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Fig. 1. Lineage visualizing the genealogy of a family with an increased number of suicides. The genealogy view shows the family
relationships in a linear tree layout, where each node corresponds to a row in the associated table. Suicide cases are highlighted in
blue, a glyph next to the nodes indicates whether individuals were diagnosed with depression. Some branches are aggregated. The
table shows detailed attributes about individuals, or, when branches are aggregated, for groups of individuals.

Abstract— The majority of diseases that are a significant challenge for public and individual heath are caused by a combination of
hereditary and environmental factors. In this paper, we introduce Lineage, a novel visual analysis tool, designed to support domain
experts that study such multifactorial diseases in the context of genealogies. Incorporating familial relationships between cases can
provide insights into shared genomic variants that could be implicated in diseases, but also into shared environmental exposures. We
introduce a data and task abstraction and argue that the problem of analyzing such diseases based on genealogical, clinical, and
genetic data can be mapped to a multivariate graph visualization problem. Our main contribution is a novel visual representation for
tree-like, multivariate graphs, which we apply to genealogies and clinical data about the individuals in these families. We introduce
data-driven aggregation methods to scale to multiple families with hundreds of members across several generations. By designing
the genealogy graph layout to align with a tabular view that displays clinical data for each family member, we are able to incorporate
extensive, multivariate attributes in the analysis of the genealogy without cluttering the graph. We also discuss how the principles of our
methodology can be generalized to other scenarios. We validate our designs using an illustrative example based on real-world data,
and report of feedback from domain experts.

Index Terms—Multivariate networks, biology visualization, genealogies, hereditary genetics, multifactorial diseases.

1 INTRODUCTION

Studying ancestry and familial relationships, i.e., genealogies, is both
a past-time enjoyed by amateurs and a research area for profession-
als [35]. It is hence not surprising that there are a wealth of tools to
record and visualize genealogies. Yet, most of these tools focus on
analyzing family structures for historical purposes and only few target
a clinical use case of analyzing genealogies in the context of complex,
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hereditary diseases. Geneticists, on the other hand, have long used
genealogical graphs to study how a genetic disease manifests itself in
families. They use drawing conventions and standardized symbols to
show both, the family structure and the phenotype, i.e., the observ-
able characteristics of an individual [7, 6]. These charts can provide
insights about the heritability and segregation patterns of genetic dis-
eases. In their current form, however, they are predominantly useful for
Mendelian diseases, or genetic diseases caused by a small number of
mutations. Complex diseases such as cancer, autism, diabetes, obesity,
and psychiatric conditions such as depression or suicide are known to
have hereditary components that are regulated by a multitude of genes,
each having a modest effect on risk, and also to depend strongly on
environmental conditions and chance. When studying these conditions
in a population, it is imperative to simultaneously consider genetic
similarities, shared characteristics of the phenotype, and environmental
conditions. Also, for these polygenic conditions one needs to consider
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significantly larger populations to reason about hereditary relationships
and pursue discovery of genetic risk mutations.

Current medical or historical genealogy1 visualization tools are ill
equipped to help researchers in finding patterns in these large, highly
multivariate graphs of families and their rich medical histories. In this
paper, we present a novel genealogy visualization tool that we have
developed in collaboration with psychiatrists and geneticists studying
the genetic underpinnings and the environmental factors of suicide and
autism. We use data from the Utah Population database2, a uniquely
rich resource for population based analysis of hereditary diseases.

We contribute a novel technique to visualize large, tree-like graphs
(rooted, directed graphs that have some cycles but are predominantly
in tree form) associated with rich numerical, categorical and textual
attributes. Our approach leverages the tree-like structure of the graphs
to produce a linearized layout which enables the direct association of
the nodes with rich attributes in a tightly integrated tabular visualization.
We address the issue of scalability by introducing novel forms of degree-
of-interest based aggregation that preserve the structure of the graph,
and if desired also provide an overview of the attributes of aggregated
individuals. While we demonstrate our technique in the context of
genealogical data, we argue that it can equally be applied to other
multivariate trees or tree-like graphs.

We also contribute a detailed characterization of the domain prob-
lems and of the domain data as they are encountered when analyzing
large, clinical genealogies and a set of task and data abstractions derived
from these characterizations. Finally, we contribute the open source Lin-
eage visualization tool (http://lineage.caleydoapps.org),
shown in Figure 1, which implements the technique; and describe mul-
tiple design decisions tailored towards genealogical data visualization.

Lineage is in the process of being adopted by our collaborators, and
has undergone iterative design refinements. We have also demonstrated
it to other research groups working with genealogical and genetic data
and have encountered overwhelming enthusiasm. We validate this work
in an illustrative usage scenario and through qualitative user feedback
from domain experts.

2 DOMAIN BACKGROUND AND DATA

Our collaborators study the genetic underpinnings and the environ-
mental factors influencing psychiatric conditions, such as autism and
suicide, using detailed genealogical, clinical, and genetic data. In this
paper, we will focus on suicide, yet our methods are easily transferable
to other complex, multifactorial conditions and diseases. Suicide is a
high impact application, as it is one of the leading causes of life-years
lost [52], and the 10th most common cause of death in the United
States [37]. Suicide is believed to be caused by a complex combination
of risk factors, including environmental stressors, but also genetic vul-
nerability. Aggregated data across multiple large studies has produced
heritability estimates of completed suicide of 45% [41, 33]. Genetic
risk factors for suicide are complex and can be classified into multi-
ple subtypes. These subtypes often are characterized by co-occurring
psychiatric conditions (comorbidities), and/or combined risk of psy-
chiatric diagnosis. For example, genetic risk for schizophrenia is also
associated with risk for suicide [46].

Our collaborators have compiled a unique dataset of suicide cases,
including DNA and clinical profiles on 4,017 cases. These cases are
linked to the Utah Population Database (UPDB), which provides ge-
nealogical data. Genealogies describe the familial relationships of
individuals across multiple generations.

Figure 2 shows two genealogies using the standardized drawing
conventions [7, 6]. Females are drawn as circles, males as squares.
Couples are connected by an edge, children connect to this edge using
orthogonally routed links. The vertical position of nodes is given by
their generation. A phenotype of interest is marked by a filled-in node.

