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Sparse Graphical Models for Functional
Connectivity Networks:

Best Methods and the Autocorrelation Issue
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Abstract

Sparse graphical models are frequently used to explore both static and dynamic functional brain networks from
neuroimaging data. However, the practical performance of the models has not been studied in detail for brain net-
works. In this work, we have two objectives. First, we compare several sparse graphical model estimation proce-
dures and several selection criteria under various experimental settings, such as different dimensions, sample sizes,
types of data, and sparsity levels of the true model structures. We discuss in detail the superiority and deficiency of
each combination. Second, in the same simulation study, we show the impact of autocorrelation and whitening on
the estimation of functional brain networks. We apply the methods to a resting-state functional magnetic resonance
imaging (fMRI) data set. Our results show that the best sparse graphical model, in terms of detection of true con-
nections and having few false-positive connections, is the smoothly clipped absolute deviation (SCAD) estimating
method in combination with the Bayesian information criterion (BIC) and cross-validation (CV) selection method.
In addition, the presence of autocorrelation in the data adversely affects the estimation of networks but can be
helped by using the CV selection method. These results question the validity of a number of fMRI studies
where inferior graphical model techniques have been used to estimate brain networks.

Keywords: fMRI; functional connectivity; graphical models; network modeling; partial correlation;
undirected graphs

Introduction

To thoroughly understand brain function, research-
ers have begun to map the functional network. In this

study, the emphasis is on studying the interaction of brain re-
gions, as a great deal of neural processing is performed by
an integrated network of several brain regions. This is some-
times referred to as functional integration. In the analysis
of functional magnetic resonance imaging (fMRI), positron
emission tomography (PET), electroencephalography (EEG),
and magnetoencephalography (MEG) time series data, func-
tional connectivity (FC) is the name given to the interaction,
correlation, or dependence between signals observed from
spatially remote brain regions (Friston et al., 1993). FC is a
measure of dependence or ‘‘relatedness’’ but does not com-
ment on how the dependence is mediated. It is sometimes re-
ferred to as undirected association. Estimating the FC between
predefined brain regions or voxels allows for the character-
ization of interregional neural interactions during particular
experimental tasks or merely from spontaneous brain activity

while subjects are being scanned at rest. Using fMRI, re-
searchers have been able to create maps of FC with distinct
spatial distributions of temporally correlated brain regions
called functional networks.

The accurate estimation of FC networks is important as it
has been shown that neurological disorders, such as schizo-
phrenia, depression, anxiety, dementia, and autism, disrupt
the FC or structural properties of the brain (Menon, 2011).
However, it is still unclear whether the disruptions are the
cause or consequence of the disorder. The estimation of FC
and linking its structure to disorders is a good starting point
for treatment of the disorder. Calhoun et al. (2009) investi-
gated the link between FC and schizophrenia with the objec-
tive of finding biomarkers for the disorder. Buckner et al.
(2009) found different static FC network structures in subjects
with Alzheimer’s disease compared with healthy subjects.

In general, to estimate FC, we carry out two major steps:
we calculate the average voxel time series from prespecified
brain regions and estimate the dependence between the time
series. Typically, higher similarities of the time courses
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between any given pair of brain regions indicate a higher
chance of an FC between those nodes. The simplest methods
for estimating FC include the sample correlation matrix
(CM) and the sample partial CM (PCM). However, these
methods are deficient since they are rarely estimated to be
exactly zero even if the data are independent. Alternatively,
the FC or functional network can also be represented by an
undirected graphical model. In this study, the nodes of the
undirected graph represent the functional regions of the
brain, and the edges of the graph represent the connections
between those functional nodes. The estimate of a precision
matrix (or inverse covariance matrix) can be illustrated using
an undirected graph. A nonzero estimated entry of the preci-
sion matrix corresponds to an edge of the undirected graph,
while an absence of an edge between two functional nodes
indicates conditional independence between them. Also,
the thickness of the edge of the undirected graph indicates
the strength of the conditional connection between the corre-
sponding functional nodes. Hence, the elements of a standard-
ized precision matrix are equivalent to partial correlations. A
sparse undirected graph, where some edges are set exactly to
zero, is usually preferred for its simplicity and ease of interpre-
tation. Smith et al. (2011) pointed out that correlation does not
necessarily imply either the causality of a connection or
whether it is direct. However, the partial correlation can cor-
rectly estimate the true network, which captures direct connec-
tions only. Smith et al. (2011) conclude that with respect to
estimating FC networks, partial correlations are within the
‘‘Top 3’’ methods. Moreover, the partial correlation and the
regularized precision matrix are very sensitive in detecting
the network connections on good-quality fMRI data.

Several methods for estimating FC or brain networks
using sparse graphical models have been proposed. The esti-
mation methods are all based on penalized log-likelihood
methods, which apply a regularization parameter to control
the sparsity of the graph. For example, the graphical lasso
or glasso (Friedman et al., 2007b) is a method known for
its computational speed, ease of implementation, and its pro-
duction of a sparse undirected graph. A newly developed al-
gorithm (Mazumder and Hastie, 2012), called the DP-glasso,
differs from glasso in that it solves for the precision matrix O
and not the covariance matrix estimated by glasso. The boot-
strap graphical lasso (BG) (Cribben et al., 2013) estimating
method, inspired by the stability selection (SS) technique
of Meinshausen and Bühlmann (2010), combines both glasso
and the bootstrap resampling procedure (Efron and Tibshir-
ani, 1994) to improve the estimation performance. The esti-
mating methods, the adaptive lasso (AL), and the smoothly
clipped absolute deviation (SCAD) are modifications of
glasso in the sense that the original l1-penalty is replaced, re-
spectively, by the AL penalty (Zou, 2006) and the SCAD
penalty (Fan and Li, 2001). Finally, Zhao et al. (2012) intro-
duced the estimating method, high-dimensional undirected
graph estimation (Huge) and a companion R package huge,
which integrates many functions for estimating graphical
models such as semiparametric transformation, graph esti-
mation, and model selection.

To find the optimal regularization parameter (which con-
trols the sparsity of the graph) and hence the optimal sparse
undirected graph, several selection criteria have been pro-
posed. For example, Akaike (1974) proposed the well-
known Akaike information criterion (AIC) to select the

potential optimal model out of a collection of candidate mod-
els. Schwarz (1978) proposed the Bayesian information cri-
terion (BIC), which also selects the potential optimal
model out of a collection of candidate models but penalizes
more for extra parameters in the model than AIC. It has been
shown that the BIC consistently selects the optimal model.
Fan et al. (2009) introduced a K-fold cross-validation score
to conduct selection of the optimal graphical model. More-
over, the Huge method is accompanied by three selection
criteria: the rotation information criterion (ric) (Lysen,
2009), the extended BIC (ebic) (Foygel and Drton, 2010),
and the stability approach for regularization selection (stars)
(Liu et al. 2010), all of which are provided by the function
huge.select() of the package huge (Zhao et al., 2012).

While some of these methods and selection criteria for es-
timating sparse graphical models have been introduced to the
neuroimaging community (Chouinard et al., 2017; Cribben
and Fiecas, 2016; Cribben et al., 2012; Cummine et al.,
2016; Grosenick et al., 2013; Pircalabelu et al., 2015;
Smith et al., 2011; Westbury et al., 2016), there has never
been a thorough validation and comparison study on their
practical use in general, nor in particular for estimating
FC networks. Specifically, it is not known which combina-
tion of estimating method and selection criterion has opti-
mal performance under different experimental settings.

In this article, we have two main objectives. First, we com-
pare several sparse graph estimation procedures and several
selection criteria mentioned above under various simulation
settings, such as different dimensions or sample sizes, differ-
ent types of data, and different sparsity levels of the true
model structures to find the optimal estimating methods
and selection criteria combinations. We discuss in detail
the superiority and deficiency of each combination. Our eval-
uation is aimed at the performance of each combination,
which is an estimation method with a selection criterion.
We compare their ability to correctly detect the existing net-
work connection, their ability to produce sparse estimates,
and their robustness against the violation of some assump-
tions for the estimation method or the selection criterion.
We find that some estimation methods and selection criteria
are not effective and always provide undesirable results, but
some others can provide satisfactory results, even when some
of the assumptions of the method are not met. Our focus
is on FC networks and we consider sparse estimation meth-
ods because a sparse network structure supports the idea of
economic brain organization (Bullmore and Sporns, 2009).
Second, we discuss the impact of autocorrelation/whitening
on the estimation of FC networks. To this end, we compare
the performance of the sparse graph estimation procedures
in combination with the selection criteria to independent mul-
tivariate normal (MVN) data and to MVN data with an auto-
correlation structure. This comparison allows us to make
conclusions about the effect autocorrelation in our data has
on the estimated FC networks. After our simulation study,
we also apply some of the combinations, which are more
likely to provide superior estimates to some real fMRI data,
to see how they perform in the real world. Our results ques-
tion the validity of a number of fMRI studies where inferior
graphical model techniques have been used to estimate brain
networks.

Although the main focus of this work is on estimating
methods that estimate static FC where the time series data
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from each brain region is stationary, the methods can be eas-
ily incorporated into an algorithm for estimating dynamic FC
via a sliding window or for estimating FC change points in a
similar vein to Cribben et al. (2013, 2012).

The rest of this work is organized as follows. The Materi-
als and Methods and Selection Criteria sections explain the
theoretical background and features of the estimating meth-
ods and selection criteria. The Simulations section is devoted
to the simulations, the fMRI data section describes the resting-
state fMRI data, and the results from these are discussed in
the Results section. In the Discussion section, we discuss the
strengths and weaknesses of each combination of estimating
methods and selection criteria and some of the parameter
choices in the methods. Finally, the Conclusion section provi-
des a set of conclusions based on the results.

Materials and Methods

Notation

In this section, we introduce the required notation. Con-
sider a p dimensional data set (e.g., time series from several
brain regions), X = X1, X2, . . . , Xp

� �½T �
, with mean vector l

and a covariance matrix Sp · p = (rij)1�i, j�p. Let

Xi = (X1i, X2i, . . . , XTi), i = 1, . . . , p,

where T is the sample size. The (i, j) th entry rij of a covari-
ance matrix Sp · p is the covariance between Xi and Xj, where

rij = Cov(Xi, Xj) = E (Xi� li)(Xj� lj)
� �

: (1)

The (i, j) th entry of the standardized covariance matrix is
the correlation coefficient between Xi and Xj. The sample co-
variance matrix Sp · p = (sij)1�i, j�p is an empirical statistic cal-
culated from a sample data set whose (i, j) th entry sij is the
sample covariance between the set of observations of Xi and
Xj and is estimated using

sij =
1

T � 1
+
T

q = 1

(xqi��xi)(xqj��xj), (2)

where T is the sample size of Xi and Xj. The precision matrix
O = (xij)1�i, j�p is the inverse of the covariance matrix S and
the (i, j) th entry of the standardized precision matrix is the
partial correlation between Xi and Xj. The estimate of the pre-
cision matrix is denoted bO.

The precision matrix can also be represented by an undi-
rected graph. Within this framework, graphical models dis-
play the dependency structure of a p dimensional data set X
using a graph G. Graphs are mathematical structures that
can be used to model pairwise relationships between variables.
Let G : = (V , E) denote a p-node undirected simple graph,
where V : = f1, . . . , pg and E : = f(i, j), 1 � i < j � pg
are the collections of vertices and edges, respectively. The ver-
tices (or nodes) represent a collection of random variables and
the edges represent the dependence among these random var-
iables. From a practical point of view, the edge connectivity
in a graphical model is the quantity of interest and importance,
since it offers an intuitive and effective way of reflecting
the underlying network and interplay of the node variables.
In this article, we focus exclusively on undirected graphs
that do not infer the directionality of dependence or FC be-
tween the brain regions. In this study, if the (i, j) th component
of the precision matrix O =S� 1 is zero, then variables Xi and

Xj are said to be conditionally independent, given the other
variables, and no edge is included in the graph between the
variables. In other words, each entry of the standardization
of a precision matrix is a partial correlation coefficient of
the corresponding random variables, quantifying their depen-
dence with the influence from all other variables removed. It
has been shown that the precision matrix or partial correlations
obtain high sensitivity to network connection detection on
good-quality fMRI data (Smith et al., 2011). Thus, the central
theme of this work is the estimation of a sparse (standardized)
precision matrix or a sparse undirected graphical model where
some of the elements of the precision matrix (or edges in the
undirected graphs) are set exactly to zero. A sparse graphical
model is usually preferred in practice for its simplicity and
ease of interpretation.

