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Lineage: Visualizing Multivariate
Clinical Data in Genealogy Graphs

Carolina Nobre, Nils Gehlenborg, Hilary Coon, and Alexander Lex

Abstract—The majority of diseases that are a significant challenge for public and individual heath are caused by a combination of
hereditary and environmental factors. In this paper we introduce Lineage, a novel visual analysis tool designed to support domain experts
who study such multifactorial diseases in the context of genealogies. Incorporating familial relationships between cases with other data
can provide insights into shared genomic variants and shared environmental exposures that may be implicated in such diseases. We
introduce a data and task abstraction, and argue that the problem of analyzing such diseases based on genealogical, clinical, and genetic
data can be mapped to a multivariate graph visualization problem. The main contribution of our design study is a novel visual
representation for tree-like, multivariate graphs, which we apply to genealogies and clinical data about the individuals in these families.
We introduce data-driven aggregation methods to scale to multiple families. By designing the genealogy graph layout to align with a
tabular view, we are able to incorporate extensive, multivariate attributes in the analysis of the genealogy without cluttering the graph. We
validate our designs by conducting case studies with our domain collaborators.

Index Terms—Multivariate networks, biology visualization, genealogies, hereditary genetics, multifactorial diseases.
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1 INTRODUCTION

S TUDYING ancestry and familial relationships, i.e., genealogies,
is both a pasttime enjoyed by amateurs and a research area for

professionals [53]. It is hence not surprising that there are numerous
tools to record and visualize genealogies. Yet, most of these tools
focus on analyzing family structures for historical purposes, and
only a few target a clinical use case of analyzing genealogies
in the context of complex, hereditary diseases. Geneticists, on
the other hand, have long used genealogical graphs to study how
a genetic disease manifests itself in families. They use drawing
conventions and standardized symbols to show both the family
structure and the phenotype, i.e., the observable characteristics
of an individual [6]. These charts can provide insights about
the heritability and segregation patterns of genetic diseases. In
their current form, however, they are predominantly useful for
Mendelian diseases, or genetic diseases caused by a small number
of mutations. Complex diseases such as cancer, autism, diabetes,
obesity, and psychiatric conditions such as depression or suicide,
are known to have hereditary components that are regulated by
a multitude of genes, each having a modest effect on risk, and
also to depend strongly on environmental conditions and chance.
When studying these conditions in a population, it is imperative to
simultaneously consider genetic similarities, shared characteristics
of the phenotype, and environmental conditions. Also, for these
polygenic conditions, one needs to consider significantly larger
populations to reason about hereditary relationships and pursue the
discovery of genetic risk mutations.

Current medical or historical genealogy visualization tools are
ill equipped to help researchers find patterns in these large, highly
multivariate graphs of families and their rich medical histories. In
this paper, we present a novel genealogy visualization tool that we
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have developed in collaboration with psychiatrists and geneticists
studying the genetic underpinnings and the environmental factors
of suicide and autism. We use data from the Utah Population
Database1, a uniquely rich resource for population-based analysis
of hereditary diseases.

We contribute a novel technique to visualize large, tree-
like graphs (rooted, directed graphs that have some cycles but
are predominantly in tree form) associated with rich numerical,
categorical, and textual attributes. Our approach leverages the tree-
like structure of the graphs to produce a linearized layout that
enables the direct association of the nodes with rich attributes in
a tightly integrated tabular visualization. We address the issue of
scalability by introducing novel forms of degree-of-interest-based
aggregation that preserve the structure of the graph, and, if desired,
also provide an overview of the attributes of aggregated individuals.
We demonstrate our technique in the context of genealogical data,
and we argue that it can be equally applied to other multivariate
trees or tree-like graphs.

We also contribute a detailed characterization of the domain
problems and the domain data as they are encountered when
analyzing large, clinical genealogies2 and a set of task and
data abstractions derived from these characterizations. Finally,
we contribute the open-source Lineage visualization tool (https:
//lineage.caleydoapp.org), shown in Figure 1, which implements
the technique, and describe multiple design decisions tailored to
genealogical data visualization.

Lineage is in the process of being adopted by our collaborators,
and has undergone iterative design refinements. We have also
demonstrated it to other research groups working with genealogical
and genetic data and have encountered overwhelming enthusiasm.
We validate this work in an illustrative usage scenario and through
qualitative user feedback from domain experts.

1. https://healthcare.utah.edu/huntsmancancerinstitute/research/updb/
2. The terms genealogy and pedigree can be used interchangeably in this

context. However, for simplicity, we will always use genealogy.

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2018. ; https://doi.org/10.1101/128579doi: bioRxiv preprint 

https://lineage.caleydoapp.org
https://lineage.caleydoapp.org
https://healthcare.utah.edu/huntsmancancerinstitute/research/updb/
https://doi.org/10.1101/128579
http://creativecommons.org/licenses/by-nc/4.0/


2

Fig. 1. Lineage visualizing the genealogy of two families with increased numbers of suicides. The genealogy view shows the family relationships in a
linear tree layout, where each node corresponds to a row in the associated table. Suicide cases are highlighted in blue, and a glyph next to the nodes
indicates whether individuals were diagnosed with a personality disorder. The branches use different levels of aggregation (hidden, aggregated,
expanded). The table shows detailed attributes about individuals, or, when branches are aggregated, for groups of individuals.