When studying family relationships, a common approach is to draw
family trees considering the ancestry of an individual. Figure 2(a),
for example, shows the family of the women marked in black. The

1The terms genealogy and pedigree can be used interchangeably in this
context. However, for simplicity, we will always use genealogy.

2https://healthcare.utah.edu/huntsmancancerinstitute/research/updb/

(a)

Founder

(b)
Fig. 2. Two genealogies using standardized symbols focusing on different
aspects of the family structure. Females are shown as circles, males as
squares. Individuals with a phenotype of interest are filled-in in black.
(a) A genealogy showing the family of the female in black, including
siblings, parents, uncles/aunts, and grandparents. (b) A genealogy
based on a founder, tracing down generations to include the families of
individuals with a phenotype of interest (black).

genealogy includes her two siblings and traces her family tree up for two
generations to include their parents, uncles and aunts, and grandparents.

In contrast, our collaborators are interested in understanding genetic
relationships between individuals afflicted with a condition and hence
care about individuals who share genetic variants. They select families
for study that have a statistically increased rate of a condition. These
family trees are constructed by tracing cases back to a “founder”, as
illustrated in Figure 2(b). The underlying hypothesis is that the founder
has genetic risk variants which they passed on to their descendants.
Within the genealogy, the likelihood of genetic homogeneity is in-
creased, and is more easily detected through the repeated occurrence of
the genetic risk variant in the familial cases. Note that this genealogy
only contains individuals that are descendants of one founder and their
spouse, with the exception of spouses of descendants. Also, the dataset
only contains individuals with direct links to a case; i.e., siblings, de-
scendants, and direct ancestors are included, whereas, for example,
uncles/aunts and cousins are not.

The dataset our collaborators have compiled contains about 19,000
suicide cases, including the 4,017 recent cases with detailed data,
backed by family structures made up of 118,000 individuals from
551 families. Suicide is frequently associated with psychiatric co-
morbidities, i.e., co-occurring chronic conditions, such as depression,
bipolar disorder, substance abuse, PTSD or schizophrenia [46]. Also,
non-psychiatric conditions such as asthma [24] may play a role in some
cases. Environmental factors, such as socioeconomic status, pollution,
and seasonality are also known to be factors in suicide [2]. To capture
this information, our datasets includes demographic variables such
as gender, race, age at death, method of death, family demographics
(marriage, divorce, number of siblings/children), and place of residence
at the time of death. It includes records of other diagnoses captured as
codes from the International Classification of Diseases (ICD) systems,
the frequency with which these diagnoses were made, and the time of
the first diagnosis.

To summarize, we have many graphs, each describing a family, with
individuals as nodes and family relationships as edges. Since the graphs
are constructed by tracing ancestry to a founder, they are predominantly
tree-like, but do include cycles, for example, when two cousins have
offspring. In addition, we have attributes on the individuals/nodes in the
graphs of various data types, including numerical, categorical, temporal,
geographic, and textual data. These attributes are often sparse, as only
about 10% of individuals in the dataset have committed suicide, and our
detailed records extend to only about 2% (4,017) of individuals across
all families. These detailed records capture about 3,000 dimensions that
contain demographic information and information about the manner of
death, but predominantly contain comorbidities in the form of disease
codes, time of the diagnosis, and the frequency of the diagnosis. These
dimensions are themselves often sparse, as, among other reasons, a
colloquial diagnosis such as “depression” can be recorded using one of
about 30 ICD codes.

3 DOMAIN GOALS AND TASKS

This project is rooted in a collaboration with faculty, clinicians, analysts,
and graduate students in the Department of Psychiatry at the University
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of Utah. In total, six domain experts were involved in the process. We
loosely followed the design study methodology by Sedlmair et al. [43].
Our “discover” phase consisted of multiple meetings with individual
collaborators and with the whole group as a team, studying the domain
literature and the tools they currently use. We also ran a creativity
workshop, specifically the “wishful thinking” component described by
Goodwin et al. [19], involving all of the collaborators. In the workshop,
we asked participants to think about the analysis of suicide data and
then discuss in small groups and take notes on post-its about what it is
they would like to know, see, and do. This idea generation phase was
followed by a phase where the teams had to prioritize their insights,
and then finally give the whole team an overview of their key ideas. We
recorded the workshop, and transcribed both the audio and the post-its.
We then coded the artifacts and three themes emerged: they described
details about the data, the factors involved in suicide, and the analysis
tasks. The insights about the data and the factors involved in suicide
are described in the previous section.

The overarching goal of our collaborators is to gain a better un-
derstanding of the determining or associated factors of suicide. They
classify these into comorbidities, demographic, genetic, and environ-
mental factors. Specifically, they are interested in identifying and
defining detailed phenotypes associated with suicide and the degree to
which these phenotypes are familial. By finding people that are similar
to each other in a relevant way, our collaborators hope to reason about
genetic homogeneity, i.e., share genetic factors contributing to suicide.
They currently rely only on familial structure as a proxy for genetic
homogeneity. However, they recognize that this is limited both as too
broad — it is possible that they should only consider a part of a family
— and as too narrow — people outside a family that have a similar
phenotype could also have a similar genotype. Robust and detailed
phenotypes are of course also interesting by themselves, as they, for
example, can be used as part of a risk assessment in a clinical context.

It is important to note that the contextual knowledge of a researcher
is immensely beneficial to the task of classifying a phenotype. For
example, a diagnosis of depression is weighted differently if it is diag-
nosed dozens of times and was first diagnosed early in a patient’s life.
Similarly, a suicide case at a young age in a rural community is unlikely
to have a detailed medical history. Hence, such a case could potentially
be similar to others, even if certain phenotypes are not recorded, if
other factors, such as a close familial relationship indicate it.

We identified the following domain tasks as the most important
aspects in the workflows of our collaborators:

T1 Select families of interest. The analysts want to select a family
either by browsing, or by selecting a specific family based on prior
knowledge, or in a data driven way. An example of data-driven
selection of families is to find families with high rates of suicide,
or to find families with individuals where suicide co-occurs with
bipolar disorder.

T2 Analyze individual case. Our collaborators need to investigate
the context of a case. For example, a potential genetic component
contributing to suicide is judged differently if the person had
many psychiatric comorbidities and committed suicide at a young
age, compared to a late-life suicide of a person with a terminal
disease.