Finally, we do not distinguish between the terms ‘‘net-
work’’ and ‘‘graph’’ in this article and we will use them
interchangeably throughout.

Estimating methods

In this work, our objective is to find the best method for
precision matrix estimation in the context of FC network es-
timation. We consider eight estimating methods: sample CM
CS, sample PCM PS (these two are simply used as reference
methods), graphical lasso (glasso), DP glasso, BG, graphical
lasso with AL penalties, graphical lasso with SCAD penal-
ties, and Huge.

The glasso, DP glasso, BG, AL, and SCAD methods esti-
mate sparse precision matrices and are based on penalizing
the log-likelihood of an MVN distribution. Specifically, they
add various weighted l1-penalties to the log-likelihood for-
mula. The estimate of the precision matrix, O, is the solution
to the following formula:

max
O

log detO� tr (SO)� +
p

i = 1

+
p

j = 1

pqij
jxijj
� �

, (3)

where tr denotes the trace of a matrix, which is the sum of all
elements on the main diagonal, O is any positive definite ma-
trix, S is the sample covariance matrix, detO is the determi-
nant of the matrix O, xij the elements of the matrix O, and
pqij

( � ) is the penalty function with qij being the correspond-
ing regularization parameter that controls the sparsity level.
We now introduce the estimating methods.

Sample CM

The (i, j) th element, rij, of the sample CM CS = (rij)i, j�p is
the sample correlation between the ith and the jth brain re-
gions Xi and Xj. It measures the direction and strength of
the linear relationship and is estimated using

rij =
+T

q = 1
xqi��xi

� �
xqj��xj

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+T

q = 1
xqi��xi

� �2
+T

q = 1
xqj��xj

� �2
q , (4)

where T is the sample size of the time series from brain re-
gions Xi and Xj.

Sample PCM

The (i, j) th element, cij, of the sample PCM PS is the sam-
ple partial correlation between brain regions, Xi and Xj.
It measures the relationship between the two brain regions
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while controlling for the effect from other brain regions,
hence providing us with a conditional dependence measure
between these two brain regions. The partial correlation is
an important measure of dependence when other brain re-
gions are very likely to have effects on Xi and Xj. In addition,
cij can be estimated from the corresponding elements in the
precision matrix O (Pourahmadi, 2011) using

cij = � xijffiffiffiffiffiffiffiffiffiffiffiffi
xiixjj
p : (5)

Graphical lasso

The lasso (l1-) penalty proposed by Tibshirani (1996) has
been widely used to estimate sparse undirected graphs. The
penalized log-likelihood (2) with the lasso (l1-) penalty on
O is given by

max
O

log detO� tr (SO)� qk O k1, (6)

where k O k 1 denotes the lasso (l1�) penalty on O and is the
sum of the absolute values of the elements of O. The l1-
penalty induces sparsity and regularization on the elements
of the estimated precision matrix. The tuning parameter q
controls the sparsity of the precision matrix with large values
giving rise to a very sparse precision matrix and small values
giving rise to a very ‘‘full’’ precision matrix or graph.

Friedman et al. (2007b) developed an efficient algorithm,
the blockwise coordinate descent approach (Banerjee et al.,
2008), for solving (5). The approach is simple, yet extremely
fast, and is named the graphical lasso (glasso). Some ele-
ments of bO can be shrunk exactly to zero by the glasso algo-
rithm due to the l1-penalty on O: to maximize (5), qk O k1
should be small to make the sum of all absolute values of
O small for a fixed q, hence some entries of O are shrunk
to zero. The glasso algorithm proceeds by estimating a single
row (and column) of O in each iteration by solving a modi-
fied lasso regression.

The R package glasso (Friedman et al., 2007b) can be down-
loaded to run the above glasso algorithm. The sample covariance
matrix, S, and the regularization parameter, q, are two of its in-
puts. We can also specify the maximum number of iterations of
the outer loop (default 10,000), the type of start (starting values
for S and O, with the default being the cold start Sþ qI; an-
other option, the warm start, provides a customized starting
value), and a threshold for convergence (default 1e� 4), in
the package. The glasso package can return bS, bO [the max-
imized value from Eq. (6)], the number of iterations of the
outer loop used by the algorithm, and many other outputs.

We denote the estimated precision matrix and covariance
matrix from glasso as bOG and bSG, respectively.

Bootstrap glasso

The BG (Cribben et al., 2013) is a hybridized algorithm
of glasso and the bootstrap (resampling scheme), which is
inspired by a technique called SS (Meinshausen and Bühl-
mann, 2010). SS combines subsampling with existing high-
dimensional structural selection schemes. Similarly, BG is
not a new variable selection technique, but simply aims to en-
hance existing methods, such as variable selection methods,
graphical modeling methods, or cluster analysis methods. In
particular, BG does not choose one best model along the
whole regularization path, instead, BG bootstraps the original

data set a number of times, then keeps structures or vari-
ables whose occurrences reach a certain threshold level.
More specifically, in graphical model estimation, edges with
high selection probabilities remain in the estimate when
their selection probabilities are greater than a predefined cut-
off 0 < pthr < 1, otherwise they will be removed. The BG
algorithm executes the following four steps for each regulari-
zation parameter qi, where i may be from 1 to 100:

Step 1. Apply glasso to the original data set X and obtain
the glasso estimate bOG.

Step 2. Resample (with replacement) X H times without
changing the sample size, obtaining H resampled data sets,
say XB = (Xh

B)1�h�H .
Step 3. Apply glasso to each resampled data set Xh

B and
obtain new glasso estimates, bOh

G, h = 1, 2, . . . , H.
Step 4. For a predefined threshold, 0 < pthr < 1 (usually

set to a value between 0:75 and 0:9), the BG estimate,bOBG, is obtained by setting

bOBG(i, j) =
bOG(i, j), if F(i, j) � pthr

0, if F(i, j) < pthr

,

�
(7)

where F is the frequency matrix of a nonzero estimate for
each element of the matrix O after resampling H times. For
example, if F(i, j) = 0:9, then 90% of the glasso estimations
on the resampled data are nonzero for O(i, j). Intuitively,bOBG is at least as sparse as bOG, since bOBG only retains
(removes) those nonzero elements of bOG, which are esti-
mated as nonzeros (zeros) with high frequency.

Glasso with AL and SCAD penalties

Two major challenges in estimating sparse precision ma-
trices are (1) constraining O to be positive definite when op-
timizing the penalized log-likelihood and (2) minimizing
the bias arising from the penalties. For example, it has
been shown that glasso, which uses the lasso penalty on
O, is biased (Fan and Li, 2001). To remedy this, the noncon-
cave SCAD penalty and the AL penalty were proposed by
Fan and Li (2001) and Zou (2006), respectively. The AL
penalty and the SCAD penalty have the following three de-
sirable properties of an estimator:

1. sparse estimates
2. consistent model selections
3. unbiased estimates for large coefficients

Adaptive lasso

The AL assigns various weights to each element of O,
where the weights depend on the magnitude of the elements
of a consistent estimate of bO. In this study, larger elements ofbO are given smaller weights. Hence, the AL is a properly
weighted version of glasso. The penalized log-likelihood
with an AL penalty is given by

max
O

log detO� tr (SO)�q +
p

i = 1

+
p

j = 1

wij jbxijj
� �

, (8)

where wij is the adaptive weight function (penalty function)
and x̂ij is an estimate for O(i, j). Fan et al. (2009) defined the
adaptive weights to be
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wij ¼ 1=jexijjc (9)

for tuning parameter c > 0, where exij is the (i, j) th entry for
any consistent estimate eO = (exij)1�i, j�p. AL has good asymp-
totic properties, including the property that as the sample size
becomes large, the estimate bO has the same sparsity pattern
as O (Fan and Li, 2001).

The optimal estimate of O by AL, along a given regulari-
zation path, is denoted by bOAL.

Smoothly clipped absolute deviation

The log-likelihood (2) with the SCAD penalty is given by

max
O

log detO� tr (SO)�+
p

i = 1

+
p

j = 1

SCADq, a jxijj
� �

, (10)

where we use qij = q for convenience. Mathematically,
the SCAD penalty is symmetric and a quadratic spline on
[0,1), whose first-order derivative is

SCAD ¢
q, a(x) = k I jxj� kð Þþ

ak� jxjð Þþ
a� 1ð Þk I jxj > kð Þ

� �
,

(11)

for x � 0, where I is an indicator function, with k > 0 and
a > 2 being two tuning parameters. If a =1, (10) becomes
the lasso penalty.

By applying the local linear approximation approach
(Zou and Li, 2008) to the SCAD penalty, the original non-
concave penalized log-likelihood (2) is transformed into a
series of weighted lasso penalized log-likelihood problems,
where the weights are controlled by the derivative of the
SCAD penalty function. Thus, optimizing the penalized
log-likelihood subject to a positive definite O can be solved
iteratively by the efficient glasso algorithm. Consequently,
the bias of the penalty is well controlled without losing com-
putational efficiency. Note that in the iterative procedure for
SCAD, an estimated zero in bO in one step does not necessar-
ily mean it is zero in the next iteration step, whereas for AL,
zero estimates will remain zero in each iteration step, and
hence, the initial value will always provide denser estimates
for AL. The optimal estimate of O by SCAD, along a given
regularization path, is denoted by bOSCAD.

The AL and SCAD penalties are considered improve-
ments over the glasso as both AL and SCAD can obtain
sparse estimates, consistent model selection, and unbiased
estimates simultaneously, all of which are not achieved
by glasso. However, the simple yet fast glasso algorithm
can still be applied to AL and SCAD penalties to estimate
sparse O, as long as the SCAD penalty is locally linearly
approximated.

DP-glasso

As we have already noted, glasso is a popular and effi-
cient algorithm for estimating precision matrices for brain
networks (Cribben et al., 2012). However, glasso operates
on the dual problem of (5) with the target estimation matrix
being the covariance matrix S, rather than the primal prob-
lem itself (the estimation of O), which results in many un-
desirable outcomes. Consequently, Mazumder and Hastie
(2012) proposed a new method called DP-glasso, which

directly solves the primal problem by block coordinate
descent, whose optimized matrix is the precision matrix O
and not the covariance matrix. Several advantages arise
from this new algorithm, including computational speed.
In addition, an R package called dpglasso allows us to im-
plement this algorithm and compare it with the other exist-
ing methods.

In the glasso package, the input regularization parameter
q can either be a scalar or a matrix, and thus, the AL and
SCAD methods can be implemented easily in it. However,
unlike glasso, the regularization parameter required by
dpglasso package has to be a scalar, which means the AL
and SCAD cannot take advantage of the DP-glasso algorithm
directly. Therefore, to take advantage of the DP-glasso algo-
rithm, we use the DP-glasso estimated precision matrices as
initial values for AL and SCAD, while the glasso() function
is used in the inner steps of AL and SCAD. This leads to an-
other two algorithms denoted as DP-AL and DP-SCAD. For
BG, dpglasso() is applied in every step in the procedure,
resulting in another method named DP-BG.

We denote the precision matrix estimated by DP-glasso
as bODP. Unlike glasso, DP-glasso returns a sparse and positive
definite estimated precision matrix. Similar computational
time is consumed by the glasso and DP-glasso algorithms
for large values of the regularization parameter. For smaller
values of the regularization parameters, DP-glasso is more
efficient.