2 DOMAIN BACKGROUND AND DATA

Our collaborators study the genetic underpinnings and the environ-
mental factors influencing psychiatric conditions, such as autism
and suicide, using detailed genealogical, clinical, and genetic
data. In this paper, we will focus on suicide, yet our methods
are easily transferable to other complex, multifactorial conditions
and diseases. Suicide is a high-impact application, as it is one of
the leading causes of life-years lost [76] and the 10th most common
cause of death in the United States [56]. Suicide is believed to
be caused by a complex combination of risk factors, including
environmental stressors and genetic vulnerability. Aggregated data
across multiple large studies has produced a heritability estimate
of completed suicide of 45% [51], [61]. Genetic risk factors for
suicide are complex and can be classified as multiple subtypes.
These subtypes often are characterized by co-occurring psychiatric
conditions (comorbidities) and/or a combined risk of psychiatric
diagnosis. For example, the genetic risk for schizophrenia is also
associated with a risk for suicide [68].

Our collaborators have compiled a unique dataset of suicide
cases, including DNA and clinical profiles on 4,017 cases. These
cases are linked to the Utah Population Database (UPDB), which

provides genealogical data. Genealogies describe the familial
relationships of individuals across multiple generations.

Figure 2 shows two genealogies using standardized drawing
conventions [6]. Females are drawn as circles, males as squares.
Couples are connected by an edge, and children connect to this
edge using orthogonally routed links. The vertical position of
nodes is given by their generation. A phenotype of interest is
marked by a filled-in node. When studying family relationships, a
common approach is to draw family trees considering the ancestry
of an individual. Figure 2(a), for example, shows the family of the
woman marked in black. The genealogy includes her two siblings
and traces her family tree for two generations to include parents,
uncles and aunts, and grandparents.

In contrast, our collaborators are interested in understanding
genetic relationships between individuals afflicted with a condition
and hence care about individuals who share genetic variants. They
select families for study that have a statistically increased rate of
a condition. These family trees are constructed by tracing cases
back to a “founder”, as illustrated in Figure 2(b). The underlying
hypothesis is that such founders have genetic risk variants that
they passed on to their descendants. Within the genealogy, the
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(a)

Founder

(b)
Fig. 2. Two genealogies using standardized symbols focusing on different
aspects of the family structure. Females are shown as circles, males as
squares. Individuals with a phenotype of interest are filled-in in black.
(a) A genealogy showing the family of the female in black, including
siblings, parents, uncles/aunts, and grandparents. (b) A genealogy
based on a founder, tracing down generations to include the families
of individuals with a phenotype of interest (black).

likelihood of genetic homogeneity is increased, and is more easily
detected through the repeated occurrence of the genetic risk variant
in the familial cases. Note that this genealogy contains only
individuals who are descendants of one founder and his or her
spouse, with the exception of spouses of descendants. Also, the
dataset contains only individuals with direct links to a case; i.e.,
siblings, descendants, and direct ancestors are included, whereas,
for example, uncles/aunts and cousins are not.

The dataset our collaborators have compiled contains about
19,000 suicide cases, including 4,585 recent cases with detailed
data, backed by family structures made up of 118,000 individ-
uals from 551 families. Suicide is frequently associated with
psychiatric comorbidities, i.e., co-occurring chronic conditions,
such as depression, bipolar disorder, substance abuse, PTSD,
or schizophrenia [68]. Also, nonpsychiatric conditions such as
asthma [30] may play a role in some cases. Environmental factors,
such as socioeconomic status, pollution, and seasonality, are also
known to be factors in suicide [2]. To capture this information,
our datasets include demographic variables such as gender, race,
age at death, method of death, family demographics (marriage,
divorce, number of siblings/children), and place of residence at the
time of death. The datasets also include records of other diagnoses
captured as codes from the International Classification of Diseases
(ICD) systems, the frequency with which these diagnoses were
made, and the time of the first diagnosis.

To summarize, each of our many graphs describes a family,
with individuals as nodes and family relationships as edges. Since
the graphs are constructed by tracing ancestry to a founder, they are
predominantly tree-like, but they do include cycles, for example,
when two cousins have offspring. In addition, we have attributes on
the individuals/nodes in the graphs of various data types, including
numerical, categorical, temporal, geographic, and textual data.
These attributes are often sparse because only about 10% of
individuals in the dataset have committed suicide, and our detailed
records extend to only about 2% (4,017) of individuals across all
families. These detailed records capture about 3,000 dimensions
that contain demographic information and information about the
manner of death, but predominantly contain comorbidities in the
form of disease codes and the time and frequency of these diagnosis.
These dimensions are themselves often sparse because, among
other reasons, a colloquial diagnosis such as “depression” can be
recorded using one of about 30 ICD codes.