T3 Compare cases. This task encompasses comparing individu-
als and identifying shared attributes to characterize a potentially
meaningful shared phenotype. It also pertains to analyzing how
the individuals are related, which can indicate the likelihood of
shared genetic traits. Insights on shared environmental factors
can be gleaned from both the family structure or the attributes.
For example, siblings are likely to be exposed to the same envi-
ronment in their childhood, whereas cousins might not. Similarly,
two people living in the same area are potentially of similar so-
cioeconomic status.

T4 Judge prevalence and clusters of phenotype. The families in
our dataset are selected for an increased number of suicides, but
these numbers vary greatly between families, and also between

branches of a single family. Judging how common a phenotype is
in a family or a part of the family is helpful in identifying subsets
of interest for further study.

T5 Compare families. Once an interesting observation has been
made in one family, our collaborators want to be able to inves-
tigate whether similar cases also appear in other families. For
example, when an association of asthma with suicide is discov-
ered, it is important to know whether this is isolated in one family,
or occurs in multiple families and/or individuals.

T6 Quality control. While not an analysis task per-se, our collabo-
rators also need to judge the quality of the data and report errors
back to the central database. A common data error we have seen,
for example, are disconnected components or detached nodes,
which are caused by missing information about an individual’s
mother and/or father.

Most of these domain tasks rely both on studying the topology of the
network, i.e., the family relationships, and on investigating the attributes
associated with the individuals. For example, the “compare cases” task
(T3) relies on both, the graph and the attributes to, for example, reject
an outlier in an otherwise well-defined phenotype within a family, if
that outlier is only distantly related to other cases.

4 RELATED WORK

We focus our discussion of previous work on specialized genealogy
visualization tools and on multivariate network visualization, as ge-
nealogies are highly multivariate graphs. With regards to multivariate
network visualization approaches, we also restrict our discussion to
explicit layouts (i.e., node link layouts), as implicit layouts (such as
SunBursts and treemaps) are ill suited to visualize attributes at all levels
of the hierarchy; and matrices are not an ideal choice for genealogies as
(a) the nodes are only sparsely connected, hence wasting a lot of space,
and (b) matrices are ill suited for path tracing, which is a common task
of our collaborators.

4.1 Multivariate Networks
A multivariate network is a graph where the nodes and/or the edges
are associated with potentially rich attributes [25]. Many graph visual-
ization techniques are optimized for either topology or attribute based
tasks [49], yet in many applications topology and attributes have to
be judged in concert [39]. When analyzing genealogies, for example,
our collaborators want to understand how two people with a similar
phenotype are related, requiring them to first identify the phenotypes
using the attributes, and then judge their relatedness using the topology
of the genealogy.

Partl et al. [39] classify four basic approaches to visualize multi-
variate networks for explicit graph layouts: (1) on-node mapping, i.e.,
visualizing the attributes by changing a visual channel of the node mark
or by embedding a small visualization in the node; (2) small multiples,
i.e., showing the same graph multiple times and visualizing a different
attribute on top of each of the small networks, (3) separate, linked views
for the graph and the attributes, and (4) adapting the graph layout to
better fit the needs of attribute visualization.

These approaches have different strengths and weaknesses with
respect to the tasks they enable. Lee et al. [27] distinguish, among
others, topology based tasks, i.e., tasks that are related to the network’s
connectivity, and attribute based tasks, i.e., tasks that are related to the
attributes associated to the nodes.

While on-node mapping excels at simultaneously supporting topol-
ogy and attribute based tasks, it does so only for very limited numbers
of attributes, as the node size limits how many attributes can be encoded.
Also, on-node visualizations are typically not aligned and have distrac-
tors between them, which makes accurate comparison difficult [11].
Gehlenborg et al. [17] review multiple systems that use on-node map-
ping for biological networks. An example for slightly more complex
visualizations embedded on nodes is the Network Lens [23]. The work
by van den Elzen and van Wijk [49] is a special case of an on-node
mapping approach: instead of mapping data directly onto nodes in the
networks, they aggregate nodes into super nodes, show the relationships
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between the supernodes, and visualize the attributes of these nodes in
small, embedded visualizations.

Small multiples are also commonly used to visualize attributes on
top of graphs. Barsky et al. [5] and Lex et al. [29], for example, use
small multiples to show gene expression data on top of biological
networks. Using small multiples for multivariate networks, however,
has the disadvantage that the individual networks have to be rendered
in less space, limiting their readability and/or the size of the graph for
which they are useful for.

Separate, linked views excel at visualizing the attributes and the
graph individually, but do not support the integration of both well. Sys-
tems that use this approach [44, 28] rely on linking and brushing to
associate a node with the representation of its attribute, which signifi-
cantly hinders the simultaneous analysis of topology and attributes.

The fourth approach to multivariate graph visualization is to adapt
the layout of the network so that the nodes can be easily associated
with an effective attribute visualization. This is taken to the extreme in
GraphDice [8], where nodes are positioned in a series of scatterplots
purely based on attribute values. Gentler approaches are various lin-
earization strategies, where graphs are laid out such that associated
attributes can be visualized in efficient tabular layouts, overcoming the
drawbacks of completely separated linked views. Typically, trade-offs
between optimizing for the readability of the topology and the linear
layout have to be made. Meyer et al. [34] manually linearize a complete
network and render attributes next to the linear layout. While this is
an efficient approach, the complexity of the networks for which this is
feasible is limited, and topological structures can be hard to see. Partl
et al. [39] use interaction to extract paths from a network, linearize
these paths, and associate the nodes in the paths with rows in a tabu-
lar visualization. This, however, requires interaction and works only
for selected subsets of the graph. The recently published Pathfinder
system [38] uses path queries on networks and presents the resulting
paths in a linear, ranked list, juxtaposed with rich attribute data. This
approach, however, is only sensible for tasks related to paths.

Our work falls into the category of adapting the layout by lineariza-
tion. We leverage the fact that the genealogical graphs our collaborators
are interested in are tree-like and linearize the positioning of the nodes
in the tree. We use this tree to juxtapose scalable and perceptually effi-
cient visualizations of the attributes. While there are many approaches
that do this for the leaves in a tree, such as juxtaposing dendrograms
with a heatmap [13], we are not aware of prior tree linearization ap-
proaches that also visualize attributes for intermediate nodes.