High-dimensional undirected graph estimation

Huge’s main objective is to estimate high-dimensional
undirected graphs while incorporating the many suggestions
from Friedman et al. (2007a, b, 2010). Huge integrates many
functions, such as data generating, graph estimation, model
selection, estimation visualization, and more. Specifically,
this merges many up-to-date proposals and results, such as
nonparanormal transformation (for non-normal data) and cor-
relation screening approaches for estimating graphs (Fan and
Lv, 2008; Liu et al., 2009), as well as the stars approach for
stability-based graphical model selection (Liu et al., 2010).
In addition, two screening rules are available, lossless screen-
ing (Witten et al., 2011) and lossy screening. Huge is available
to download as an R package, called ‘‘huge.’’

Three graph estimation methods are available in huge():
the Meinshausen–Bühlmann (mb) approximation (Mein-
shausen and Bühlmann, 2010), the graphical lasso (glasso)
algorithm (Banerjee et al., 2008; Friedman et al., 2007b),
and the thresholded correlation graph estimation method
(ct). The speed of the first two methods can be increased fur-
ther by using the lossy screening rule, which preselects
nearby brain regions to the regions of interest (ROIs) using
the thresholded correlation before graph estimation [via the
scr argument in huge()]. The third method is a variation
that is computational efficient and has been widely used in
biomedical research (Langfelder and Horvath, 2008).

Finally, the function huge.npn() applies the nonparanormal
method in Liu et al. (2009) for estimating a semiparametric
Gaussian copula model by truncated normal or normal
score. It transforms X to a Gaussian distribution to help
relax the normality assumption. The optimal precision matrixbO estimated by huge, along the given regularization parameter
path, is denoted by bOHuge.
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Selection Criteria

The penalized log-likelihood methods discussed above
contain a regularization parameter that controls the sparsity
of the precision matrix. Typically, we estimate the preci-
sion matrix along a path of regularization parameters; how-
ever, the optimal value of the regularization parameter is
unknown. Hence, we consider several selection criteria to
choose the optimal regularization parameter among a set of
possible values. The selection criteria AIC, BIC, and fivefold
Cross-Validation are applied in conjunction with the estimat-
ing methods glasso, BG, AL, SCAD, DP-glasso, DP-BG,
DP-AL, and DP-SCAD. For the Huge method, we apply
the following criteria: ric (Lysen, 2009), ebic (Foygel and
Drton, 2010), and stars (Liu et al., 2010), which are embed-
ded in the huge package.

Akaike information criterion

AIC is a model selection criterion based on combining the
likelihood function with a penalty term that guards against
overfitting. Hence, it balances the dual needs of adequate
model fit and model parsimony. The formula for AIC is

AICq = 2k� 2 ln Lð Þ, (12)

where k is the number of nonzero elements in bO and L is
the likelihood function, namely (5) without the penalized
term qk bO k1. The regularization parameter corresponding
to the minimum AIC value gives rise to the best estima-
tion selected by AIC. AIC does not consistently select re-
gression models, that is, if the true model is among the
estimating regression models, the probability of selecting
the true model by AIC does not approach 1 as n!1.
Hereafter, let qa denote the optimal regularization parame-
ter selected by AIC.

Bayesian information criterion

BIC is also a model selection criterion based on combining
the likelihood function but penalizes more for extra parame-
ters in the model than AIC. The formula for BIC is

BICq = k � ln Tð Þ� 2 ln Lð Þ, (13)

where T is the sample size, k is the number of nonzero elements
in bO, and L is the likelihood function (Schwarz, 1978). The q
value that gives rise to the minimum BIC value is optimal.
An underlying assumption of BIC is that the observations
are independent and identically distributed (Schwarz, 1978).
If the observations are not i.i.d, then the effective sample
size is not T and the formula must be adjusted. BIC consistently
selects regression models unlike AIC (Nishii, 1984). For linear
regression models, the model chosen by BIC is either the same
or a simpler version than that chosen by AIC, due to the heavier
penalty (Shao, 1993). Hereafter, let qb denote the optimal reg-
ularization parameter selected by BIC.

K-fold cross-validation

The K-fold cross-validation score (Fan et al. 2009) is given by

CV qð Þ= +
K

k = 1

nk log jbO� k qð Þj � +
i2Tk

x(i)
� �T bO� k qð Þx(i)

 !
(14)

where nk is the size of kth fold Tk and bO� k qð Þ is the estimate
of the precision matrix based on the sample

SK
k = 1 Tk

� �
nTk

(the training data). The q that provides the minimum cross-
validation (CV) value is the best regularization parameter.
In our work, we use fivefold CV to choose the optimal reg-
ularization parameter. As the sample size grows larger, mini-
mizing the AIC is equivalent to minimizing the CV for any
model, not just linear models (Stone, 1974). Generally, CV
does not consistently select models (Shao, 1993). CV per-
forms poorly with high-dimensional data, sometimes dramat-
ically (Meinshausen and Bühlmann, 2010). Hereafter, let qc

denote the optimal regularization parameter selected by CV.

Selection criteria for Huge

Huge provides three selection criteria for choosing the best
estimate of the precision matrix: ric, ebic, and stars. ric is
a newly developed and very efficient selection criterion. It
directly chooses the best regularization parameter q based
on random rotations rather than finding the best q over the
whole regularization path using time-consuming techniques
such as cross-validation or subsampling. More specifically, the
brain regions are randomly rotated several times so that the
minimum q, which generates all zeros estimated by using
the rotated data, will be selected. Thus far, there has been
no theoretical proof for consistent selection by ric. In addition,
ric suffers from overselection and frequently from underselec-
tion. Hence, Zhao et al. (2012) stated that if false-negative lev-
els (few missing selections) are expected, then the number of
rotations for ric should be increased, or the selection criterion
stars should be applied. ric is available for all three estimation
methods provided by the R package, huge.

We denote ebic as BIC c, where 0 � c � 1 is called the ebic
parameter. The original BIC is equivalent to BIC0 (i.e., c = 0).
c = 0:5 is the default setting in huge.select(). It has been shown
in Chen and Chen (2008) that BIC1 is consistent as long as the
dimension p (or the number of brain regions) does not grow
exponentially with the sample size. In huge, we can only
use ebic selection criterion for the glasso method.

stars selects the optimal precision matrix in a similar man-
ner to the subsampling procedure discussed above. Hence,
it is not computationally efficient. Under certain conditions,
stars is shown to be partially consistent but suffers from the
problem of overselection in estimating Gaussian graphical
models while its performance also depends on the regulariza-
tion parameters used. Moreover, stars can be used for all three
estimation methods in huge, which are the Meinshausen–
Bühlmann approximation (mb), glasso (glasso), and thresh-
olded correlation estimation (ct).

Simulations

The estimating methods and selection criteria described
above have many theoretical results. However, there has not
been an extensive simulation study to compare the estimating
methods in combination with the selection criteria for exploring
brain networks. In this work, we compare their performance us-
ing data generated with different dimensions, sample sizes, and
underlying distributions. As neuroimaging data (fMRI, EEG,
MEG, ECoG) are inherently autocorrelated, we also consider
this data structure. In what follows, we describe the setup of
our data and introduce evaluation criteria for comparing the
combination of estimating methods and selection criteria.
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Simulation setup

Let Mq denote the qth estimating method, q = 1, . . . , 11,
and let CAIC, CBIC, CCV, Cric, Cebic, and Cstars denote the selec-
tion criteria AIC, BIC, CV, ric, ebic, and stars, respectively.
Also, let bOCc

Mq
(qi) denote the precision matrix estimated by

method Mq using selection criteria Cc when the regularization
parameter is qi. In addition, let q(Mq ? Cc) denote the best reg-
ularization parameter along the path q1, . . . , q100 for estima-
tion method Mq and selection criteria Cc. The resulting
estimated precision matrix bO(Mq ? Cc) is the best estimate
using estimating method Mq and selection criterion Cc. The
setup of our simulation study is as follows:

Step 1. Simulate a data set X (which is of dimension
T · p, where T and p represent the number of time points
and brain regions/voxels, respectively).

Step 2. Fix 100 equally spaced regularization parameters
q 2 [0:01, 1] with qi = i · 0:01, i = 1, . . . , 100.

Step 3. Apply each estimating method Mq to X and ob-
tain 100 estimated precision matricesbOMq

(q1), bOMq
(q2), . . . , bOMq

(q100)

corresponding to the 100 regularization parameters
q1, . . . , q100.

Step 4. Choose the estimate from bOMq
(q1), bOMq

(q2), . . . ,bOMq
(q100) that minimizes the selection criteria formula.

Step 5. For each method Mq and selection criterion Cc, re-
peat the above procedure L times. This provides L best esti-
mated precision matrices for each combination of estimating
method and selection criterion.

Step 6. Use the L estimated precision matrices to evaluate
the performance of the estimating methods in combination
with the selection criteria.

Evaluation standards

The estimated precision matrices are compared to the true
precision matrices using three evaluation standards. The first
two standards, called True Positive (TP) and True Negative
(TN), are numeric and measure the estimation accuracy.
The third standard, named the Average Sparsity Pattern
(ASP) plot, is a plot that provides a visual depiction of the
sparsity levels of the estimated matrices.

Our definition of TP is

TP =
+L

l = 1
+p

i, j = 1, i6¼j
Otp

l (i, j)
� 	� 	

=L

N2

, (15)

where L is the number of simulations and N2 is the number
of off-diagonal nonzero entries in the true precision matrix.
The TP matrix Otp

l for the lth simulation is defined by

Otp
l (i, j) =� 1, if O(i, j) 6¼ 0, bOl(i, j) 6¼ 0,

0, otherwise,

�
, (16)

where bOl is the estimated precision matrix in the lth repeti-
tion. If both the true and estimated entry in the (i, j) th posi-
tion in the precision matrix are nonzeros, the (i, j) th entry of
the TP matrix, Otp

l , is equal to 1, otherwise it is 0. Thus Otp
l

records whether each nonzero true entry is successfully

detected in each simulation. TP is a number between 0 and 1
and reflects the average proportion each combination estimates
nonzero entries correctly. The larger the TP, the superior the
combination method. TP = 1 indicates that all the nonzero
entries in O are estimated as nonzeros across all simulations.
TP = 0 indicates that none of the true nonzero entries in O
was estimated correctly, that is, all of the nonzero entries
were estimated as zeros across all simulations.

The second standard TN is defined similarly by

TN =
+L

l = 1
+p

i, j = 1, i 6¼j
Otn

l (i, j)
� 	� 	

=L

N1

, (17)

where N1 is the number of off-diagonal zero entries in the
true precision matrix, O. The TN matrix Otn

l for the lth sim-
ulation is defined by

Otn
l (i, j) =� 1, if O(i, j) = bOl(i, j) = 0,

0, otherwise ,

�
: (18)

Similar to the TP matrix, the TN matrix marks down
whether each zero entry in O is successfully estimated to
be zero. TN tells us how often zero entries are estimated
as zeros. TN is also a numeric value between 0 and 1, with
higher values indicating a superior combination method.
Typically, larger TN means sparser estimated graphs. We
did not consider the F-1 score as the TP and TN matrices pro-
vide more detail on the estimation of nonzeros and zeros.

The ASP plot is obtained by plotting the ASP matrix,
ASPp · p. For each i, j = 1, . . . , p, ASP(i, j) is defined by

ASP(i, j) =
+L

l = 1
ASPl(i, j)

L
, (19)

with the matrix ASP l(i, j) of the lth simulation defined by

ASPl(i, j) =� 1, if bOl(i, j) 6¼ 0

0, otherwise ,

�
, l = 1, . . . , L: (20)

Hence, the matrix ASPp · p shows the percentage of times
each element of the precision matrix is estimated as nonzero
across all simulations. The larger the ASP value, the darker
the corresponding rectangular area in the plot. Hence, the
more dense the estimated precision matrices, the darker the
ASP plot. This is an intuitive and clear way to show the over-
all sparsity levels of the precision estimates.

Simulation settings

BG parameters. For BG, we fix the number of resamples
to 50 and the threshold value to pthr = 0:9.

