glasso and BG in combination with AIC, BIC and CV, with the threshold πthr being set to values

0.75, 0.8, 0.85, 0.9, 0.95. For each threshold value, πthr, we also consider 4 different repetition values for the

number of resamples, H = 50, 100, 150, 200 with a fixed number of time points T = 200.
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methods normal methods normal

glasso?AIC 3.44 DP-G?AIC 76.8

glasso?BIC 3.44 DP-G?BIC 76.66

glasso?CV 37.48 DP-G?CV 394.09

BG?AIC 170.31 DP-BG?AIC 3973.94

BG?BIC 171.83 DP-BG?BIC 3971.14

BG?CV 2021.85 DP-BG?CV 24129.8

AL?AIC 8.65 DP-AL?AIC 80.84

AL?BIC 9.17 DP-AL?BIC 80.64

AL?CV 80.35 DP-AL?CV 431.15

SCAD?AIC 15.82 DP-SCAD?AIC 82.34

SCAD?BIC 14.57 DP-SCAD?BIC 82.27

SCAD?CV 107.16 DP-SCAD?CV 432.75

Huge?ric 115.64 Huge?ebic 87.77

Huge?stars 1981.21

Table 12: The computational time (in seconds) of each combination applied to the MVN (p = 5) data using an Intel(R)
Core(TM) i3-2350 M 2.30GHz CPU

How H affects BG. From Table 13, it is evident that increasing the number of resamples from 50 to 200

provides no improvement in the estimates of BG. In some cases, having too many resamples adversely affects

the results. We found that the number of resamples, H, should not be greater than the number of time points,

T . Indeed, a larger H leads to markedly more computational time, especially for high dimensional data sets.

In conclusion, increasing H can marginally boost the precision of the estimate, but it also significantly

increases the computational time.

In our simulations, we fixed the number of time points, T = 100, in our high dimensional data sets and

considered T = 100, 200, 500, 1000 in our low dimensional data sets, and set H = 50 for BG. Hence, H is at

most half the number of time points but it still effectively improved the estimates over the glasso estimates

without requiring considerable additional computational time. However, H = 50 may be not large enough

for data sets with a large number of time points. Indeed, for data sets with a large number of time points,

we believe that increasing H will produce better estimates for BG, but we do not think the trade-off in the

accuracy of the estimates is offset by increasing the number of resamples and thus the computational time.

How πthr affects BG. From Table 13, it is evident that πthr has more influence on the BG estimates than

the number of resamples, H. A marginal increase in the value of πthr leads to a major improvement in

the estimates. However, when an excessively large πthr is set, the non-zero estimate frequencies struggle to

become larger than the threshold, thus reducing the TP. Thus many estimated entries are set to zero and

the estimated graphs are very sparse with many false negatives. Another appealing feature of πthr is that

no additional computational time is required. As the best performance (balancing TP and TN) is found

using πthr = 0.9, we consequently choose πthr = 0.9 in all our BG simulations, which effectively improves

the estimates without the risk of providing inordinately sparse results.
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AIC BIC CV

πthr n H glasso BG glasso BG glasso BG

0.75 200

50 0.143 0.145 0.295 0.465 0.242 0.242

100 0.143 0.145 0.295 0.473 0.242 0.242

150 0.143 0.143 0.295 0.442 0.242 0.242

200 0.143 0.143 0.295 0.448 0.242 0.242

0.8 200

50 0.143 0.203 0.295 0.610 0.242 0.252

100 0.143 0.162 0.295 0.605 0.242 0.242

150 0.143 0.158 0.295 0.618 0.242 0.242

200 0.143 0.15 0.295 0.619 0.242 0.242

0.85 200

50 0.143 0.3 0.295 0.714 0.242 0.305

100 0.143 0.319 0.295 0.743 0.242 0.288

150 0.143 0.272 0.295 0.735 0.242 0.265

200 0.143 0.275 0.295 0.748 0.242 0.267

0.9 200

50 0.143 0.595 0.295 0.836 0.242 0.496

100 0.143 0.591 0.295 0.855 0.242 0.486

150 0.143 0.595 0.295 0.848 0.242 0.465

200 0.143 0.599 0.295 0.852 0.242 0.463

0.95 200

50 0.143 0.777 0.295 0.907 0.242 0.738

100 0.143 0.852 0.295 0.932 0.242 0.794

150 0.143 0.814 0.295 0.932 0.242 0.760

200 0.143 0.837 0.295 0.935 0.242 0.781

Table 13: The TN for the MVN (p = 5) data and T = 200 using glasso and BG for H = 50, 100, 150, 200, πthr =
0.75, 0.8, 0.85, 0.9, 0.95 and selection criteria AIC, BIC and CV.