4.2 Genealogy Visualization
Genealogical charts, as shown in Figure 2, are widely used in genetic
counseling and the literature on genetic diseases. While they are well
suited to visualize a single phenotype of interest, they are not suitable to
map a complex phenotype to the node. Our collaborators currently use
Progeny [42], a commercial genealogy drawing tool that closely follows
the standard for visualizing genealogies [7, 6] (see the supplementary
material for an example figure created with Progeny). While Progeny is
well suited to draw these standard genealogies for use in presentations,
it is ill-suited for exploratory tasks, mainly because of its inability to
efficiently encode attributes in the graph.

Interactive genealogy visualization tools that are designed to ana-
lyze disease clusters and to see disease propagation within families
include PedVizApi [14], CraneFoot [36], Haploview [4], PediMap [50],
and HaploPainter [47]. HaploPainter [47] visualizes genealogies and
genetic recombination events below the individuals’ nodes. While it
shares the approach of showing metadata as rows associated with nodes
with Lineage, it does not take a linearization approach to make values
of different generations easy to compare, it does not aggregate the net-
work, and it does not visualize different types of attributes. McGuffin
and Balakrishnan [32], describe layout algorithms for complicated ge-
nealogical trees, but also introduce aggregation methods for sub-trees,
which we adopt.

Among tools that don’t use the standard genealogical drawing con-
ventions are Fan Charts [12], which uses the SunBurst technique to
visualize genealogical trees, and the work by Mazeikla et al. [31], which

employs a force directed layout that considers similar phenotypes as
additional attracting forces. Tuttle et al. [48] use an H-tree layout for
scalable genealogy visualization, with the founder at the center and
successive generations radiating out based on a fractal pattern. Ball [3]
employs the idea to not represent generations as discrete units but use
time to position the nodes, and also to draw a person’s life span.

Genealogy visualization tools for animal genealogies face a differ-
ent set of challenges compared to those for human genealogies, as
the number of descendants sired by individual animals can be large,
and complex interbreeding is common. Consequently, tree-based ap-
proaches are not well suited for these genealogies. Examples include
CoVE [10], and VIPER [40]. VIPER introduces a sandwich view, that
CoVE also adopts. The sandwich view scales well to many descendants
of an individual, but only explicitly encodes the relationships between
parents and their children. More distant relationships can be revealed
through highlighting. Helium [45] is a visualization techniques for
plant genealogies, which commonly have complex crossing. It uses
color coding and scaling of nodes to encode up to two attributes.

GeneaQuilts [9] is a matrix based technique where each row con-
stitutes a person and each column a nuclear family. In early stages
of our design process we considered using a GeneaQuilt instead of
our node link design, since GeneaQuilts produces a linearization of
the graph that would be suitable to associate attributes. We ultimately
decided against it because our design for aggregation is more suitable
for node-link diagrams.

A different approach to analyzing relatedness is to calculate “kinship
coefficients” between individuals, i.e., to calculate path-based metrics
for relatedness and visualize them in a matrix [26]. While this is
scalable, it is not suitable for reasoning about all patterns of inheritance.

A related tool that is concerned with visualizing phenotypes of
patient cohorts is PhenoStacks by Glueck et al. [18]. PhenoStacks uses
a similar tabular approach as we do for our table.

5 VISUALIZING A MULTIVARIATE TREE-LIKE GRAPH

The tasks our collaborators need to address rely heavily on both the
familial information contained in the genealogy graph, i.e., the topology,
and the myriad of attributes associated with individuals (see Section 3).
Of the strategies for linearization introduced in Section 4.1, only the
linearization method enables an integrated analysis of topology and
attribute at the scale of attributes we are interested in. However, none of
the described linearization methods are suitable for the data and tasks
of our collaborators. Here, we introduce a linearization method for
tree-like graphs. We define tree-like graphs as rooted, directed graphs
that contain cycles. The purpose of the linearization is to associated the
nodes with rows in a table visualization.

A consequence of the linearization strategy is that the layout is not
as compact as other, common layouts are. To address this issue, we also
introduce degree-of-interest based aggregation strategies that integrate
seamlessly with the linearized graph.

We illustrate this concept here using general, tree-like graphs, for
now ignoring specific properties of genealogies. We later show in
Section 6 that this approach extends to genealogies (where each person
has two roots — their parents) with minor modifications, and also
elaborate on design decisions we made that are specific to our data and
application area.

5.1 Linearization Approach

De-Cycling In a first step, we remove cycles from the directed
graph, transforming it into a tree, by duplicating the node that completes
a cycle, similar to the approach by Mäkinen et al. [36]. If the duplicated
node has children, we attach all children to one instance, while the other
instance remains a leaf. Figure 3(a) shows a tree-like graph with one
cycle, Figure 3(b) shows the resulting tree, where node 7 is duplicated.
While this duplication strategy works for general directed graphs, it
is most useful for directed graphs with a defined root and few cycles,
as in these cases most of the topology is retained, and the number of
additional nodes are negligible with respect to scalability.
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Fig. 3. De-cycling and linearization. (a) A directed, rooted graph with
one cycle ending in node 7. (b) We remove the cycle by duplicating the
last node in the cycle (node 7). (c) The tree is linearized so that each
node is assigned a distinct row. Leaves are rendered above their parents.
This row-based, linear layout enables an unambiguous, position-based
association with a table visualizing attributes.

Linearization In most tree layouts [1], associating the nodes with
rows in a table by position is impossible. The tree in Figure 3(b) is
compact, yet would require, for example, curved links to associate the
nodes with a table row. To make this association between nodes and
rows of a table intuitive, we use a linearization strategy that assigns
every node a distinct vertical position (i.e., a “row”). The position of
the node alone thus unambiguously associates the node with a row in
a table (see Figure 3(c)). Note that while we assume a left-to-right
tree layout here, a top-to-bottom layout would work equally well for
associating a tree with table columns.

Linearized tree layouts are based on tree traversal strategies. While
various strategies, such as breath-first (level-order), or in-order depth-
first-search are possible, we found that pre-order depth-first search
works well for our purposes, as it results in a crossing-free layout and
keeps leaves in subsequent rows.