AL parameters. For AL, we use c = 0:5 in the penalty
(7) as there are no obvious differences among estimates
using different c values (Fan et al., 2009). As the AL requires
consistent estimates, we can use the precision matrix bOG esti-
mated by the glasso for the initial value of its penalty. That is,
we set eO = bOG and exij = bOG(i, j), 1 � i, j � p in the AL pen-
alty (7). Fan et al. (2009) noted that we can use the inverse
sample covariance matrix S� 1 for eO in low-dimensional
cases (p < T) and bOG in the moderate-dimensional cases
(p � T). However, S� 1 might be inconsistent if p increases
at the same rate as T. The requirement for a consistent initial
value is one of the drawbacks of AL. The R package glasso is
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convenient for implementing the AL algorithm. We first cal-
culate the AL penalty matrix for each q and then apply this
penalty matrix using the rho argument in the package glasso
to conduct the estimations by AL.

SCAD parameters. To minimize the Bayes risk, Fan and
Li (2001) recommended using a = 3:7 in (10), which we used
in our simulations. The precision matrix bOG estimated by the
glasso is used as the initial value for SCAD. The precision
matrix estimation by SCAD can also take the advantage of
the package glasso. Similar to AL, we first calculate the
SCAD penalty matrix for each q, then set this as the rho ar-
gument in the package glasso. We then choose the best q that
minimizes a selection criterion and use this optimal q to iter-
atively obtain a new estimated precision matrix. We stop the
iterative procedure when the difference between the sum of
the absolute values between the two estimated precision ma-
trices is less than a threshold, which we set to be 1e� 04.

Huge parameters. In the function huge(), we choose
glasso for the method argument and set scr = FALSE, so
the lossy screening rule is not applied to preselect the neigh-
borhood before graph estimation. After running the function
huge(), an object with class S3 is returned and contains val-
ues, including icov, a list of p · p estimated precision matri-
ces corresponding to each regularization parameter, and
loglik, a vector with the same length as q, which contains
the log-likelihood values along the regularization path. To
implement huge.select(), the S3 class object from huge() is
the first required argument. Accordingly, huge.select()
picks the best estimate along the whole regularization path.
All three Huge criteria (ric, ebic, stars) provided by huge.se-
lect() are applied in our simulation study.

Data settings. The number of simulations, L, is 100. Spe-
cifically, we apply each combination of estimating method
and selection criterion to the same 100 different data sets
for various data types and then observe how the combina-
tions perform on average over the 100 simulations. Hence,
the differences between the results only arise from the esti-
mating methods and selection criteria themselves.

Regularization path settings. In all our simulations, 100
equally spaced regularization parameters q are used, namely
q 2 [0:01, 1] and qi = i · 0:01, i = 1, . . . , 100. A possible
drawback of setting q 2 [0:01, 1] is that there may exist
some smaller qs that could provide superior estimates
than our best estimate. Another drawback is that our reg-
ularization parameters are discrete. Hence, it may be the
case that some other qs, which are not a multiple of 0.01
(e.g., 0.233), could produce better estimates. Neverthe-
less, we believe our regularization parameter choices
and working procedures are convincing and the estimating
methods are comparable. All the methods are supplied
with the same path of qs and they work under the same
level of parameter precision and carry out the same oper-
ations. In addition, our working regularization parameters
are relatively dense and have a wide range.

Simulations. We use simulations to examine the per-
formance of the penalized log-likelihood approaches to es-
timate the precision matrix. In each example, we first

generate a true precision matrix O, which will be fixed
for the whole example. Next, we generate a data set of T
independent and identically distributed random vectors
distributed as N(0,O�1). We name this the MVN data.
As voxels and brain regions from fMRI data are inherently
autocorrelated, we also simulate MVN data that follow an
AR(1) model: Yt = /1Yt� 1þ et, where et~N(0, 1). We call
the MVN data where every brain region (or column of
X) has an AR1 autocorrelation structure, MVNAR1. The
two data types allow us to look into how the autocor-
relation structure affects the network estimation. In par-
ticular, they allow us to evaluate the deterioration
in performance of the estimating methods if prewhitening
of the time series data from each brain region is not carried
out. In the simulation study, we consider two extremes,
completely independent data and strongly autocorrelated
data, and hence, we set the autocorrelation parameter
equal to 0.8 (/1 = 0:8).

Low-dimensional simulations. As some brain imaging
studies consider only a small number of brain regions in
their network analysis, we include simulations that are of
small dimension. For these cases, we choose p = 5 (five
brain regions). The two data types are studied using four dif-
ferent sample sizes (T = 100, 200, 500, 1000) to observe how
the results vary for different sample sizes. The true precision
matrix O we study is of general form and is given by

1 0 0 0:6 0:5
0 1 0:4 0 0

0 0:4 1 0 0:6
0:6 0 0 1 0

0:5 0 0:6 0 1

0BBBB@
1CCCCA:

Moderate-dimensional simulations. As many neuroimag-
ing studies consider only a moderate number of brain regions
in their analysis, our moderate-dimensional case examines
p = 30 brain regions. In this case, we study three different
true precision matrices—the tridiagonal matrix, the expo-
nential decay matrix, and the general matrix—and evaluate
how each combination performs. We now detail the schemes
for generating these matrices.

For the tridiagonal case, where dependence between the
brain regions is high close to the main diagonal and zero ev-
erywhere else, the (i, j) th element of O is defined to be

xij = exp � a si� sj



 

� �
, (21)

where a is a positive constant and si, sj are random values
such that s1< s2 < � � � < sp and

si� si� 1 ~i:i:d:
Unif (0:5, 1), i = 2, . . . , p: (22)

Obviously, a larger a value produces smaller off-diagonal
elements in O. In this study, we use the tridiagonal matrix
with a = 1:7, which results in nonzero entries in the precision
matrix close to 0:3.

For the exponential decay case, where dependence between
the brain regions decays the further from the main diagonal, no
element in the precision matrix O is exactly zero, but it contains
a number of entries close to 0. The (i, j) th element of the true
exponential decay precision matrix is defined to be
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xij = exp (� 2ji� jj), (23)

which can be extremely small when ji� jj is large. Since
none of the entries of the true exponential decay matrix O
is exactly zero, we set a threshold of 1e� 03 when calculat-
ing the TP and TN. Otherwise, the TN will have value NA
and the TP will be dramatically small, which will obscure
the results. However, the true O without thresholding is
still used to generate the original data set. Also, in the SP
plots, a threshold is applied to the true precision matrix, O.

For the general matrix case, we generate an upper triangular
matrix first. Each element in the upper triangular matrix is gener-
ated uniformly over [� 5, � 1] [ [1, 5]. Then, the smallest 50%
of the entries are set to zero and the remaining nonzeros in the
matrix are randomly dispersed. By symmetrizing this upper tri-
angular matrix, we get a matrix with main diagonals equal to 0.
We set the (i, i) th entry in this symmetric matrix to be a multiple
of the sum of the absolute values of the ith row elements. In this
study, we choose a multiple of 2 to ensure the resulting O is pos-
itive definite. Table 1 provides a summary of the entries of the
three precision matrices generated as above. Figure 1 shows
the sparsity patterns of the three true precision matrices.

fMRI Data

We applied the combination of estimating methods and se-
lection criteria to a resting-state fMRI data set, as described
in Habeck et al. (2012). Participants (n = 45) were instructed
to rest in the scanner for 9.5 min, with the instruction to keep

their eyes open for the duration of the scan. Functional im-
ages were acquired using a 3.0 Tesla magnetic resonance
scanner (Philips) using a field echo echo-planar imaging se-
quence (TE/TR = 20 ms/2000 ms; flip angle = 72; 112 · 112
matrix; in-plane voxel size = 2.0 · 2.0 mm; slice thickness =
3.0 mm [no gap]; 37 transverse slices per volume). In addition,
a T1-weighted turbo field echo high-resolution image was
also acquired (TE/TR = 2.98 ms/6.57 ms; flip angle = 8;
256 · 256 matrix; in-plane voxel size = 1.0 · 1.0 mm; slice
thickness = 1.0 mm [no gap]; 165 slices). The individual
time series data were bandpass filtered between 0.009 and
0.08 Hz, motion corrected, and coregistered to the structural
data, with a subsequent spatial normalization to the Mon-
treal Neurological Institute (MNI) template. The voxel
time courses at white matter and cerebrospinal fluid
(CSF) locations were submitted to a principal components
analysis and, together with the motion parameters, we used
all components with an eigenvalue strictly >1 as independent
variables in a subsequent nuisance regression. Each voxel’s
time series was residualized with respect to those independent
variables, that is, it was regressed against the independent var-
iables, and the model prediction was subtracted from the time
series voxel to form a residual time series for each subject at
each voxel location. The residual time series images were then
smoothed with an isotropic Gaussian kernel (full width at half
maximum [FWHM] = 6 mm). We applied the Anatomical
Automatic Labeling (Tzourio-Mazoyer et al., 2002) atlas to
the adjusted voxelwise time series and produced time series
for 31 ROIs for each subject by averaging the voxel time series
within the ROIs. The 31 ROIs contained 8 regions from the at-
tentional network (frontal superior medial L, angular L, angu-
lar R, temporal middle L, temporal mid R, thalamus L,
cerebellum crus1 L, cerebellum crus1 R), 2 regions from the
visual network (temporal superior L, temporal superior R), 3
regions from the sensorimotor network (postcentral L, post-
central R, supplementary motor area R), 7 regions from the sa-
lience network (cingulum anterior L, frontal mid L, frontal
middle R, insula L, insula R, supramarginal L, supramarginal
R), 9 regions from the default mode network (precentral L, pre-
central R, parietal superior L, occipital superior R, parietal infe-
rior L, parietal inferior R, temporal inferior L, temporal inferior
R, cingulum posterior L), and 2 regions from the auditory net-
work (calcarine L, calcarine R). We chose these networks be-
cause an increasing number of pathologic conditions appear

Table 1. Summary of the Entries of the Tridiagonal

Matrix with a = 1:7, the Exponential Decay Matrix

and the Absolute Values of the General Matrix

for the Moderate-Dimensional Multivariate

Normal Data and the Multivariate Normal Data

with an AR1 Autocorrelation Structure

Smallest Largest
0.1
to 1

0.01
to 0.1

Less
than
0.01

Tridiagonal 0.191 (except 0) 0.425 0.067 0 0.933
Exponential

decay
6.470�e� 26 0.59 0.067 0.064 0.869

General 0.019 0.621 0.057 0.443 0.499

FIG. 1. The true sparsity patterns of (A) the tridiagonal matrix with a = 1:7, (B) the exponential decay matrix, and (C) the
general matrix.
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to be reflected in the FC between these particular brain regions
and we wanted the number of ROIs in the fMRI data to match
the simulation settings. In total, each ROI time series is made up
of 285 time points (9.5 min with TR = 2).

Results

MVN data

Low-dimensional cases. Table 2 displays the TP for the
MVN data set with dimension p = 5 for four different sample
sizes. It is clear that large nonzero entries of the precision
matrix are easy to estimate correctly, especially when the
number of time points, T, is large, with less than 1% missed
detections across all the combinations of estimating methods
and selection criteria. Only SCAD provides zero estimates
for true nonzero entries. All the selection criteria perform
similarly in estimating nonzeros. In addition, the newly pro-
posed DP-glasso algorithm does not show obvious improve-
ments over glasso, AL, SCAD, and BG. For low-dimensional
data, T = 100 is sufficiently large to estimate large-value non-
zero entries. Moreover, increasing the number of time points
does not appear to notably improve the results.

Table 3 presents the TN for the MVN data with dimension
p = 5 for the four different sample sizes. It is clear that the
zero entries of the true precision matrix O are more diffi-
cult to estimate than the nonzero entries, even for low-
dimensional data with a large number of time points. In
general, the results indicate that increasing T enhances the
correct estimation of zeros. SCAD is the best method for
detecting zero entries, especially when combined with the se-
lection criterion, BIC. AL’s and BG’s performance are mar-
ginally inferior to SCAD. More specifically, in combination
with AIC and BIC, BG estimates more zeros than AL, while
AL outperforms BG when combined with CV. Glasso’s per-
formance is always inferior to AL, BG, and SCAD at captur-

ing zeros. Again, as in the TP case, the DP-glasso algorithm
appears to have no obvious improvements over glasso, AL,
SCAD, and BG. Generally, all estimating methods improve
as T increases.