3 DOMAIN GOALS AND TASKS

This project is rooted in a collaboration with faculty, clinicians,
analysts, and graduate students in the Department of Psychiatry
at the University of Utah. Six domain experts participated in

the project. We loosely followed the design study methodology
proposed by Sedlmair et al. [64]. Our “discover” phase consisted
of multiple meetings with individual collaborators and with the
whole group as a team, studying the domain literature and the
tools they currently use. We also ran a creativity workshop,
specifically the wishful thinking component described by Goodwin
et al. [24], involving all the collaborators. In the workshop, we
asked participants to think about the analysis of suicide data and
then discuss in small groups and take notes on post-its about what
it is they would like to know, see, and do. This idea-generation
phase was followed by a phase in which the teams had to prioritize
their insights and then finally give the whole team an overview of
their key ideas. We recorded the workshop and transcribed both
the audio and the post-its. We then coded the artifacts and three
themes emerged: the data, the factors involved in suicide, and the
analysis tasks. The insights on the data and the factors involved in
suicide were described in the previous section.

The overarching goal of our collaborators is to gain a better
understanding of the determining or associated factors of suicide.
Our collaborators classify the factors associated with suicide into
comorbidities and demographic, genetic, and environmental factors.
Specifically, they are interested in identifying and defining detailed
phenotypes associated with suicide and the degree to which these
phenotypes are familial. By finding people who are similar to each
other in a relevant way, our collaborators hope to reason about
genetic homogeneity, i.e., shared genetic factors contributing to
suicide. They currently rely only on familial structure as a proxy for
genetic homogeneity. However, they recognize that this approach is
limited both as too broad — it is possible that they should consider
only a part of a family — and as too narrow — people outside
a family who have a similar phenotype could also have a similar
genotype. Robust and detailed phenotypes are, of course, also
interesting by themselves, because they can be used, for example,
as part of a risk assessment in a clinical context.

It is important to note that the contextual knowledge of a
researcher is beneficial to the task of classifying a phenotype. For
example, a diagnosis of depression is weighted differently if it
is diagnosed dozens of times and was first diagnosed early in a
patient’s life. Similarly, a young person who commits suicide in
a rural community is unlikely to have a detailed medical history.
Hence, such a case could be similar to others, even if certain
phenotypes are not recorded, if other factors, such as a close
familial relationship, indicate it.

Our collaborators need a visualization tool that is embedded in
a larger analysis process, one that includes calculating statistically
significant familial risk (upstream) and searching for shared genetic
variants (downstream). They need a tool that focuses on finding
individuals and families that are “interesting” with respect to both
their relatedness and their attributes, which can then be used in
further analysis and validation.

We identified the following domain tasks as the most important
aspects in the workflow of our collaborators:

T1 Select families of interest. The analysts want to select a
family by browsing, using prior knowledge, or employing a
data-driven approach. The analysts want to select a family
either by browsing, or by selecting a specific family based
on prior knowledge, or in a data driven way. An example of
the data-driven approach is to find families with high rates of
suicide or with individuals for which suicide co-occurs with
bipolar disorder.
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T2 Analyze individual case. Our collaborators need to investi-
gate the context of a case. For example, a potential genetic
component contributing to suicide is judged differently if the
person had many psychiatric comorbidities and committed
suicide at a young age, compared to a late-life suicide of a
person with a terminal disease.

T3 Compare cases. This task encompasses comparing indi-
viduals and identifying shared attributes to characterize a
potentially meaningful shared phenotype. It also pertains to
analyzing how the individuals are related, which can indicate
the likelihood of shared genetic traits. Insights on shared
environmental factors can be gleaned from both the family
structure and the attributes. For example, siblings are likely
to be exposed to the same environment in their childhood,
whereas cousins might not. Similarly, two people living in the
same area are potentially of similar socioeconomic status.

T4 Judge prevalence and clusters of phenotype. The number
of suicide cases and the prevalence of comorbidities vary
greatly between families and between branches of a single
family. Judging how common a phenotype is in a family or in
part of the family is helpful in identifying subsets of interest
for further study.

T5 Compare families. Once an interesting observation has been
made in one family, our collaborators want to be able to
investigate whether similar cases also appear in other families.
For example, when an association of asthma with suicide is
discovered, they want to know whether it is isolated in one
family or occurs in multiple families and/or individuals.

T6 Quality control. Although not an analysis task per se, our
collaborators also need to judge the quality of the data and
report errors back to the central database. A common data
error we have seen is disconnected components or detached
nodes, which are caused by missing information about an
individual’s mother or father.

Most of these domain tasks rely on both studying the topology
of the network, i.e., the family relationships, and investigating
the attributes associated with the individuals. For example, the
“compare cases” task (T3) relies on both the graph and the attributes
to, for example, reject an outlier in an otherwise well-defined
phenotype within a family, if that outlier is only distantly related
to other cases.