Following the in-order strategy, we recursively place the descendants
of a given node directly above them. Note that a top-down strategy
would be equally possible. We assume that an order of leaves can be
defined, e.g., based on the attributes. If not, using a random order is
possible.

Figure 3(c) illustrates the results of this algorithm when applied to
the tree in Figure 3(b) and also shows how to easily associate a table
with the tree. Note that the duplicate node also is duplicated in the
associated table.

5.2 Aggregation

While linearizing the tree allows for a direct, position-based association
of the nodes and their attributes, the resulting layout uses more space
than a compact layout. However, due to their hierarchical structure,
trees are well suited for aggregation. Degree of interest (DOI) func-
tions [15] have been widely applied to trees. In our design, we use the
generalized idea of degree of interest functions by Furnas [15, 16].

We let analysts define a degree of interest function based on the
attributes of the nodes, which we call the phenotype of interest (POI).
Nodes that have the POI are referred to as nodes of interest. In contrast
to the original formulation of a degree of interest, our POI function is
binary (i.e., a node is either of interest or not) and does not consider
a distance to a selected node. An example for a POI is “committed
suicide”, which would make all nodes representing individuals that
committed suicide to be considered of interest, or “has a maximum
BMI of higher than 30”, which would consider all obese individuals to
be of interest. Naturally, POIs that are compound of multiple attributes
(high BMI and suicide) are possible.

Based on this degree of interest function, we introduce two different
approaches to aggregation that vary in how they trade-off compactness
and preserving the attributes of the nodes: (1) attribute-preserving
aggregation, and (2) attribute-hiding aggregation. These aggregation
approaches can, of course, not only be applied to the whole tree, but to
selected sub-trees, and can also be combined.
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Fig. 4. Aggregation approaches demonstrated using the tree in Fig-
ure 3(c). A black fill indicates a node-of interest. (a) Attribute-preserving
aggregation. Each node of interest (shown in black) is in a separate row.
Branches without nodes of interest are aggregated into one row, yet all
attributes are preserved in the aggregate representations in the table.
Notice how the two children of node 2 that are not affected are shown
using an implicit encoding, which we refer to as a “kid grid”. (b) Attribute-
hiding aggregation. The branches leading to nodes of interest are hidden
behind them. Only nodes of interest and branches with no nodes of inter-
est have a row of their own. Only the nodes of interest are represented
in the table.

Attribute-Preserving Aggregation Here we introduce an aggre-
gation strategy for linearized layouts that preserves both the structure
of the tree and the attributes of all the nodes. Nodes of interest are
assigned a row of their own, while other nodes are aggregated into a
single row. Figure 4(a) shows an example of this strategy applied to
the tree shown in Figure 3(c). This emphasize the nodes of interest,
while preserving both, the structure of the graph and the attributes of
the other nodes.

Our algorithm recursively follows a (sub)tree down a branch by
assigning a new row to each inner branch. Inner branches are branches
that don’t end in a leaf after the first edge, i.e., an edge that directly
connects to a leaf is not an inner branch. If no node of interest is
encountered, it continues to the leaves, placing all nodes of the branch
in the same row. Multiple leaves that are not of interest are placed
in a “kid grid”, an implicit encoding of the leaves as small nodes to
the right of their parent. An example is visible in the bottom branch
in Figure 4(a), where nodes 1, 2, 5, and 7 are on the same row, and
the leaves (5, 7) are in a kid grid. If a node of interest is encountered,
we distinguish two cases. If the node of interest has children that are
leaves and that are not nodes of interest themselves, they are added
to a kid grid, which is placed in the next row (see node of interest 3
and its descendant (node 7) that is placed in a kid grid in Figure 4(a)).
If the node has children that are inner nodes, the algorithm is applied
recursively.

The result of this algorithm is a layout that has N rows, where N is
the sum of:

• the number of nodes of interest,
• the number of inner branches that do not end in nodes of interest

(case for node 4 in Figure 4(a)),
• the number of nodes of interest that have children that are leaves

(case for the child of node 3 in Figure 4(a)).
The result in the associated table visualization is that each node of

interest has a separate row, and the aggregated branches are represented
in aggregated rows. In practice, we use visual encodings for aggregates
and individual rows that can faithfully represent the data but are also
comparable. For details on the table design, see Section 6.2.

Attribute-Hiding Aggregation This form of aggregation also pre-
serves the complete structure of the tree, but does not preserve attributes
of nodes that are not of interest. The results, illustrated in Figure 4(b), is
a scalable approach that can be used to address tasks that are only con-
cerned with the attributes of the nodes of interest and their connectivity,
but not with the attributes of the other nodes.

The main difference compared to the attribute-preserving aggrega-
tion is that nodes of interest are not assigned to a new row when they
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(a)

(b)

(c)

(d) (e)

Fig. 5. Different aggregation cases. (a-c) A family where one woman has
children with two men. One of the children committed suicide. (a) No
aggregation: every person is in their own row. (b) Attribute aggregation:
the suicide case is in its own row; the rest of the family is aggregated.
Notice the family grid with two male and one female parents, and one
daughter and one son. The second son is not in the kid grid because he
is a node of interest. (c) Attribute hiding: the family is hidden behind the
suicide case, only the attributes of the suicide case will be shown in the
table. (d-e) A different family, where the node of interest has children,
leading to special cases. (d) Attribute aggregation: the spouses and
children are moved to their own row, the line connecting spouses spans
two rows. (e) Attribute hiding: the spouses are placed to the left of the
suicide case, the children to the right.

are encountered. The algorithm again recursively follows a (sub)tree
down a branch by assigning a new row to each inner branch. If no
nodes of interest are encountered while traversing the branch, the leaves
are placed in a kid grid. If a node of interest is encountered, the next
step depends on whether it has children that are inner nodes or not. For
the node’s children that are leaves, a kid grid is used, but no new row is
started. For all other branches, the algorithm is applied recursively.

The resulting layout has M rows, where M is the sum of:
• the number of inner branches,
• the number of nodes of interest that have at least one child that is

an inner node.
Here, only nodes of interest and inner branches that do not end in a

node of interest are assigned their own row. For consistency, we do not
represent branches that do not end in a node of interest in the table.