Overall, the BIC selection criterion correctly estimates the
largest number of zero entries for the glasso, BG, AL, and
SCAD estimating methods (as well as for DP-glasso, DP-
BG, DP-AL, and DP-SCAD) across essentially all cases,
with the only exception being glasso and AL methods
when T = 100. In this case, CV correctly selects marginally
more zeros than BIC. AIC always selects less zero entries
than BIC and CV for estimating methods, glasso, AL, and
SCAD. However, BG behaves differently in combination
with AIC, it correctly selects more zeros than CV when
T < 1000, but remains inferior to BIC overall.

In general, the ebic criterion correctly estimates the most
zeros among the three selection criteria for Huge. However,
the Huge ? ebic combination is only marginally superior
to the glasso estimates and considerably inferior to the
SCAD ?BIC combination. There is no noticeable improve-
ment in the TN for Huge ? ric as the number of time points
increases. Also, the TN decreases when the number of time
points increases from 100 to 200 for Huge ? ric. stars is the
only criterion in Huge that the TN increases with the number
of time points.

To conclude, in terms of TN, SCAD is the best estimating
method compared with glasso, AL, BG, and Huge. We
regard AL as the second best approach if we take into consid-
eration the computational time. BG provides competitive es-
timates to AL, while glasso and Huge are less effective. For
selection criteria, BIC selects the best estimates for glasso,
BG, AL, and SCAD in most cases. ebic can be considered
the best criterion for Huge. SCAD in combination with any
of the AIC, BIC, or CV criterion outperforms all other
combinations, except that BG?BIC performs better than

Table 2. The True Positive for the Multivariate Normal (p = 5) Data for Four Different Sample Sizes

T = 100 T = 200 T = 500 T = 500

TP TP TP TP

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 1 1 1 1
PCM 1 1 1 1
Glasso 1 1 1 1 1 1 1 1 1 1 1 1
AL 1 1 1 1 1 1 1 1 1 1 1 1
SCAD 0.999 1 0.993 0.995 0.996 0.999 1 1 1 1 1 1

DP
Glasso 1 1 1 1 1 1 1 1 1 1 1 1
AL 1 1 1 1 1 1 1 1 1 1 1 1
SCAD 0.999 0.998 0.998 0.996 0.99625 0.999 1 1 1 1 1 1

BG
H = 50 1 1 1 1 1 1 1 1 1 1 1 1
DP-BG 1 1 1 1 1 1 1 1 1 1 1 1

Huge
Ric 1 1 1 1
Stars 1 1 1 1
Ebic 1 1 1 1

AIC, Akaike information criterion; AL, adaptive lasso; BG, bootstrap graphical lasso; BIC, Bayesian information criterion; CM, corre-
lation matrix; CV, cross-validation; ebic, extended BIC; huge, high-dimensional undirected graph estimation; PCM, partial CM; ric, rotation
information criterion; SCAD, smoothly clipped absolute deviation; stars, stability approach for regularization selection; TP, true positive.
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SCAD?AIC when T � 200, which is an indication that the
superiority of a selection criterion can remedy the ineffi-
ciency of an estimating method.

Moderate-dimensional case. Figure 1 shows the spar-
sity patterns of the three true precision matrices: the tri-
diagonal matrix with the constant a = 1:7 in (23), the
exponential decay matrix, and the general matrix. Figure 2
displays the ASP plots for the sample CMs and the sam-
ple PCMs, which are almost identical across all dimen-
sions, O types, and number of time points: all the entries
of both matrices are always nonzero, which is a strong rea-
son that they are not effective for estimating sparse brain
networks. Thus, we do not show the ASP plots for CM
and PCM hereafter.

Figure 3 contains the ASP plots and Table 4 contains the
exact TP and TN for all the combinations of the estimating
methods and the selection criteria applied to the moderate-
dimensional MVN (p = 30) data set generated from the tri-
diagonal true precision matrix with a = 1:7. The table is
consistent with the conclusions drawn from the ASP plots.

Generally, the larger the TP, the darker the ASP plots and
the denser the estimates. Similarly, the larger the TN, the
lighter the ASP plots and the sparser the estimates. All the
methods perform similarly in terms of TP, but SCAD outper-
forms the rest in terms of TN. As can be seen from Figure 3,
the SCAD?BIC and SCAD?CV combinations produce the
sparsest estimates without losing the true graphical struc-
ture. For these combinations, almost 90% of the zero entries
are successfully captured. BG?BIC performs marginally
worse than the best SCAD combinations, with a detection
rate of the zeros at 85%. AL?BIC, glasso?BIC, glasso?CV,
BG?CV, and AL?CV result in denser estimates with *80%
correctly estimated zeros. SCAD is the only estimating
method in combination with AIC that does not lead to overly
dense estimates. Furthermore, BG?AIC and glasso?AIC esti-
mates are so dense; it becomes more difficult to differenti-
ate the true graphical structure from the noise. For nonzero
elements in the precision matrix, all combinations work well
in that they seldom estimate the nonzero entries to be zero.
This indicates that nonzero entries of a precision matrix that
are greater than 0:19 are large enough to be sensitively

FIG. 2. The ASP plots for (A) the
sample correlation matrix and (B) the
sample partial correlation matrix. ASP,
Average Sparsity Pattern.

Table 3. The True Negative for the Multivariate Normal (p = 5) Data for Four Different Sample Sizes

T¼100 T¼200 T¼500 T¼1000

TN TN TN TN

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 0 0 0 0
PCM 0 0 0 0
Glasso 0.213 0.333 0.335 0.143 0.295 0.241 0.193 0.353 0.249 0.24 0.353 0.25
AL 0.499 0.646 0.678 0.52 0.673 0.649 0.687 0.815 0.73 0.843 0.854 0.843
SCAD 0.708 0.9 0.855 0.75 0.91 0.868 0.937 0.982 0.943 0.955 0.976 0.963

DP
Glasso 0.213 0.33 0.335 0.143 0.297 0.245 0.193 0.352 0.248 0.242 0.352 0.252
AL 0.499 0.645 0.678 0.52 0.672 0.648 0.687 0.815 0.73 0.842 0.853 0.842
SCAD 0.708 0.902 0.857 0.755 0.912 0.868 0.937 0.982 0.943 0.955 0.977 0.963

BG
H = 50 0.672 0.858 0.558 0.595 0.836 0.496 0.7 0.877 0.695 0.828 0.893 0.83
DP-BG 0.673 0.858 0.56 0.593 0.837 0.5 0.702 0.878 0.697 0.702 0.878 0.697

Huge
Ric 0.252 0.17 0.172 0.175
Stars 0.243 0.29 0.353 0.374
Ebic 0.4 0.338 0.353 0.374

TN, true negative.
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FIG. 3. The ASP plots for the tridiagonal matrix with a = 1:7 for the MVN (p = 30) data. The left, middle, and right columns
represent the selection criteria AIC, BIC, and CV for estimating methods glasso, BG, AL, and SCAD, and ebic, ric, and stars
for Huge, respectively. SCAD, smoothly clipped absolute deviation.
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detected by glasso, BG, AL, and SCAD, where 0:19 is the
smallest entry value of the tridiagonal matrix with a = 1:7.

DP-glasso performs very similarly to glasso, as does DP-
BG to BG, DP-AL to AL, and DP-SCAD to SCAD, hence
offering no improvement. Huge estimates are either exces-
sively dense or excessively sparse. Huge?ebic shrinks the
original entries of the precision matrix to such a degree
that all of their estimates are zeros, and thus, it completely
loses the true model structure. Since 0.425 is the largest non-
zero entry of the tridiagonal matrix, the Huge?ebic ASPs in-
dicate that an entry value of 0.425 may be not large enough to
be successfully detected, and hence, Huge?ebic may not be
adequate for estimating brain networks given the magnitude
of partial correlations in neuroimaging. Contrarily, Huge?-
stars produces too many nonzero estimates; it is only able
to estimate 11:6% of the true zero entries, which results in
extremely dense estimated matrices. Huge?ric is more capa-
ble of detecting nonzero entries than Huge?ebic; it correctly
estimates 58:2% of nonzeros. Huge?ric also has the best TN
among all method combinations. As can be seen from its
ASP plot, the dark areas in the first row above and below
the main diagonal have relatively large nonzero values
(> 0:25). This reflects the fact that the Huge?ric combina-
tion has the most potential for correctly distinguishing be-
tween zeros and nonzero entries among all three criteria
for Huge. However, its capacity is restricted to relatively
large nonzero entries (e.g., > 0.25) with smaller nonzero
entries (e.g., less than 0.25) often being missed. Specifically,
we find that if an entry is larger than 0.31, it is very likely that
this entry will not be missed by Huge?ric.

Figure 4 shows the ASP plots and Table 5 the exact TP and
TN for the (moderate dimensional) exponential decay ma-
trix. Surprisingly, Huge?ebic is the best combination that
balances having both a large TP and TN. It also has the clos-
est estimated structure to the true structure but with denser
off-diagonal entries. The next best combinations are

SCAD?BIC and SCAD?CV: they provide very sparse esti-
mates (largest TN), with only entries in the first row next
to the main diagonal being estimated to be nonzeros (lowest
TP). However, it does not capture the true exponential decay
structure along the diagonal; its estimates are closer to the tri-
diagonal structure. SCAD?CV appears to have marginally
more white space. BG?BIC and SCAD?AIC also perform
adequately; they capture most of the main diagonal structure
and the off-diagonal elements have a lighter shade. AL?AIC
captures the true main diagonal structure well, but the off-
diagonal entries are too dense. Alternatively, AL?BIC and
AL?CV lead to sparse off-diagonal entries, but the main di-
agonal structure is not clearly defined. The DP-glasso algo-
rithm does not improve the glasso, BG, AL, or the SCAD
methods in general. Huge?ric does not return an estimated
precision matrix across all L = 100 repetitions. Huge?stars
performs adequately; it identifies most of the main diagonal
structure but suffers from severe overselection, resulting in
extremely dense estimates.

Figure 5 corresponds to the ASP plots, and Table 6 the
exact TP and TN for the MVN data with p = 30 generated
from the general precision matrix. Most of the nonzero
entries of this general matrix are less than 0.1 with its largest
value being 0:621, and all entries are randomly spread. The
best combinations are SCAD?BIC, SCAD?CV, AL?CV,
AL?BIC, BG?BIC, BG?CV, and Huge?ebic but for very
different reasons. SCAD?BIC and SCAD?CV provide the
sparsest estimates, with around 24% detections of the nonze-
ros and 88% for the zero entries, providing nonzero estima-
tes only for the relatively large entries. AL?CV, AL?BIC,
and BG?CV behave similarly to SCAD?BIC and SCAD?CV
but have marginally more detections of the nonzeros and
marginally less detections of the zero entries. BG?BIC and
Huge?ebic also perform similarly but estimate less zeros
but they balance the detection of nonzeros and zeros.
AIC results in dense graphs, especially glasso?AIC. This
is also the case for Huge?stars. Huge?ric suffers from se-
vere underselection again with only *2:4% of the nonzeros
correctly estimated. Nevertheless, almost all zero entries
are detected. The DP-glasso algorithm has equivalent TP
and TN as glasso, with very similar TP and TN also for
DP-BG, DP-AL, and DP-SCAD.

MVNAR1 data

We now apply the estimation methods in combination
with the selection criteria to the MVN data with autocorrela-
tion. To construct the autocorrelation structure, we add an
AR1 model to the marginal time series from each brain re-
gion (or voxel). The results from this section should be com-
pared to the results from the previous section (MVN data). If
we fail to prewhiten the time series from each region, we ob-
tain results similar to this section. However, if we prewhiten
our time series, we obtain results similar to the previous sec-
tion and thus a superior performance.