4 RELATED WORK

We focus our discussion of previous work on specialized genealogy
visualization tools and on multivariate network visualization,
since genealogies are highly multivariate graphs. With regard to
multivariate network visualization approaches, we also restrict
our discussion to explicit layouts (i.e., node link layouts) because
implicit layouts (such as SunBursts and treemaps) are ill suited
to visualize attributes at all levels of the hierarchy; and matrices
are not an ideal choice for genealogies since (1) the nodes are
only sparsely connected, hence wasting space, and (2) matrices
are ill suited for path tracing, which is a common task of our
collaborators.

4.1 Multivariate Networks
A multivariate network is a graph where the nodes and the
edges are associated with potentially rich attributes [32]. Many

graph visualization techniques are optimized for either topology
or attribute-based tasks [72], yet in many applications topology
and attributes have to be judged in concert [59]. When analyzing
genealogies, for example, our collaborators want to understand how
two people with a similar phenotype are related, requiring them to
first identify the phenotypes using the attributes, and then to judge
their relatedness using the topology of the genealogy.

Partl et al. [59] classify four basic approaches to visualize
multivariate networks for explicit graph layouts: (1) on-node
mapping, i.e., visualizing the attributes by changing a visual
channel of the node mark or by embedding a small visualization in
the node; (2) small multiples, i.e., showing the same graph multiple
times and visualizing a different attribute on top of each small
network; (3) separate, linked views for the graph and the attributes;
and (4) adapting the graph layout to better fit the needs of attribute
visualization.

These approaches have different strengths and weaknesses with
respect to the tasks they enable. Lee et al. [41] distinguish, among
others, topology-based tasks, i.e., tasks that are related to the
network’s connectivity, and attribute-based tasks, i.e., tasks that are
related to the attributes associated with the nodes.

Although on-node mapping simultaneously supports topology
and attribute-based tasks, it does so for only a few attributes because
the node size limits how many attributes can be encoded. Also,
on-node visualizations are typically not aligned and have distractors
between them, which makes accurate comparison difficult [13].
Gehlenborg et al. [22] review multiple systems that use on-
node mapping for biological networks. An example for slightly
more complex visualizations embedded on nodes is the Network
Lens [29]. The work by van den Elzen and van Wijk [72] is a
special case of an on-node mapping approach: instead of mapping
data directly onto nodes in the networks, they aggregate nodes
into supernodes, show the relationships between the supernodes,
and visualize the attributes of these nodes in small, embedded
visualizations.

Small multiples are also commonly used to visualize attributes
on top of graphs. Barsky et al. [5] and Lex et al. [44], for
example, use small multiples to show gene expression data on
top of biological networks. Using small multiples for multivariate
networks, however, has the disadvantage that the individual
networks have to be rendered in less space, limiting their readability
or the size of the graph for which they are useful.

Separate, linked views excel at visualizing the attributes and
the graph individually, but do not support the integration of both
well. Systems that use this approach [42], [66] rely on linking
and brushing to associate a node with the representation of its
attribute, which requires interaction to reveal relationships between
the topology and attributes.

The fourth approach to multivariate graph visualization is
to adapt the layout of the network so that the nodes can be
easily associated with an effective attribute visualization. This
approach is taken to the extreme in GraphDice [9], where nodes
are positioned in a series of scatterplots based only on attribute
values. Less extreme approaches are various linearization strategies
where graphs are laid out such that associated attributes can be
visualized in efficient tabular layouts, overcoming the drawbacks
of completely separated linked views. Typically, trade-offs for
optimizing the readability of the topology or the linear layout have
to be made. Meyer et al. [52] manually linearize a complete network
and render attributes next to the linear layout. This approach is
efficient, but the complexity of the networks for which it is feasible
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is limited, and topological structures can be hard to see. Partl et
al. [59] use interaction to extract paths from a network, linearize
these paths, and associate the nodes in the paths with rows in a
tabular visualization. This approach, however, requires interaction
and works only for selected subsets of the graph. The recently
published Pathfinder system [58] uses path queries on networks
and presents the resulting paths in a linear, ranked list, juxtaposed
with rich attribute data. This approach, however, is sensible only
for tasks related to paths.

Our work falls into the category of adapting the layout by
linearization. We leverage the fact that the genealogical graphs
our collaborators are interested in are tree-like and linearize the
positioning of the nodes in the tree. We use this tree to juxtapose
scalable and perceptually efficient visualizations of the attributes.

4.2 Tree Visualization
Many examples of multivariate tree visualization techniques are
available, yet none scale to more than a handful of attributes
and work for both intermediate nodes and leaves at the same
time. The on-node mapping strategies discussed in the previous
section can also be applied to visualizations of trees (e.g., [12]),
with the same limitations with respect to scalability. A common
example for tree visualizations associated with many attributes is
the use of a dendrogram tree derived from a hierarchical clustering
algorithm that is aligned to a heat map [16], [43], [65]. Similarly,
the leaves of evolutionary trees can be aligned to heat maps of
the species’ traits [38], [39]. Engel et al. [17] use clustering
to decompose a multidimensional dataset and represent it as a
Structural Decomposition Tree. This approach is unique since it
directly embeds a tree into a projection of a high-dimensional
dataset, foregoing a tabular layout for the attributes. Also related
to our approach are tree tables, since they can be found in file
browsers, where the tree represents the structure of folder and files,
and attributes such as the file size are shown. Tree tables generally
do not provide aggregation functionality — a branch can be either
collapsed or expanded, but cannot be aggregated.