6 LINEAGE DESIGN

Here we describe the design decisions that are specific to the use
case of visualizing genealogies and that we realized in the Lineage
prototype. To address the tasks of our collaborators, Lineage provides
four views, shown in Figure 1: the genealogy graph view and the
closely synchronized table view; a data selection view, which can be
used to select which attributes to display; and a family selection view,
which allows analysts to switch between or select multiple families.

6.1 Genealogy Graph
An important difference between genealogical trees and general trees is
that nodes have not one but two parents. To address this, we introduce
the concept of a couple, indicated by a line connecting the partners (see
Figure 5(a)). As is common in genealogical graph layouts, the children
of a relationship then connect to the line representing the couple instead
of directly to the parents. We also adopt some of the conventions for
drawing genealogical graphs: males are drawn as rectangles, females
as circles. Deceased individuals are crossed out. Nodes that have the
phenotype of interest are filled-in.

As discussed in the previous section, the phenotype of interest can
be defined dynamically, either based on (combinations of) categorical
values, or by brushing a range of a numerical variable. Figure 6 shows
the effect of two different POI functions on the same subtree.

(a) (b)

Fig. 6. Different POI functions applied to the same, aggregated sub-
tree. (a) Suicide, as a categorical POI. (b) Age < 40 as a numerical,
thresholded POI.

The modifications to the layout algorithm to accommodate couples
are minor: couples are always placed in consecutive rows, to avoid
long, vertical parent edges. When one of the spouses has offspring
with multiple partners, we place all partners in consecutive rows. In
case of two partners, we place the person with multiple relationships in
the center to avoid edge crossings. Figure 5(a), for example, shows a
woman who had children with two different partners. For more than two
spouses, however, or spouses who had children with different partners
in alternating order, edge crossings are often unavoidable. Similar to
Mäkinen et al. [36], we use arrows to indicate that a node is duplicated
and to point towards the duplicate. To resolve any ambiguities, we draw
an edge connecting the duplicates when hovering over the arrow (see
supplementary material, Figure S3).

In contrast to traditional genealogical graphs, we do not lay the
nodes out by generation, but use the birth year to position the nodes hor-
izontally [3], as shown in Figure 1. This avoids ambiguities about the
birth order and encodes a vital attribute directly in the graph. We also
use curved splines instead of the traditional orthogonal edge routing,
because continuous edges are easier to follow [51].

Aggregation Layouts With respect to aggregation, the algorithm
is only extended by first looking for spouses before descending into a
subtree. If both spouses are nodes of interest, each spouse is assigned
their own row.

We previously introduced the concept of kid grids for aggregated
nodes. Indicating hidden nodes using a glyph has been done before
for graph layouts, most notably by McGuffin and Balakrishnan [32],
who use dots to indicate children in genealogical graphs. Our layout
for aggregated genealogies, however, goes beyond a basic indication
of existing nodes as they encode both, topological information and
attributes. First, we extend the notion of a kid grid that encodes children,
to a family grid that encodes all members of a family. Figure 5 shows
multiple examples. A family is separated by a vertical line into parents
and children. This vertical line represents the line used to connect
spouses in unaggregated mode. Parents are placed on the left of the
line. In addition to the node shape, we also redundantly encode sex by
position, placing the nodes representing males on top and the nodes
representing females below. This redundant encoding is useful, as
aggregated nodes are rendered significantly smaller, and hence, can be
harder to read. In families with multiple partners, we place all partners
in the same family grid, so that, for example, a family where a woman
who has children with three partners is represented by three squares on
top, and one circle at the bottom.

It is important to note that we break with the convention of placing
nodes based on their birth-year for aggregated families. Instead, we
place the whole family based on the birth year of the parent with a
blood relationships to the ancestors.

Encoding Attributes in the Graph While we address the prob-
lem of encoding multiple attributes for nodes using our linearization
approach, direct, on-node encoding of a very small number of attributes
provides the best bridge between attribute-based and topology-based
tasks. We already discussed how sex (shape), deceased/alive (crossed
out), birth year (horizontal position), and POI (fill) is encoded directly
in the graph. To enable our collaborators to view an additional variable
in the graph, we introduce a glyph, rendered to the right of the nodes,
as shown in Figure 7. In case the attribute is categorical we color-code
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(a) (b)

Fig. 7. Attributes encoded directly in the graph. Age lines visualize the
life-span of individuals. Age lines for people that are alive continue until
the present. Age lines of deceased individuals are terminated at their
year of death. We can see that the individual represented by the node
of interest died at age 31, and his spouse died only shortly thereafter.
Selected attributes can be visualized next to the nodes in glyphs (green
rectangles). (a) The categorical variable bipolar disorder is encoded by a
dark-green color. (b) The numerical variable number of bipolar diagnoses
is encoded as a bar chart.

Fig. 8. The table view. The first column encodes how many individu-
als are aggregated in that row. Binary categories are represented as
present/absent (e.g., sex). Aggregates of categorical variables show
the proportions of the variable in stacked bars. Numerical values are
encoded using a dot plot, which is also used for aggregates.

the glyph; for numerical attributes we show a small bar. In both cases,
the color coding is also used in the table to highlight the relationship
(see the matching colors for biploar disorder in Figures 7(a) and 8).
When data is not available for a node, no glyph is shown.

Finally, we also encode the age of individuals directly in the graph
by drawing a line from the node, which is placed at the year of birth, to
the year of death, or to the current year (see Figure 7). These age lines
conveniently encode an important variable in the existing coordinate
system. We found that the age lines also help to perceptually connect
the nodes to the rows in the table. As we don’t draw age lines for
aggregates, we found it necessary to indicate the connection to the table
using a light-gray background, as can be seen, for example, in Figure 6.

6.2 Table Visualization

The attribute table is designed to visualize both rows representing
individuals and aggregates representing multiple individuals in the same
space. As shown in Figure 8, we use dot plots to encode numerical
data. Combined with transparency and jitter, dot plots can also be used
to encode aggregate rows.

For categorical values, we distinguish between binary categories,
such as deceased or alive, and multi-valued categories, such as race.
We encode binary categories in a single column, as can be seen for “sex
(f)”, where a dark cell corresponds to true and a light cell corresponds
to false. For multi-valued categories, we use one column for each value
instead of, e.g., using color. Hence, we use the strongest visual variable
— position — to encode the data. We represent aggregates of binary or
categorical values as stacked bars, which are scaled according to the
number of individuals in a category.