Low-dimensional cases. Table 7 contains the TP for the
low-dimensional MVN with an AR1 autocorrelation struc-
ture added to each of its time series (MVNAR1 for short
hereafter), for the four different sample sizes. As expected,
compared to the MVN data, there are indeed decreases in
the TP for some of the combinations. The decreases mainly

Table 4. The True Positive and True Negative

for the Tridiagonal Matrix with a = 1:7
for the Multivariate Normal (p = 30) Data

U

Tri a = 1:7

TP TN

AIC BIC CV AIC BIC CV

CM 1 0
PCM 1 0
Glasso 0.995 0.958 0.967 0.172 0.783 0.741
AL 0.983 0.950 0.958 0.452 0.819 0.798
SCAD 0.961 0.915 0.925 0.661 0.908 0.897

DP
Glasso 0.995 0.958 0.967 0.172 0.783 0.741
AL 0.983 0.950 0.958 0.451 0.819 0.798
SCAD 0.958 0.915 0.925 0.684 0.908 0.897

BG
H = 50 0.989 0.932 0.962 0.267 0.855 0.756
DP-BG 0.965 0.9 0.948 0.497 0.899 0.799

Huge
Ric 0.582 0.998
Stars 0.997 0.116
Ebic 0 1
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FIG. 4. The ASP plots for the exponential decay matrix for the MVN (p = 30) data. The left, middle, and right columns
represent the selection criteria AIC, BIC, and CV for estimating methods glasso, BG, AL, and SCAD, and ebic, ric, and
stars for Huge, respectively.
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occur to the AL combinations at T = 100, 200, SCAD com-
binations (especially using CV), and Huge?ric at all four dif-
ferent sample sizes. However, as T increases, the decreases
in the TP become smaller, or equivalently, increasing T
also increases the power to detect the nonzeros for autocor-
related data.

Table 8 contains the TN for the low-dimensional
MVNAR1 data for the four sample sizes. When these re-
sults are compared with the results for the MVN data for
all sample sizes (Table 3), it is evident that all of the esti-
mating methods in combination with selection criteria
AIC and BIC have smaller TN. For a number of combina-
tions, the TN is half the rate of the MVN data. These results
indicate the inferiority of the estimating methods when auto-
correlation is added to the data (or the data have not been pre-
whitened). In general, the TN for the estimating methods in
combination with AIC or BIC applied to the MVNAR1 data
increases as the number of time points increases. Overall, the
SCAD estimating method appears to perform the best under
the assumption of autocorrelation in the data, or it can be con-
sidered the most robust method to the addition of autocorrela-
tion. Although AL provides good estimates for the MVN data
with a relatively high TN, the results for AL applied to the auto-
correlated data have the largest decline in TN, especially for the
AIC selection criterion. However, AL’s TN is still superior to
glasso’s TN. Moreover, while both AL and BG provide similar
results in terms of TN for the MVN data when T is large, BG
provides far superior results than AL for the MVNAR1 data
when they are combined with AIC and BIC. This may be due
to the fact that BG bootstraps the data several times, thus re-
moving the autocorrelation structure. Therefore, for the low-
dimensional case, SCAD has the best performance, followed
by BG, AL, and glasso.

In terms of selection criteria for the MVNAR1 data, BIC
correctly estimates more true zeros than AIC, however, CV

outperforms both AIC and BIC. Indeed, glasso?CV at all sam-
ple sizes, AL?CV at T = 200, and SCAD?CV at T = 100, 200
have higher TN for the MVNAR1 data than for the MVN data.
This indicates that if the data contain autocorrelation, which
violates the independent assumption for all the estimating
methods, CV combinations detect more zero entries in the pre-
cision matrices than the MVN data, for some estimating meth-
ods. By cross-validating the data, the autocorrelation structure
is diluted, thus in some cases providing results very similar
to the best combinations for the MVN data. However, interest-
ingly, the BG?CV combination has lower TN at all number of
time points for the MVNAR1 data compared with the MVN
data, indicating that the resampling procedure neutralizes
the advantage of CV.

Oddly, the TN for Huge?ric is smaller for the MVN
data compared with the MVNAR1 data and Huge?ric TN de-
creases as the sample size increases. However, Huge?ric’s per-
formance competes with the other best combinations for the
MVNAR1 data set with very high TP and TN. For Huge?ebic
and Huge?stars, the TN is larger for MVN data compared with
the MVNAR1 data across all sample sizes, while their TN in-
creases as the sample size increases as expected. Huge?ric cor-
rectly estimates significantly more zero entries than Huge?ebic
and Huge?stars at all sample sizes.

Moderate-dimensional case. Figures 6, 7, and 8 are the
ASP plots and Tables 9, 10, and 11 contain the detailed
TPs and TNs for the moderate-dimensional MVNAR1 data
with a tridiagonal, exponential decay and general structure,
respectively. The tables show identical conclusions to their
corresponding ASP plots. In this case, all the estimating
methods in combination with the selection criteria AIC and
BIC become significantly denser and lose the structure com-
pared to the MVN data. While BIC can provide both accurate
and sparse estimates for the moderate-dimensional MVN data,
when the time series contain autocorrelation the results deteri-
orate dramatically, with the estimated matrices almost as dense
as the matrix estimated using the AIC selection criterion. It is
also evident from the ASP plots that even BIC loses some of
the true graphical structure, even for the tridiagonal matrix,
which contains many large entries in the precision matrix.
For all the AIC/BIC combinations, SCAD is the only estimat-
ing method that does not completely lose the actual graphical
model structure. However, only the basic graphical structure
can be captured by the SCAD method. For all the estimating
methods, the TP for the MVNAR1 data is comparable with
the MVN data, but the TN declines significantly.

Interestingly, we obtain the opposite effect for the CV se-
lection criterion; almost all of the TPs decrease and all of the
TNs increase for all the three precision matrices, leading
to sparser estimates for the MVNAR1 data when compared
with the MVN data. Surprisingly, this pattern even occurs
for BG. For the tridiagonal matrix with a = 1:7, the ability
of CV to detect nonzeros declines significantly. It not only
declines more than both the AIC and BIC, but it also de-
clines the most among all three precision matrix examples,
which indicates that when the data are not independent,
CV is more inclined to overshrink the entries of the precision
matrix, even for relatively large entries. This confirms again
that CV estimates are more likely to result in sparser esti-
mates of the graph. Moreover, across all CV estimates, the
SCAD?CV combination is still the sparsest.

Table 5. The True Positive and True Negative

for the Exponential Decay Matrix

for the Multivariate Normal (p = 30) Data

U

Exp

TP TN

AIC BIC CV AIC BIC CV

CM 1 0
PCM 1 0
Glasso 0.94 0.671 0.621 0.111 0.487 0.549
AL 0.773 0.515 0.471 0.393 0.727 0.773
SCAD 0.677 0.46 0.415 0.627 0.887 0.926

DP
Glasso 0.94 0.669 0.621 0.11 0.488 0.548
AL 0.774 0.518 0.471 0.393 0.722 0.772
SCAD 0.677 0.461 0.417 0.626 0.889 0.925

BG
H = 50 0.72 0.497 0.523 0.472 0.78 0.713
DP-BG 0.721 0.496 0.524 0.472 0.782 0.712

Huge
Ric NA NA
Stars 0.641 0.497
Ebic 0.621 0.781
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FIG. 5. The ASP plots for the general matrix for the MVN (p = 30) data. The left, middle, and right columns represent the
selection criteria AIC, BIC, and CV for estimating methods glasso, BG, AL, and SCAD, and ebic, ric, and stars for Huge,
respectively.
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The decline in performance of BG?CV applied to MVNAR1
data compared with MVN data in the low-dimensional cases is
more significant for large sample sizes than small sample sizes.
For the moderate-dimensional cases, BG?CV for the MVNAR1
data set outperforms the MVN data set. Thus, with sufficiently
large sample sizes, the advantages of BG?CV cannot remedy
the disadvantage of violating the independent data assump-
tion. In other words, when the ratio of sample size to dimen-
sion is large enough, the advantage of having normal data is
superior to the dilution effect of BG?CV. However, when the
ratio is moderate, BG?CV is an effective way to remedy the
violation of the independent data assumption.

For the Huge estimation method on the MVNAR1 data,
the Huge?ebic combination performs similarly when applied
to the MVN data, but the estimates remain excessively dense
for the exponential decay and general matrices but extremely

sparse for the tridiagonal matrix. No estimated precision
matrices from the package Huge in R were returned from
Huge?ric for all the 100 repetitions. This may indicate that
adding an autocorrelation structure to the data may disrupt
the algorithm for Huge?ric. Finally, Huge?stars applied
to MVNAR1 data performs similarly to the application to
the MVN data, it returns very dense estimates.

fMRI results

In Figures 9 and 10, we show that the ASP plots for the
resting-state fMRI data averaged over the 45 subjects without
and with prewhitening of the ROI time series, respectively.
Elements 1–8, 9–10, 11–13, 14–20, 21–29, and 30–31 on
the x-axis (and y-axis) of the ASP plot coincide with the 8,
2, 3, 7, 9, and 2 regions from the attentional network, the vi-
sual network, the sensorimotor network, the salience network,
the default mode network, and the auditory network, respec-
tively. Remarkably, many of the combinations capture the
block diagonal structure of the networks, indicating that
most of the connectivity is intra-network with some inter-
network connectivity as well. For example, there is high inter-
network connectivity between the attentional and salience,
attentional and default mode, visual and default mode, visual
and sensorimotor, visual and salience, and auditory and de-
fault mode networks. The only combinations that fail to cap-
ture this structure are glasso?AIC, glasso?BIC, Huge?ebic,
and Huge?stars for the data without prewhitening and glasso-
AIC, glasso?BIC, glasso?CV, Huge?ric, and Huge?stars for
the data with prewhitening.

The ASP plots of the prewhitened ROI time series and the
ROI time series with autocorrelation are quite similar in
terms of structure and density apart from the Huge and glasso
combinations. This is unexpected given that in the simulation
study, we found that the TP is higher for the data with auto-
correlation compared with the independent data, while the
TN declines significantly. For the ROI time series with auto-
correlation (Fig. 9), BG, AL, and SCAD are the estimating
methods that clearly capture the block diagonal structure of
the network across all three selection criteria, AIC, BIC,
and CV. However, the estimates of SCAD are slightly less
dense than BG and AL. It is clear that the combination

Table 6. The True Positive and True Negative

for the General Matrix

for the Multivariate Normal (p = 30) Data

U

Gen

TP TN

AIC BIC CV AIC BIC CV

CM 1 0
PCM 1 0
Glasso 0.874 0.443 0.426 0.15 0.661 0.683
AL 0.627 0.342 0.302 0.437 0.775 0.82
SCAD 0.435 0.248 0.233 0.649 0.876 0.893

DP
Glasso 0.875 0.443 0.426 0.149 0.662 0.683
AL 0.627 0.341 0.302 0.436 0.775 0.82
SCAD 0.436 0.249 0.233 0.645 0.875 0.893

BG
H = 50 0.566 0.235 0.325 0.494 0.87 0.782
DP-BG 0.566 0.235 0.325 0.494 0.87 0.782

Huge
Ric 0.024 0.997
Stars 0.807 0.22
Ebic 0.274 0.853

Table 7. The True Positive for the Multivariate Normal Data with AR1 Structure (p = 5)
Data for Four Different Sample Sizes

U

T ¼ 100 T ¼ 200 T ¼ 500 T ¼ 1000

TP TP TP TP

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 1 1 1 1
PCM 1 1 1 1
Glasso 1 1 0.99 1 1 1 1 1 1 1 1 1
AL 0.99 0.988 0.973 0.998 0.998 0.998 1 1 1 1 1 1
SCAD 0.9825 0.963 0.865 0.998 0.995 0.94 1 0.998 0.998 1 0.998 0.996

BG
H = 50 0.9875 0.97 0.978 0.998 0.998 0.998 1 1 1 1 1 1

Huge
Ric 0.393 0.419 0.648 0.938
Stars 1 1 1 1
Ebic 1 1 1 1

GRAPHICAL MODELS FOR FUNCTIONAL CONNECTIVITY 17

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
A

L
B

E
R

T
A

 L
IB

R
A

R
Y

 f
ro

m
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

15
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 
.CC-BY-NC-ND 4.0 International licensea

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 
The copyright holder for this preprint (which was notthis version posted March 15, 2018. ; https://doi.org/10.1101/128488doi: bioRxiv preprint 

https://doi.org/10.1101/128488
http://creativecommons.org/licenses/by-nc-nd/4.0/


SCAD?CV is best overall as it depicts a clear block diagonal
structure that is sparse. The reason for its superior perfor-
mance is that for CV, the TP decreases and the TN increases
leading to sparser estimates for the data with autocorrelation
as CV dilutes the autocorrelation structure. This is consistent
with our simulation study. Huge?ebic also captures the block
diagonal structure, while its combination with ric and stars
produces very dense structures. glasso?AIC and glasso?BIC
produce excessively dense results, which almost lose the
basic network structure of the data set.