Implicit tree visualization techniques such as tree maps [28],
sun burst [69], or icicle plots [36] are well suited to visualize one
or two attributes of nodes in trees (using size and color), but they
do not scale to more attributes.

These approaches either scale to many attributes for the leaves
of large trees, or are limited to a handful of attributes for all nodes
of the tree. We are not aware of prior tree visualization approaches
that also show rich attributes for intermediate nodes, either in
aggregated form or for each node individually.

Our approach is also related to tree visualization techniques that
provide dynamic aggregation, since we aggregate branches of trees
to highlight nodes of interest. Our approach is based on the concept
of degrees-of-interest functions [20], which is widely applied in
trees [12], [27], including in the original paper, but is also related
to other focus+context tree visualization approaches [55]. For a
broad overview of other tree visualization techniques, we refer to
the tree visualization reference by Schulz [63].

4.3 Genealogy Visualization
Genealogical charts, as shown in Figure 2, are widely used in
genetic counseling and the literature on genetic diseases. They are
well suited to visualize a single phenotype of interest, but they
are not suitable to map a complex phenotype to the node. Our
collaborators currently use Progeny [62], a commercial genealogy

drawing tool that closely follows the standard for visualizing
genealogies [6], [7]. (See the supplementary material for an
example figure created with Progeny.) Although Progeny is well
suited to draw these standard genealogies for use in presentations,
it is ill suited for exploratory tasks, mainly because of its inability
to efficiently encode attributes in the graph.

Interactive genealogy visualization tools that are designed to
analyze disease clusters and to see disease propagation within
families include PedVizApi [19], CraneFoot [46], Haploview
[4], PediMap [73], and HaploPainter [70]. HaploPainter [70]
visualizes genealogies and genetic recombination events below
the individuals’ nodes. Although it shares the approach of showing
metadata as rows associated with nodes with Lineage, it does
not take a linearization approach to make values of different
generations easy to compare, it does not aggregate the network,
and it does not visualize different types of attributes. McGuffin
and Balakrishnan [50] describe layout algorithms for complicated
genealogical trees and introduce aggregation methods for subtrees,
which we adopt.

Among tools that do not use the standard genealogical drawing
conventions are Fan Charts [15], which uses the SunBurst technique
to visualize genealogical trees, and the work by Mazeikla et
al. [49], which employs a force-directed layout that considers
similar phenotypes as additional attracting forces. Tuttle et al. [71]
use an H-tree layout for scalable genealogy visualization, with
the founder at the center and successive generations radiating
out based on a fractal pattern. Ball [3] employs the idea to not
represent generations as discrete units but use time to position the
nodes, and also to draw a person’s life span. Kim et al. introduce
TimeNets [34], a technique also focused on the temporal aspects of
a genealogy. Although TimeNets is well suited to observe temporal
changes in relationships between individuals, relationships between
generations are harder to trace. The recent work by Fu et al. [18]
focuses on visualizing the distribution of tree structures in many
families. The tool combines a Sankey diagram showing properties
of tree structures with explicit node-link diagrams on demand, but
does not consider attributes of the nodes.

GenealogyVis [45] is a recent tool for visualizing genealogies
to study historic data. Although it visualizes multivariate attributes,
it addresses different needs — those of historians — and uses
different approaches. Unlike in Lineage, attributes of individuals
are not shown; rather, the focus is on demographic trends in (parts
of) the network. Supplementary views, such as scatterplots and
maps, allow historians to study, for example, migration patterns.

Genealogy visualization tools for animal genealogies face a
different set of challenges compared to those for human genealo-
gies, as the number of descendants sired by individual animals
can be large, and complex interbreeding is common. Consequently,
tree-based approaches are not well suited for these genealogies.
Examples include CoVE [11] and VIPER [60]. VIPER introduces
a sandwich view that CoVE also adopts. The sandwich view scales
well to many descendants of an individual, but only explicitly
encodes the relationships between parents and their children.
More distant relationships can be revealed through highlighting.
Helium [67] is a visualization technique for plant genealogies,
which commonly have complex crossing. It uses color coding and
scaling of nodes to encode up to two attributes.

GeneaQuilts [10] is a matrix-based technique where each row
constitutes a person and each column a nuclear family. In early
stages of our design process, we considered using a GeneaQuilt
instead of our node link design, since GeneaQuilts produces a
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linearization of the graph that would be suitable for associating
attributes. We ultimately decided against it because (1) the data we
consider for the analysis of genetic relationship is predominantly
tree-like, and hence, the complex design of GeneaQuilts that is
necessary to accommodate general genealogical graphs is not
justified for our simpler, tree-like datasets; (2) a key analysis task
for the graph view is to judge the degree of relatedness between
two nodes, which is not well supported by GeneaQuilts without
interaction; and (3) our design for aggregation is more suitable for
node-link diagrams.