6.3. Accuracy comparisons

We now discuss the precision of the estimating methods for the simulated data sets in Section 4, including

the MVN and the MVNAR1 data. We consider the accuracy and the sparsity levels of the methods which are

not equivalent to each other. For example, an estimate can be very sparse but it may be unnecessarily sparse

in that it can not effectively reveal the true graphical structure, which is regarded as undesirable. Conversely,

an estimate may be more dense than another, but if it depicts the true graphical structure, it can can be

regarded as the better estimate. In addition, sparsity and the accuracy are sometimes equivalent because

non-zero entries are easier to estimate than zero entries. Thus, provided that the majority of non-zeros are

estimated correctly, a sparser graph indicates that more zero entries have been estimated correctly, which

leads to a more accurate estimate that is closer to the true graphical structure.

The results in the simulation study represent the best estimated undirected graph under the conditions

that certain parameters were pre-specified, such as the path of regularization parameters (100 ρs), the number

of bootstrap resamples (H) and the BG threshold (πthr). Accordingly, an estimation method Mq is superior

to another method Ml if the best estimate Ω̂q is superior to the best estimate Ω̂l. We also make the same

conclusions for selection criteria. As our results and conclusions are based on the parameters we have chosen,

it is possible that superior results could be found if some parameters are adjusted. However, the results may

also deteriorate if some undesirable parameters are chosen, such as choosing a narrow range of ρs, using only
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one fixed ρ, using a πthr that is too small, or using an inferior number of resamples, H.

Computational highlights. In general, glasso is a simple and an efficient algorithm for estimating a sparse

precision matrix, Ω. In addition, the popular R package ‘glasso’ in R (or ‘glmnet’ in Matlab) makes it

very convenient to implement. A very attractive feature of glasso is its desirable computational speed. For

example, it has been shown that based on an Intel Xeon 2.80GH processor with 2 to 8 iterations of the

outer loop, p = 400 in a sparse Σ case, it only takes glasso 1.23 s (the CPU time spent in the C program

since glasso was coded in Fortran and linked to an R language function) to estimate the precision matrix

(Friedman et al., 2007b). Another advantage of glasso is that the positive definiteness of each updated Σ is

ensured.

The Bootstrap glasso (BG) method combines an initial estimation method, glasso, with the bootstrap

which provides many desirable properties. We found that the results for BG vary marginally with different

number of resamples, H, but vary considerably with different threshold parameters, πthr. The percentage of

false estimates (estimating non-zeros for zeros or zeros for non-zeros) is controlled or bounded. BG provides

improvements in accuracy over the the glasso method. However, a major disadvantage is that it is more

time consuming than glasso.

The newly developed DP-glasso algorithm is similar to glasso, except its optimization variable is the

precision matrix rather than the covariance matrix. Beginning with any positive definite matrix, DP-glasso

produces a sparse and positive definite precision matrix. However, for glasso and DP-glasso, one member of

the pair (Ω,Σ) is not the inverse of the other. Moreover, Mazumder & Hastie (2012) found that, not only

theoretically but also experimentally, the DP-glasso is computationally more efficient than glasso. However,

our results did not have this conclusion. Overall, Huge’s performance was poor. In general it found excessively

dense or sparse networks. Perhaps this may be due to the dimension of our simulations, given that Huge

was motivated using (very) high dimensional data sets.