For the ROI time series that have been prewhitened
(Fig. 10), BG, AL, and SCAD in combination with AIC,
BIC, and CV capture the block diagonal structure of the net-
work. The SCAD?BIC combination produces the best results
for this data set, producing the sparsest estimate with a clear
block diagonal structure. Again, this is consistent with our
simulation results. Huge?ric somewhat captures the block di-
agonal structure, while its combination with ebic and stars
produces very dense structures. On the contrary, Huge?ric
and Huge?stars and all three glasso combinations fail to detect
the block diagonal structure of the data set, leading to exces-
sively dense estimates.

Discussion

Computation

In the Results section, we considered the performance of
the sparse network estimating methods in combination with
selection criteria in terms of correctly estimated nonzero
(TP) and zero (TN) elements of the precision matrices. We
now discuss the computational cost of the combinations,
which is also a very important practical criterion. To compare
the computational time for each combination Mq ? Cc, we
fixed the repetition time (L = 100), the number of time points
9T = 100), the dimension (p = 5), the data type (MVN), and
the path of the regularization parameters (q) for each combi-
nation to be q = 0:01 · i for i = 1, . . . , 100. In addition, for the
BG and DP-BG estimating methods, we fixed the resampling
number to be H = 50 and the threshold to be pthr = 0:9.
Table 12 shows the computational time (in sec) for each com-
bination, Mq ? Cc, to complete L = 100 repetitions of each

combination, Mq ? Cc. Specifically, it is the time to estimate
the true precision matrix O based on N = 100 different data
sets by estimating method Mq and then selecting the best esti-
mate by selection criterion Cc among all of the 100 estimated
precision matrices produced by the 100 regularization param-
eters. The glasso algorithm is by far the most computationally
efficient estimating method, but combining computational
cost and the performance of the estimating method, both
SCAD and AL in combination with BIC perform best. While
BG performs well, it is very slow computationally given that
it has to resample the data many times and estimate the preci-
sion matrix using glasso. The DP algorithms are also consider-
ably less efficient across all estimating methods.

BG algorithm parameter choices

Next, we consider the optimal choices for the parameters of
the BG: the number of bootstrap resamples H and the thresh-
old probability pthr. Since we obtain TP = 1 across almost all
methods for the simulated low-dimensional MVN data set,
we concentrate our comparison on the TN of the methods.
Table 13 illustrates the TN of glasso and BG in combination
with AIC, BIC, and CV, with the threshold pthr being set to
values 0:75, 0:8, 0:85, 0:9, 0:95. For each threshold value,
pthr, we also consider four different repetition values for the
number of resamples, H = 50, 100, 150, 200 with a fixed num-
ber of time points T = 200.

How H affects BG. From Table 13, it is evident that in-
creasing the number of resamples from 50 to 200 provides
no improvement in the estimates of BG. In some cases, having
too many resamples adversely affects the results. We found that
the number of resamples, H, should not be greater than the
number of time points, T. Indeed, a larger H leads to markedly
more computational time, especially for moderate-dimensional
data sets. In conclusion, increasing H can marginally boost
the precision of the estimate, but it also significantly in-
creases the computational time.

In our simulations, we fixed the number of time points,
T = 100, in our moderate-dimensional data sets and consid-
ered T = 100, 200, 500, 1000 in our low-dimensional data
sets, and set H = 50 for BG. Hence, H is at most half the

Table 8. The True Negative for the Multivariate Normal Data with AR1 Structure (p = 5) Data

for Four Different Sample Sizes

U

T ¼ 100 T ¼ 200 T ¼ 500 T ¼ 1000

TN TN TN TN

AIC BIC CV AIC BIC CV AIC BIC CV AIC BIC CV

CM 0 0 0 0
PCM 0 0 0 0
Glasso 0.083 0.14 0.387 0.067 0.125 0.367 0.083 0.17 0.313 0.074 0.173 0.263
AL 0.192 0.288 0.675 0.202 0.333 0.707 0.247 0.388 0.677 0.275 0.427 0.683
SCAD 0.358 0.518 0.858 0.386 0.593 0.902 0.532 0.668 0.846 0.777 0.845 0.885

BG
H = 50 0.314 0.473 0.528 0.335 0.518 0.501 0.369 0.544 0.418 0.339 0.556 0.382

Huge
Ric 0.905 0.882 0.830 0.568
Stars 0.145 0.17 0.238 0.288
Ebic 0.204 0.228 0.243 0.288
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FIG. 6. The ASP plots for the tridiagonal matrix with a = 1:7 for the MVN data with AR1 structure (p = 30) data. The left,
middle, and right columns represent the selection criteria AIC, BIC, and CV for estimating methods glasso, BG, AL, and
SCAD, and ebic, ric, and stars for Huge, respectively.
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number of time points, but it still effectively improved the es-
timates over the glasso estimates, however, it required addi-
tional computational time. In addition, H = 50 may be not
large enough for data sets with a large number of time points.
Indeed, for data sets with a large number of time points, we be-
lieve that increasing H will produce better estimates for BG,
but we do not think the trade-off in the accuracy of the estima-
tes is offset by increasing the number of resamples and thus the
computational time.

How pthr affects BG. From Table 13, it is evident that pthr

has more influence on the BG estimates than the number of

resamples, H. A marginal increase in the value of pthr leads
to a major improvement in the estimates. However, when an
excessively large pthr is set, the nonzero estimate frequencies
struggle to become larger than the threshold, thus reducing the
TP. Thus, many estimated entries are set to zero and the esti-
mated graphs are very sparse with many false negatives.
Another appealing feature of pthr is that no additional compu-
tational time is required. As the best performance (balancing
TP and TN) is found using pthr = 0:9, we consequently choose
pthr = 0:9 in all our BG simulations, which effectively im-
proves the estimates without the risk of providing inordinately
sparse results.

FIG. 7. The ASP plots for the exponential decay matrix for the MVN data with AR1 structure (p = 30) data. The left, mid-
dle, and right columns represent the selection criteria AIC, BIC, and CV for estimating methods glasso, BG, and AL and ebic,
ric, and stars for Huge, respectively.
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FIG. 8. The ASP plots for the general matrix for the MVN data with AR1 structure (p = 30) data. The left, middle, and right
columns represent the selection criteria AIC, BIC, and CV for estimating methods glasso, BG, AL, and SCAD, and ebic, ric,
and stars for Huge, respectively.
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Accuracy comparisons

We now discuss the precision of the estimating methods
for the data sets in the Simulations section, including the
MVN and MVNAR1 data. We consider the accuracy and
the sparsity levels of the methods, which are not equivalent to
each other. For example, an estimate can be very sparse, but
it may be unnecessarily sparse in that it cannot effectively re-
veal the true graphical structure, which is regarded as undesir-
able. Conversely, an estimate may be denser than another, but if
it depicts the true graphical structure, it can be regarded as the
better estimate. In addition, sparsity and the accuracy are some-
times equivalent because nonzero entries are easier to estimate

than zero entries. Thus, provided that the majority of nonzeros
are estimated correctly, a sparser graph indicates that more zero
entries have been estimated correctly, which leads to a more ac-
curate estimate that is closer to the true graphical structure.

The results in the simulation study represent the best esti-
mated undirected graph under the conditions that certain pa-
rameters were prespecified, such as the path of regularization
parameters (100 qs), the number of bootstrap resamples (H),
and the BG threshold (pthr). Accordingly, an estimation method
Mq is superior to another method Ml if the best estimate Ôq is
superior to the best estimate Ôl. We also make the same con-
clusions for selection criteria. As our results and conclusions
are based on the parameters we have chosen, it is possible
that superior results could be found if some parameters are ad-
justed. However, the results may also deteriorate if some unde-
sirable parameters are chosen, such as choosing a narrow range
of qs, using only one fixed q, using a pthr that is too small, or
using an inferior number of resamples, H.

Computational highlights. In general, glasso is a simple
and an efficient algorithm for estimating a sparse preci-
sion matrix, O. In addition, the popular R package glasso
(or ‘‘glmnet’’ in MATLAB) makes it very convenient to im-
plement. A very attractive feature of glasso is its desirable
computational speed. For example, it has been shown that
based on an Intel Xeon 2.80GH processor with 2 to 8 itera-
tions of the outer loop, p = 400 in a sparse S case, it only
takes glasso 1.23 sec (the CPU time spent in the C program
since glasso was coded in Fortran and linked to an R lan-
guage function) to estimate the precision matrix (Friedman
et al., 2007a). Another advantage of glasso is that the positive
definiteness of each updated S is ensured.

The BG method combines an initial estimation method,
glasso, with the bootstrap, which provides many desirable
properties. We found that the results for BG vary marginally
with a different number of resamples, H, but vary considerably

Table 9. The True Positive and True Negative

for the Tridiagonal Matrix with a = 1:7
for the Multivariate Normal Data

with an AR1 Structure (p = 30)

U

Tri a = 1:7

TP TN

AIC BIC CV AIC BIC CV

CM 1 0
PCM 1 0
Glasso 0.991 0.982 0.62 0.049 0.078 0.792
AL 0.951 0.944 0.551 0.217 0.253 0.857
SCAD 0.87 0.844 0.397 0.483 0.545 0.945

BG
H = 50 0.943 0.936 0.6 0.247 0.269 0.849

Huge
Ric NA NA
Stars 0.976 0.123
Ebic 0 1

Table 10. The True Positive and True Negative

for the Exponential Decay Matrix for

the Multivariate Normal Data

with an AR1 Structure (p = 30)

U

Exp

TP TN

AIC BIC CV AIC BIC CV

CM 1 0
PCM 1 0
Glasso 0.972 0.958 0.631 0.044 0.064 0.633
AL 0.875 0.861 0.44 0.197 0.219 0.837
SCAD Stuck

DP
Glasso 0.973 0.958 0.631 0.042 0.064 0.633
AL 0.875 0.861 0.44 0.197 0.219 0.837
SCAD Stuck

BG
H = 50 0.872 0.859 0.477 0.205 0.224 0.786
DP-BG 0.898 0.879 0.481 0.169 0.196 0.783

Huge
Ric NA NA
Stars 0.708 0.41
Ebic 0.657 0.591

Table 11. The True Positive and True Negative

for the General Matrix for the Multivariate

Normal Data with an AR1 Structure (p = 30)

U

Gen

TP TN

AIC BIC CV AIC BIC CV

CM 1 0
PCM 1 0
Glasso 0.96 0.931 0.357 0.045 0.08 0.729
AL 0.818 0.776 0.233 0.209 0.255 0.858
SCAD 0.68 0.495 0.139 0.361 0.559 0.951

DP
Glasso 0.96 0.931 0.357 0.045 0.081 0.729
AL 0.818 0.777 0.233 0.209 0.253 0.858
SCAD Stuck

BG
H = 50 0.812 0.781 0.266 0.205 0.242 0.822
DP-BG 0.817 0.784 0.266 0.2 0.241 0.822

Huge
Ric NA NA
Stars 0.819 0.201
Ebic 0.414 0.668
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FIG. 9. The ASP plots for the resting-state fMRI data (without prewhitening). The left, middle, and right columns represent
the selection criteria AIC, BIC, and CV for estimating methods glasso, BG, and AL and ebic, ric, and stars for Huge, respec-
tively. AIC, Akaike information criterion; AL, adaptive lasso; BG, bootstrap graphical lasso; BIC, Bayesian information cri-
terion; CV, cross-validation; ebic, extended BIC; fMRI, functional magnetic resonance imaging; Huge, high-dimensional
undirected graph estimation; ric, rotation information criterion; stars, stability approach for regularization selection.
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FIG. 10. The ASP plots for the resting-state fMRI data (with prewhitening). The left, middle, and right columns repre-
sent the selection criteria AIC, BIC, and CV for estimating methods glasso, BG, and AL and ebic, ric, and stars for Huge,
respectively.
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with different threshold parameters, pthr. The percentage of
false estimates (estimating nonzeros for zeros or zeros for non-
zeros) is controlled or bounded. BG provides improvements in
accuracy over the glasso method. However, a major disadvan-
tage is that it is more time-consuming than glasso.