A different approach to analyzing relatedness is to calculate
“kinship coefficients” between individuals, i.e., to calculate path-
based metrics for relatedness and visualize them in a matrix [33].
Although this approach is scalable, it is not suitable for reasoning
about all patterns of inheritance.

A related tool that is concerned with visualizing phenotypes of
patient cohorts is PhenoStacks by Glueck et al. [23]. PhenoStacks
uses a tabular approach similar to what we use for our table.

5 VISUALIZING A MULTIVARIATE GRAPH

The tasks our collaborators need to address rely heavily on both
the familial information contained in the genealogy graph, i.e., the
topology, and the myriad of attributes associated with individuals
(see Section 3). Of the strategies for linearization introduced in
Section 4.1, only the linearization method enables an integrated
analysis of topology and attribute at the scale of attributes we are
interested in. However, none of the described linearization methods
are suitable for the data and tasks of our collaborators. Here, we
introduce a linearization method for tree-like graphs. We define
tree-like graphs as rooted, directed graphs that contain cycles. The
purpose of the linearization is to associate the nodes with rows in a
table visualization.

A consequence of the linearization strategy is that the layout is
not as compact as in other common layouts. To address this issue,
we also introduce degree-of-interest-based aggregation strategies
that integrate seamlessly with the linearized graph.

We illustrate this concept here using general, tree-like graphs,
for now ignoring specific properties of genealogies. We later show
in Section 6 that this approach extends to genealogies (where each
person has two roots: their parents) with minor modifications, and
also elaborate on design decisions we made that are specific to our
data and application area.

5.1 Linearization Approach

De-Cycling

In the first step, we remove cycles from the directed graph,
transforming it into a tree, by duplicating the node that completes
a cycle, similar to the approach of Mäkinen et al. [46]. If the
duplicated node has children, we attach all children to one instance,
while the other instance remains a leaf. Figure 3(a) shows a tree-
like graph with one cycle, Figure 3(b) shows the resulting tree,
where node 7 is duplicated. Although this duplication strategy
works for general directed graphs, it is most useful for directed
graphs with a defined root and few cycles, since in these cases most
of the topology is retained, and the number of additional nodes is
negligible with respect to scalability.
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Fig. 3. Decycling and linearization. (a) A directed, rooted graph with
one cycle ending in node 7. (b) We remove the cycle by duplicating the
last node in the cycle (node 7). (c) The tree is linearized so that each
node is assigned a distinct row. Leaves are rendered above their parents.
This row-based, linear layout enables an unambiguous, position-based
association with a table visualizing attributes.

Linearization
In most tree layouts [1], associating the nodes with rows in a table
by position is impossible. The tree in Figure 3(b) is compact, yet
would require, for example, curved links to associate the nodes
with a table row. To make this association between nodes and rows
of a table intuitive, we use a linearization strategy that assigns
every node a distinct vertical position (i.e., a “row”). The position
of the node alone thus unambiguously associates the node with a
row in a table (see Figure 3(c)). Note that although we assume a
left-to-right tree layout here, a top-to-bottom layout would work
equally well for associating a tree with table columns.

Linearized tree layouts are based on tree traversal strategies.
Although various strategies, such as breadth-first (level-order) or
in-order depth-first-search, are possible, we found that a preorder
depth-first-search works well for our purposes, since it results in a
crossing-free layout and keeps leaves in subsequent rows.

Following the in-order strategy, we recursively place the
descendants of a given node directly above their parents. Note
that a top-down strategy would also be possible. We assume that
an order of leaves can be defined, e.g., based on the attributes. If
not, using a random order is possible.

Figure 3(c) illustrates the results of this algorithm when applied
to the tree in Figure 3(b) and also shows how to easily associate a
table with the tree. Note that the duplicate node also is duplicated
in the associated table.

5.2 Aggregation
Although linearizing the tree allows for a direct, position-based
association of the nodes and their attributes, the resulting layout
uses more space than a compact layout. However, due to their
hierarchical structure, trees are well suited for aggregation. Degree-
of-interest (DOI) functions [20] have been widely applied to trees.
In our design, we use the generalized idea of degree-of-interest
functions by Furnas [20], [21].

We let analysts define a degree-of-interest function based on the
attributes of the nodes, which we call the phenotype of interest
(POI). Nodes that have the POI are referred to as nodes of interest.
In contrast to the original formulation of a degree of interest, our
POI function is binary (i.e., a node is either of interest or not) and
does not consider a distance to a selected node. An example for a
POI is “committed suicide”, which marks all nodes representing
individuals who committed suicide to be of interest, or “has a
maximum BMI of higher than 30”, which would consider all obese
individuals to be of interest. POIs that are a compound of multiple
attributes (high BMI and suicide) are possible.
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Fig. 4. Aggregation approaches demonstrated using the tree in Fig-
ure 3(c). A filled-in circle indicates a node of interest. (a) Attribute-
preserving aggregation. Each node of interest (shown in black) is in
a separate row. Branches without nodes of interest are aggregated into
one row, yet all attributes are preserved in the aggregate representations
in the table. Notice how the two children of node 2 who are not affected
are shown using an implicit encoding, which we refer to as a “kid grid”.
(b) Attribute-hiding aggregation. The branches leading to nodes of interest
are hidden behind them. Only nodes of interest and branches with no
nodes of interest have a row of their own. Only the nodes of interest are
represented in the table.