Conclusions for the MVN data. In both the low dimension and high dimension cases, when T is of moderate

size, SCAD?BIC or SCAD?CV performs the best. When T is large, we recommend using SCAD?BIC,

SCAD?CV, AL?BIC, AL?CV and BG?BIC. We do not recommend using the glasso and Huge combinations

for the low dimensional settings and the glasso?AIC, Huge?ebic and Huge?stars combinations for the high

dimensional settings. By increasing the dimension of the MVN data, we do not see a deterioration in the

estimates using glasso, AL, BG or SCAD. On the contrary, with increasing dimensions we find remarkably

better detections of the zero entries by glasso?BIC, glasso?CV, along with moderate increases by AL?BIC,

AL?CV and BG?CV. Huge does not perform as well as glasso, AL, BG and SCAD as the dimension increases.

Huge?ric is recommended only if the true precision matrix contains a sizeable number of large non-zero

elements. Otherwise, all the three Huge combinations should not be adopted, due to their incapability of

maintaining the true graphical structures.

35

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2017. ; https://doi.org/10.1101/128488doi: bioRxiv preprint 

https://doi.org/10.1101/128488
http://creativecommons.org/licenses/by-nc-nd/4.0/


If the data set is MVN, combinations such as SCAD?BIC, SCAD?CV or BG?BIC provide accurate

estimates. For example, more than 90% of all the entries of the true precision matrix can be successfully

detected. Note that glasso, AL, BG and SCAD have a superior ability to detect smaller non-zero entries

than Huge. In other words, the estimation precision of glasso, AL, BG and SCAD are better than Huge.

Thus, if the connections within a graph are not very large, glasso, AL, BG and SCAD are better choices

than Huge, with SCAD being the strongest method.

Conclusions for the MVNAR1 data. In general, SCAD is the most stable and best estimating method for

data with an autocorrelation structure. AL performs the worst in correctly estimating zero entries. CV is the

most resistant selection criterion to the autocorrelation structure. Furthermore, all the estimating methods’

ability to correctly detect true entries in the precision matrix increases with the number of time points.

For the low dimensional MVNAR1 data, we recommend SCAD?CV and AL?CV across all sample sizes,

T . SCAD?BIC is also recommended for large T . For the low dimensional MVNAR1 data, the Huge?ric

combination is superior to the other combinations of Huge. Huge?ric’s power for detecting zero entries

increases dramatically, while its ability for estimating non-zeros is greatly weakened, for small sample sizes.

While all of the Huge combinations maintain the true graphical structure, the Huge?ebic and Huge?stars

estimates are more dense than Huge?ric.

For the high dimensional MVNAR1 data, AL?CV, BG?CV and glasso?CV are favored for the matrices

with relatively small entries, since SCAD?CV overshrinks entries which leads to excessively sparse estimates.

If the true entries are relatively large, SCAD?CV is recommended as it achieves more sparsity than the other

combinations. The Huge combinations have a different performance in the high dimensional case compared

to the low dimensional case. Huge?stars and Huge?ebic still produce excessively dense and sparse estimates

as they do for the other high dimensional data sets.

In conclusion, the AR(1) autocorrelation structure remarkably reduces the sparsity of the estimated

graphs. In other words, for both low and high dimensions simulations setting, the results of the MVNAR1

data are much denser than the MVN data. In addition, the ability to correctly estimate both non-zeros and

zeros becomes significantly weaker. The excessively dense graphs estimated by the majority of the estimating

methods for the data with autocorrelation indicates that the autocorrelation structure inherent in the data

causes the estimating methods to perform poorly. If there is autocorrelation in the data and you are not

confident in the pre-whitening procedure, our advice is to use the CV selection criterion. By cross-validating

the data, the autocorrelation structure is diluted, thus in some cases, providing results very similar to the

best combinations for the MVN data.

Overall Conclusions. In general, for all dimensions and types of data sets, our conclusions are as follows:

1. SCAD > AL > BG > glasso > Huge.
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2. The DP-glasso algorithm is not effective in improving the estimates at least for the data sets we

considered. In other words, DP-glasso has very similar results to glasso, and hence DP-BG to BG,

DP-AL to AL and DP-SCAD to SCAD.

3. BIC always chooses sparser estimates than AIC. CV is sparser than AIC most of the time. All of

the selection criteria are able to preserve the true graphical structure with the only difference between

them being the sparsity of the estimated graphs.