Text labels and IDs do not have adequate visual representations
for groups of elements, so we display an ellipsis (...) for aggregates.

Fig. 9. The table is sorted by suicide, which causes the rows in the table
to be in a different order than the rows in the graph. The association
between the two is retained by the curves connecting them.

Missing values, which are very common in our datasets, are rendered
as a dash and to distinguish them from zero or false values.

We also provide a column that shows how many people are in a given
row. Here, we print the exact number and use a redundant encoding by
value, where darker cells correspond to more individuals in a row.

As we avoid color to encode data, we can employ it to highlight
elements of interest, such as to highlight selected rows and to indicate
the column that encodes the user-selected phenotype of interest and the
primary attribute. In Figure 8, the selected attribute (bipolar) and the
POI (suicide) are rendered in color.

The attributes visualized in the table can be chosen using the data
panel shown in Figure 1. Numerical and categorical attributes listed in
the panel are accompanied by a histogram, so that analysts can judge
what to expect before adding an attribute to the table.

In combination with the graph, these features enable analysts to
address the tasks related to analyzing individuals (T2), and comparing
cases (T3).

Finally, we also allow analysts to sort the table based on any column.
This enables analysts to easily identify clusters of similar items (T4).
However, sorting by attribute removes the close association with the
graph. To partially remedy this, we draw slope charts, similar to what
is used in LineUp [21], to relate the rows of the table to the rows of the
graph. These connection lines work well for a small number of rows,
but often result in significant crossings when dealing with many rows.
In that case, interactive highlighting helps to trace the lines. Figure 9
shows an example of a partially aggregated graph sorted by suicide.

6.3 Viewing Multiple Families

One important aspect of our collaborators’ workflow is to compare
multiple families (T5). A requirement for comparison of families is the
ability to select families T1, which is enabled by the family selection
view, shown at the top left in Figure 1. The family selection view
shows statistics about the family, such as its size, and the number of
people with the currently selected POI. It also allows analysts to sort by
these attributes to, for example, quickly identify how many individuals
were diagnosed as bipolar before committing suicide, across the whole
dataset, and thus enables them to quickly scan for enriched phenotypes.
Multiple families are seamlessly integrated into the graph and table
views (see Figure 10).

7 IMPLEMENTATION AND PRE-PROCESSING

Lineage is open source and is implemented in TypeScript as a Caleydo
Phovea client/server application [20] and uses D3 for rendering. The
server component is based on Flask and is provided as a Docker con-
tainer for easy deployment. A prototype of Lineage is available at
http://lineage.caleydoapp.org, the source code is avail-
able at https://github.com/caleydo/lineage.
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Fig. 10. Three suicide cases from two families that are both, bipolar and obese. The family structure reveals that the female case had a father who
also committed suicide at a young age, but for whom no detailed data is available. This suggests an important genetic component.

The prototype made available publicly uses two different datasets:
a synthetic dataset designed to showcase features and to highlight
edge cases; and ten selected and anonymized families from the sui-
cide study based on data from the Utah Population Database. The
anonymization method and the selection of families was approved by
the Utah Resource for Genetic and Epidemiologic Research (RGE).
The anonymization process involves randomizing the sex of individ-
uals, randomizing the birth and death years, and randomly deleting
individuals, in addition to omitting attributes that could be identifiable.
Hence, we do not recommend to make clinical inferences based on the
data provided.

8 USAGE SCENARIO

In a typical usage scenario, analysts want to use Lineage to identify
interesting phenotypes that are familially correlated with suicide. Such
discovery will (1) enable selection of familial cases for genotyping
and/or sequencing efforts and subsequent genetic risk discovery analy-
ses, or (2) post-hoc description of cases already subjected to genetic
analyses who show significant familial sharing of genomic regions,
allowing for potential prioritization of genes within these regions based
on genetic associations with co-occurring phenotypes. In this usage
scenario, an analyst starts with a family and browses for cases that are
bipolar. She discovers two cases in a family with 10 suicides in total.
Upon closer investigation, she finds that both cases are male, committed
suicide around the age of 25, were also diagnosed with depression and
were both obese. Looking closer at the number of diagnoses of bipolar
disorder, she finds that one of the two was diagnosed multiple times,
indicating that the diseases was a significant burden. Exploring the
family structure, she sees that they are related to each other, but not
too closely, which is promising for a familial genetic analysis, as they
might share a relevant gene variant, but will not have the large amount
of genomic sharing of close relatives. By checking the LabID, she
ensures that she has genetic material in the study for these cases.

Next, she adds other families with bipolar suicide cases. One other
family has three bipolar cases, but one of these cases seems especially

interesting, because she is also obese, has also been diagnosed with
depression and committed suicide at a young age. Looking at the
family structure of this case, she realizes that the father of the case
has also committed suicide many years before, at about the same age
as the case of interest (see Figure 10). She speculates that, while
no detailed information is available for the father, he likely had the
same comorbidities and hypothesizes that a genetic factor might be
contributing to these cases. Hence, she chooses to select these three
cases to analyze their shared genomic regions, to see whether they share
common variants that may alter gene function or regulation and lead
to risk, with variant selection informed by the knowledge of the case
phenotypes.

9 ANALYST FEEDBACK

We ran an informal feedback session with four analysts (two faculty
members, one research scientist, and one PhD student). With the
exception of one of the faculty members, who is also a co-author,
the participants did not contribute to the design and development of
Lineage, except for the requirement analysis as described in Section 3.
After an introduction to Lineage, participants were asked to use the tool
with their own data and articulate their thought process and observations
according to the think aloud protocol. This was followed by a brief
interview. The sessions took between 90 minutes and two hours.

The feedback we received was overwhelmingly positive, including
statements such as “This is going to completely change how we do
things”. One analyst noted that Lineage will allow them to properly use
visualization for exploration of genealogies for the first time, because
their current tools are not suitable for discovery, as they can only
effectively visualize one or two attributes at the same time, and the
tools are essentially static and difficult to use.