Based on this degree-of-interest function, we introduce two
approaches to aggregation that vary in how they trade off compact-
ness and preservation of the attributes of the nodes: (1) attribute-
preserving aggregation, and (2) attribute-hiding aggregation. These
aggregation approaches can, of course, be applied not only to the
whole tree, but also to selected subtrees, or to both.

Attribute-Preserving Aggregation
Here we introduce an aggregation strategy for linearized layouts
that preserves both the structure of the tree and the attributes of
all the nodes. Nodes of interest are assigned a row of their own,
whereas other nodes are aggregated into a single row. Figure 4(a)
shows an example of this strategy applied to the tree shown in
Figure 3(c). This layout emphasizes the nodes of interest, while
preserving both the structure of the graph and the attributes of the
other nodes.

Our algorithm recursively follows a (sub)tree down a branch
by assigning a new row to each inner branch. Inner branches are
branches that do not end in a leaf after the first edge, i.e., an edge
that directly connects to a leaf is not an inner branch. If no node
of interest is encountered, the algorithm continues to the leaves,
placing all nodes of the branch in the same row. Multiple leaves
that are not of interest are placed in a kid grid, an implicit encoding
of the leaves as small nodes to the right of their parent. These nodes
retain all visual encodings (e.g., shape for gender, crossed-out for
deceased). We chose this approach for the representation of kid
grids over alternative designs such as a numeric labels or bar charts
since it is consistent with how individuals are represented in other
places in the tree. An example is visible in the bottom branch in
Figure 4(a), where nodes 1, 2, 5, and 7 are on the same row, and the
leaves (5, 7) are in a kid grid. If a node of interest is encountered,
we distinguish two cases. If the node of interest has children that
are leaves and that are not nodes of interest themselves, they are
added to a kid grid, which is placed in the next row (see node of
interest 3,) and its descendant (node 7), which is placed in a kid
grid in Figure 4(a)). If the node has children that are inner nodes,
the algorithm is applied recursively. The result of this algorithm is
a layout that has N rows, where N is the sum of:

• the number of nodes of interest,
• the number of inner branches that do not end in nodes of

interest (case for node 4 in Figure 4(a)),
• the number of nodes of interest that have children that are

leaves (case for the child of node 3 in Figure 4(a)).

The result in the associated table visualization is that each
node of interest has a separate row, and the aggregated branches
are represented in aggregated rows. In practice, we use visual
encodings for aggregates and individual rows that can faithfully
represent the data but are also comparable. For details on the table
design, see Section 6.2.

Attribute-Hiding Aggregation
This form of aggregation also preserves the complete structure of
the tree, but it does not preserve attributes of nodes that are not of
interest. The result, illustrated in Figure 4(b), is a scalable approach
that can be used to address tasks that are concerned only with the
attributes of the nodes of interest and their connectivity, but not
with the attributes of the other nodes.

The main difference compared to the attribute-preserving
aggregation is that nodes of interest are not assigned to a new
row when they are encountered. The algorithm again recursively
follows a (sub)tree down a branch by assigning a new row to
each inner branch. If no nodes of interest are encountered while
traversing the branch, the leaves are placed in a kid grid. If a node
of interest is encountered, the next step depends on whether it has
children that are inner nodes or not. For the node’s children that
are leaves, a kid grid is used, but no new row is started. For all
other branches, the algorithm is applied recursively.

The resulting layout has M rows, where M is the sum of:
• the number of inner branches,
• the number of nodes of interest that have at least one child

that is an inner node.
Here, only nodes of interest and inner branches that do not end

in a node of interest are assigned their own row. For consistency,
we do not represent branches that do not end in a node of interest
in the table.

6 LINEAGE DESIGN

Here we describe the design decisions that are specific to the use
case of visualizing genealogies and that we realized in the Lineage
prototype. To address the tasks of our collaborators, Lineage
provides three views, shown in Figure 1: the genealogy graph
view, the closely synchronized table view, and a family selection
view, which allows analysts to select one or multiple families.

6.1 Genealogy Graph
An important difference between genealogical trees and general
trees is that nodes have not one but two parents. To address this, we
introduce the concept of a couple, indicated by a line connecting
the partners (see Figure 5(a)). As is common in genealogical
graph layouts, the children of a relationship then connect to the
line representing the couple instead of directly to the parents.
We also adopt some of the conventions for drawing genealogical
graphs: males are drawn as rectangles, females as circles. Deceased
individuals are crossed out. In Figure 7(b), for example, the topmost
node represents a female who is alive and has the POI, but the other
nodes with the POI are deceased. Nodes that have the phenotype
of interest are filled in.