4. Typically, SCAD?BIC provides the best estimates for all the simulated data sets. AL?BIC, BG?BIC or

AL?CV are the second best choices most of the time. glasso?AIC and Huge always provide undesirable

estimates.

Limitations. While our simulation study is extensive and considers various settings (different sample sizes,

dimensions, data types and sparsity levels), we acknowledge that we have not covered all possible settings.

We consider two different data types, MVN and MVNAR1 to show the effect of autocorrelation on the

methods. While we could have considered various degrees of autocorrelation inherent in the ROI time series

in our simulation study, we thought by considering MVN and MVN with a large degree of autocorrelation

(phi1=0.8 in the AR(1) model), the results for the other degrees of autocorrelation would lie in the spectrum

between the two extremes. We believe that the simulation study provides a comprehensive review of the

methods that has a clear message.

Finally, as fMRI data is distanced from the underlying neural sources by many confounding stages, a

careful validation is necessary before safely interpreting the results of the network estimation methods (Smith

et al., 2011). Typically, the closer a given data set is with the assumptions of the estimation methods, the

more desirable the results are. Hence, the assumptions of the underlying model should be checked.

7. Conclusion

In this work, we studied various procedures for estimating sparse brain networks. To find the optimal

sparsity level for each network, we considered various selection criteria. We showed using an extensive

simulation study that the best estimating method was SCAD in combination with either BIC and CV.

We also studied the effect of autocorrelation, inherent in neuroimaging data, on the estimating methods

and selection criteria. Overall, we found that the presence of autocorrelation had a negative effect on the

estimates and resulted in denser networks when compared to data that had been pre-whitened. We hope that

our work encourages neuroimaging researchers to think more carefully about the sparse graphical methods

used to estimate their FC networks and the effect autocorrelation has on their estimated FC networks. It is

critical that neuroscientists know the decisions they are making when estimating FC networks. In addition,

although the main focus of this work is on estimating methods that estimate static FC where the time series

data from each brain region is stationary, the methods can be easily incorporated into an algorithm for
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estimating dynamic FC via a sliding window or for estimating FC change points in a similar vein to Cribben

et al. (2013, 2012), which is a recent area of interest in the neuroimaging community. Future work entails

how graph metrics (e.g., small-worldness, modularity etc.) are affected by the estimating procedure used

and the presence of autocorrelation.
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9. Appendix

glasso
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Figure 5: The ASP plots for the tridiagonal matrix with a = 1.7 for the MVN (p = 30) data. The left, middle and right columns
represent the selection criterion AIC, BIC and CV for estimating methods glasso, BG, AL and SCAD, and ebic, ric, and stars
for Huge, respectively.

39

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2017. ; https://doi.org/10.1101/128488doi: bioRxiv preprint 

https://doi.org/10.1101/128488
http://creativecommons.org/licenses/by-nc-nd/4.0/


glasso

BG

AL

SCAD

Huge

Figure 6: The ASP plots for the exponential decay matrix for the MVN (p = 30) data. The left, middle and right columns
represent the selection criterion AIC, BIC and CV for estimating methods glasso, BG, AL and SCAD, and ebic, ric, and stars
for Huge, respectively.
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Figure 7: The ASP plots for the general matrix for the MVN (p = 30) data. The left, middle and right columns represent
the selection criterion AIC, BIC and CV for estimating methods glasso, BG, AL and SCAD, and ebic, ric, and stars for Huge,
respectively.
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Figure 8: The ASP plots for the tridiagonal matrix with a = 1.7 for the MVNAR1 (p = 30) data. The left, middle and right
columns represent the selection criterion AIC, BIC and CV for estimating methods glasso, BG, AL and SCAD, and ebic, ric,
and stars for Huge, respectively.
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Figure 9: The ASP plots for the exponential decay matrix for the MVNAR1 (p = 30) data. The left, middle and right columns
represent the selection criterion AIC, BIC and CV for estimating methods glasso, BG and AL and ebic, ric, and stars for Huge,
respectively.
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Figure 10: The ASP plots for the general matrix for the MVNAR1 (p = 30) data. The left, middle and right columns represent
the selection criterion AIC, BIC and CV for estimating methods glasso, BG, AL and SCAD, and ebic, ric, and stars for Huge,
respectively.
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