The newly developed DP-glasso algorithm is similar to
glasso, except that its optimization variable is the precision
matrix rather than the covariance matrix. Beginning with
any positive definite matrix, DP-glasso produces a sparse
and positive definite precision matrix. However, for glasso
and DP-glasso, one member of the pair (O,S) is not the in-

verse of the other. Moreover, Mazumder and Hastie (2012)
found that, not only theoretically but also experimentally,
the DP-glasso is computationally more efficient than glasso.
However, our results did not have this conclusion. Overall,
Huge’s performance was poor. In general, it found exces-
sively dense or sparse networks. Perhaps this may be due
to the dimension of our simulations, given that Huge was
motivated using (very) high-dimensional data sets.

Conclusions for the MVN data. In both the low-
dimensional and moderate-dimensional cases, when T is of
moderate size, SCAD?BIC or SCAD?CV performs the
best. When T is large, we recommend using SCAD?BIC,
SCAD?CV, AL?BIC, AL?CV, and BG?BIC. We do not rec-
ommend using the glasso and Huge combinations for the
low-dimensional settings and the glasso?AIC, Huge?ebic,
and Huge?stars combinations for the moderate-dimensional
settings. By increasing the dimension of the MVN data, we
do not see a deterioration in the estimates using glasso,
AL, BG, or SCAD. On the contrary, with increasing dimen-
sions, we find remarkably better detections of the zero entries
by glasso?BIC and glasso?CV, along with moderate in-
creases by AL?BIC, AL?CV, and BG?CV. Huge does not
perform as well as glasso, AL, BG, and SCAD as the dimen-
sion increases. Huge?ric is recommended only if the true pre-
cision matrix contains a sizeable number of large nonzero
elements. Otherwise, all the three Huge combinations should
not be adopted, due to their incapability of maintaining the
true graphical structures.

If the data set is MVN, combinations such as SCAD?BIC,
SCAD?CV, or BG?BIC provide accurate estimates. For ex-
ample, more than 90% of all the entries of the true precision
matrix can be successfully detected. Note that glasso, AL,
BG, and SCAD have a superior ability to detect smaller non-
zero entries than Huge. In other words, the estimation preci-
sion of glasso, AL, BG, and SCAD is better than Huge. Thus,
if the connections within a graph are not very large, glasso,
AL, BG, and SCAD are better choices than Huge, with
SCAD being the strongest method.

Conclusions for the MVNAR1 data. In general, SCAD
is the most stable and best estimating method for data with
an autocorrelation structure. AL performs the worst in correctly
estimating zero entries. CV is the most resistant selection crite-
rion to the autocorrelation structure. Furthermore, all the esti-
mating methods’ ability to correctly detect true entries in the
precision matrix increases with the number of time points.

For the low-dimensional MVNAR1 data, we recommend
SCAD?CV and AL?CV across all sample sizes. SCAD?BIC
is also recommended for large T. For the low-dimensional
MVNAR1 data, the Huge?ric combination is superior to
the other combinations of Huge. Huge?ric’s power for
detecting zero entries increases dramatically, while its ability
for estimating nonzeros is greatly weakened, for small sam-
ple sizes. While all of the Huge combinations maintain the
true graphical structure, the Huge?ebic and Huge?stars esti-
mates are more dense than Huge?ric.

For the moderate-dimensional MVNAR1 data, AL?CV,
BG?CV, and glasso?CV are favored for the matrices with
relatively small entries, since SCAD?CV overshrinks
entries, leading to excessively sparse estimates. If the true
entries are relatively large, SCAD?CV is recommended as

Table 12. The Computational Time (in Sec)

of Each Combination Applied to the Multivariate

Normal (p = 5) Data Using an Intel Core

i3-2350 M 2.30 GHz CPU

Methods Time Methods Time

Glasso?AIC 3.44 DP-G?AIC 76.8
Glasso?BIC 3.44 DP-G?BIC 76.66
Glasso?CV 37.48 DP-G?CV 394.09
BG?AIC 170.31 DP-BG?AIC 3973.94
BG?BIC 171.83 DP-BG?BIC 3971.14
BG?CV 2021.85 DP-BG?CV 24129.8
AL?AIC 8.65 DP-AL?AIC 80.84
AL?BIC 9.17 DP-AL?BIC 80.64
AL?CV 80.35 DP-AL?CV 431.15
SCAD?AIC 15.82 DP-SCAD?AIC 82.34
SCAD?BIC 14.57 DP-SCAD?BIC 82.27
SCAD?CV 107.16 DP-SCAD?CV 432.75
Huge?ric 115.64 Huge?ebic 87.77
Huge?stars 1981.21

Table 13. The True Negative for the Multivariate

Normal (p = 5) Data and T = 200 Using Glasso

and Bootstrap Glasso for H = 50, 100, 150, 200,
pthr = 0:75, 0:8, 0:85, 0:9, 0:95, and Selection

Criteria AIC, BIC, and CV

pthr T H

AIC BIC CV

Glasso BG Glasso BG Glasso BG

0.75 200 50 0.143 0.145 0.295 0.465 0.242 0.242
100 0.143 0.145 0.295 0.473 0.242 0.242
150 0.143 0.143 0.295 0.442 0.242 0.242
200 0.143 0.143 0.295 0.448 0.242 0.242

0.8 200 50 0.143 0.203 0.295 0.610 0.242 0.252
100 0.143 0.162 0.295 0.605 0.242 0.242
150 0.143 0.158 0.295 0.618 0.242 0.242
200 0.143 0.15 0.295 0.619 0.242 0.242

0.85 200 50 0.143 0.3 0.295 0.714 0.242 0.305
100 0.143 0.319 0.295 0.743 0.242 0.288
150 0.143 0.272 0.295 0.735 0.242 0.265
200 0.143 0.275 0.295 0.748 0.242 0.267

0.9 200 50 0.143 0.595 0.295 0.836 0.242 0.496
100 0.143 0.591 0.295 0.855 0.242 0.486
150 0.143 0.595 0.295 0.848 0.242 0.465
200 0.143 0.599 0.295 0.852 0.242 0.463

0.95 200 50 0.143 0.777 0.295 0.907 0.242 0.738
100 0.143 0.852 0.295 0.932 0.242 0.794
150 0.143 0.814 0.295 0.932 0.242 0.760
200 0.143 0.837 0.295 0.935 0.242 0.781
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it achieves more sparsity than the other combinations. The
Huge combinations have a different performance in the
moderate-dimensional case compared to the low-dimensional
case. Huge?stars and Huge?ebic still produce excessively
dense and sparse estimates as they do for the other moderate-
dimensional data sets.

In conclusion, the AR1 autocorrelation structure remark-
ably reduces the sparsity of the estimated graphs. In other
words, for both low- and moderate-dimensional simulation
settings, the results of the MVNAR1 data are much denser
than the MVN data. In addition, the ability to correctly esti-
mate both nonzeros and zeros becomes significantly weaker.
The excessively dense graphs estimated by the majority of
the estimating methods for the data with autocorrelation in-
dicate that the autocorrelation structure inherent in the data
causes the estimating methods to perform poorly. If there is
autocorrelation in the data and you are not confident in the
prewhitening procedure, our advice is to use the CV selection
criterion. By cross-validating the data, the autocorrelation
structure is diluted, and thus, in some cases providing results
very similar to the best combinations for the MVN data.

Overall conclusions. In general, for all dimensions and
types of data sets, our conclusions are as follows:

1. SCAD > AL > BG > glasso > Huge.
2. The DP-glasso algorithm is not effective in improving

the estimates at least for the data sets we considered. In
other words, DP-glasso has very similar results to
glasso, and hence, DP-BG to BG, DP-AL to AL, and
DP-SCAD to SCAD.

3. BIC always chooses sparser estimates than AIC. CV is
sparser than AIC most of the time. All of the selection
criteria are able to preserve the true graphical structure
with the only difference between them being the spar-
sity of the estimated graphs.

4. Typically, SCAD?BIC provides the best estimates for all
the simulated data sets. AL?BIC, BG?BIC, or AL?CV is
the second-best choice most of the time. glasso?AIC and
Huge always provide undesirable estimates.

Limitations. While our simulation study is extensive and
considers various settings (different sample sizes, dimensions,
data types, and sparsity levels), we acknowledge that we have
not covered all possible settings. We consider two different
data types, MVN and MVNAR1, to show the effect of autocor-
relation on the methods. While we could have considered var-
ious degrees of autocorrelation inherent in the ROI time series
in our simulation study, we thought by considering MVN and
MVN with a large degree of autocorrelation (/1 = 0.8 in the
AR1 model), the results for the other degrees of autocorrelation
would lie in the spectrum between the two extremes. Further-
more, we have not considered the fact that there exists voxel-
level spatial correlation within an ROI. We believe that ignor-
ing this correlation by simply taking the average voxel time
courses in each ROI would also have an effect on TP and TN
in the same way ignoring the temporal correlation (i.e., without
prewhitening data) has effect on TP and TN. However, we be-
lieve that the simulation study provides a comprehensive re-
view of the methods that has a clear message and we have
concentrated on the issue of autocorrelation as this violates
the assumption of the graphical models.

Finally, as fMRI data are distanced from the underlying
neural sources by many confounding stages, a careful valida-
tion is necessary before safely interpreting the results of the
network estimation methods (Smith et al., 2011). Typically,
the closer a given data set is with the assumptions of the es-
timation methods, the more desirable the results are. Hence,
the assumptions of the underlying model should be checked.

Conclusion

In this work, we studied various procedures for estimating
sparse brain networks. To find the optimal sparsity level
for each network, we considered various selection criteria.
We showed by using an extensive simulation study that
the best estimating method was SCAD in combination with ei-
ther BIC or CV. We also studied the effect of autocorrelation,
inherent in neuroimaging data, on the estimating methods and
selection criteria. Overall, we found that the presence of auto-
correlation had a negative effect on the estimates and resulted
in denser networks when compared to data that had been pre-
whitened. We hope that our work encourages neuroimaging re-
searchers to think more carefully about the sparse graphical
methods used to estimate their FC networks and the effect au-
tocorrelation has on their estimated FC networks. It is critical
that neuroscientists know the decisions they are making when
estimating FC networks. In addition, although the main focus
of this work is on estimating methods that estimate static FC
where the time series data from each brain region are stationary,
the methods can be easily incorporated into an algorithm for es-
timating dynamic FC via a sliding window or for estimating FC
change points in a similar vein to Cribben et al. (2013, 2012)
and Cribben and Yu (2017), which is a recent area of interest
in the neuroimaging community. Future work entails how
graph metrics (e.g., small-worldness and modularity) are af-
fected by the estimating procedure used and the presence of au-
tocorrelation.
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