The analysts consistently noted that the integration of attributes and
family structure is critical for them to make decisions about where to
follow up with subsequent analysis, making comments such as “I think
it’s really helpful to see the attributes next to the graph. It really helps
to pinpoint the important cases”.
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We also observed that the analysts largely followed a pattern: after
they selected a family, they quickly aggregated it to get an overview of
the data. Then they continued to drill down, using selective expansion
of branches. After a while, they turned to the table and began to sort
by attributes, to look for individuals with interesting phenotypes. Mul-
tiple analysts commented that a hierarchical sorting approach, which
is currently not supported, would be useful, so that they can easily
find people with a complex phenotype. When using the sorting, they
frequently used the row-highlight feature to trace individuals in the
table back to the genealogy. They also commented that highlighting
the paths to shared ancestors would be very helpful in these cases.

We asked the analysts about their opinions on attribute-preserving
aggregation and how it compared to attribute-hiding aggregation. They
commented that attribute-preserving aggregation is not particularly
useful for their suicide dataset due to the sparse attributes of the non-
affected individuals, but that they can imagine it to be very useful
when applied to their autism dataset that contains more data on family
members. One analyst gave the example that he would be interested to
see autism spectrum scores aggregated for a whole family.

The analysts also stated that they believe that Lineage graphs are
appropriate for presentations in publications and presentations, as the
visual encodings are easy to explain. They asked for some features in
support of presentations, such as the ability to hide irrelevant branches
and/or nodes of the graph, or to re-define the founder to clean up the
genealogy. Finally, we also asked for other features that they wished
the tool had. The answers to that were mostly regarding data, i.e., to
load more data into the tool and to provide export capabilities for a
subsequent statistical analysis.

10 DISCUSSION

We argue that our linearization and attribute-driven aggregation ap-
proach can be applied broadly when analyzing multivariate trees or
tree-like graphs, such as phylogenies or file directories. We also believe
that our strategy of combining explicit, node-link layouts, with the
implicit layout of the family grids is transferable to other application
scenarios.

Our described linearization approach makes the association between
nodes and attributes obvious and enables a tight integration of attribute-
based and topology-based graph analysis tasks. Both aggregation
methods described serve to reduce the space usage of the linearized
tree while preserving the topology, and while preserving the desired
level of information about the attributes. The aggregation is based on
two principles: assigning nodes to be aggregated to the same row, and
combining the explicit node-link layout with the implicit encoding for
aggregated nodes and their leaves (family grids).

The Lineage genealogy visualization tool specifically can be broadly
used with other genealogical datasets, e.g., to study autism, diabetes,
or cancer. There are many groups at the University of Utah that make
use of the Utah Population Database, and we have already established
contact to other potential collaborators who are in need of a clini-
cal genealogy visualization tool. Some of these datasets also have
detailed attributes for non-affected cases, which will make our attribute-
preserving aggregation approach even more valuable.

While our data is unique with respect to its scope, detailed ge-
nealogical datasets are becoming more common, as they have shown
immense potential for population genetics [30]. We believe that our
approach could also be adapted to datasets containing many small fami-
lies (siblings, parents, grandparents, of affected individuals) as they are
commonly collected to study the genetic disease of one family member.

Scalability In contrast to other tools, such as the DOITree [22] our
aggregation approach preserves all of the structure of the tree. This
is suitable for trees with hundreds of nodes, but not for trees with
tens of thousands of nodes or more. To scale to larger trees, these
algorithms could be combined with hiding parts or the tree. Also,
while the described algorithms work for any tree and any phenotype
of interest, they are most efficient if the number of nodes of interest is
small compared to the number of nodes in total. A common phenotype
of interest for our collaborators is suicide, and the typical genealogies

they study contain between 5-15% suicide cases. For these conditions,
we found the resulting layouts to be very compact and useful.

We found Lineage to scale well to families with about 1500 individ-
uals, which covers most families in our collaborators dataset (547 out
of 550 families have less than 1000 individuals). We also experimented
with the largest families in our dataset, which contain about 2500 in-
dividuals. For these families, we observe several seconds of wait time
until the de-cycling and the layout is computed. We anticipate to be
able to address these performance limitations through pre-computing
and caching initial layouts.

In terms of the scalability of the visual encodings, we argue that
Lineage produces a more readable layout in less space than Progeny, the
tool that is currently used by our collaborators for displaying genealo-
gies. Note that Progeny has only very limited capabilities of showing
attributes by encoding attributes directly on the nodes, and displaying
text underneath nodes, and attributes cannot be dynamically selected or
manipulated. For a comparison between Progeny and Lineage, please
refer to the supplementary material. When using suicide as a POI (the
most common use case) and when using attribute-hiding aggregation,
a family with about 400 individuals fits onto a single screen without
scrolling (see Supplementary Figure S2). Larger families, attribute-
preserving aggregation, or no aggregation more commonly require
scrolling.

The number of attributes that can be displayed for each individual
is limited by the horizontal screen size. On a large, 2560x1600 pixel
display, about 20-40 dimensions can be shown, depending on the type
(text and numerical columns need more space than binary categorical,
for example). We found that this typically exceeds the number of
attributes our collaborators would like to study simultaneously.

11 CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel approach for visualizing multi-
variate trees and tree-like graphs using a linearization approach. We
demonstrate the usefulness of our approach by realizing it in the Lin-
eage system, which is designed for the visualization of genealogies in a
clinical context.

While Lineage in its current form is already highly useful to our
collaborators, there are many directions in which it could be extended.
Specifically, we currently deal only with a selected subset of the 3000
dimensions that are available for each of our cases. We plan to develop
integrated visual and analytical methods to select dimensions of interest
for any given subset of patients. For example, the system could identify
that for a given family, PTSD is a common comorbidity and suggest to
the analyst to add PTSD to the table. This kind of approach is going to
be especially important when we start to integrate the detailed genetic
data that is available for many of these cases.
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[33] P. McGuffin, A. Marušič, and A. Farmer. What can psychiatric genetics
offer suicidology? Crisis: The Journal of Crisis Intervention and Suicide
Prevention, 22(2):61–65, 2001.

[34] M. Meyer, B. Wong, M. Styczynski, T. Munzner, and H. Pfister. Pathline:
A Tool For Comparative Functional Genomics. Computer Graphics Forum
(EuroVis ’10), 29(3):1043–1052, 2010.

[35] E. S. Mills. Genealogy in the information age: History’s new frontier.
National Genealogical Society Quarterly, 91(91):260–277, 2003.
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