As discussed in the previous section, the phenotype of interest
can be defined dynamically, based on either combining categorical
values or brushing a range of a numerical variable. Figure 7 shows
the effect of two different POI functions on the same subtree.

The modifications to the layout algorithm to accommodate
couples are minor: couples are always placed in consecutive rows
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(a) Expanded layout

(b) Aggregated layout

(c) Hidden layout

(d) (e)

Fig. 5. Different aggregation cases. (a-c) A family where one woman
has children with two men. One of the children committed suicide. (a)
No aggregation: every person is in his or her own row. (b) Attribute
aggregation: the suicide case is in its own row; the rest of the family is
aggregated. Notice the family grid with two male and one female parents,
and one daughter and one son. The second son is not in the kid grid
because he is a node of interest. (c) Attribute hiding: the family is hidden
behind the suicide case. Only the attributes of the suicide case will be
shown in the table. (d-e) A different family, where the node of interest has
children, leading to special cases. (d) Attribute aggregation: the spouses
and children are moved to their own row. The line connecting spouses
spans two rows. (e) Attribute hiding: the spouses are placed to the left of
the suicide case, the children to the right.

to avoid long, vertical parent edges. When one of the spouses
has offspring with multiple partners, we place all partners in
consecutive rows. In the case of two partners, we place the person
with multiple relationships in the center to avoid edge crossings.
Figure 5(a), for example, shows a woman who had children with
two partners. For more than two spouses, however, or spouses
who had children with different partners in alternating order, edge
crossings are often unavoidable. Similar to Mäkinen et al. [46],
we use arrows to indicate that a node is duplicated and to point
toward the duplicate. To resolve any ambiguities, we draw an
edge connecting the duplicates when hovering over the arrow (see
Figure 6).

In contrast to traditional genealogical graphs, we do not lay
the nodes out by generation, but use the birth year to position the
nodes horizontally [3], as shown in Figure 1. This approach avoids
ambiguities about the birth order and encodes a vital attribute
directly in the graph. We also use curved splines instead of the
traditional orthogonal edge routing, because continuous edges are
easier to follow [75].

Fig. 6. Visual encoding of nodes that were duplicated in the process of
removing cycles from the graph. The arrow glyph, which is shown at all
times, indicates both the presence of a duplicate and its direction in the
graph. Hovering over the arrow draws a line connecting the node to its
duplicate and highlights the corresponding rows in the table.

6.1.1 Aggregation Layouts

With respect to aggregation, the algorithm is extended only by first
looking for spouses before descending into a subtree. If both are
nodes of interest, each spouse is assigned his or her own row.

We previously introduced the concept of kid grids for ag-
gregated nodes. Indicating hidden nodes using a glyph has been
done before for graph layouts, most notably by McGuffin and
Balakrishnan [50], who use dots to indicate children in genealogical
graphs. Our layout for aggregated genealogies, however, goes
beyond a basic indication of existing nodes as they encode both
topological information and attributes. First, we extend the notion
of a kid grid that encodes children to a family grid that encodes
all members of a family. Figure 5 shows multiple examples. A
family is separated by a vertical line into parents and children. This
vertical line represents the line used to connect spouses in expanded
mode. Parents are placed on the left of the line. In addition to the
node shape, we also redundantly encode sex by position, placing
the nodes representing males on top and the nodes representing
females below. In families with multiple partners, we place all
partners in the same family grid, so that, for example, a family
with a woman who has children with three partners is represented
by three squares on top and one circle at the bottom.

Note that aggregation results in some information loss. For
families in which individuals have offspring with multiple partners,
the exact association between children and parents is lost. Also, the
attributes for all aggregated nodes in a row are displayed together in
the table, removing the exact association between individuals and
their attributes; instead, the distribution of values in that aggregate
is emphasized. When hiding is used, the attributes are removed
entirely from the table. We found that neither of these drawbacks
is a problem since these design decisions align with the analysis
tasks outlined earlier: analysts at first are often interested in nodes
with the POI. When they want to consider other nodes in detail,
they can deaggregate on demand.

It is important to note that we break with the convention of
placing nodes based on their birth-year for aggregated families.
Instead, we place the whole family based on the birth year of the
parent with a blood relationships to the ancestors.

6.1.2 Encoding Attributes in the Graph

Although we address the problem of encoding multiple attributes
for nodes using our linearization approach, direct, on-node encod-
ing of a small number of attributes provides the best bridge between
attribute-based and topology-based tasks. We already discussed
how sex (shape), deceased/alive (crossed out), birth year (horizontal
position), and POI (fill) are encoded directly in the graph. To enable
our collaborators to view an additional variable in the graph, we
introduce a glyph, rendered to the right of the nodes, as shown in
Figure 8. When the attribute is categorical, we color-code the glyph;
for numerical attributes, we show a small bar. In both cases, the
color coding is also used in the table to highlight the relationship
(see the matching colors for bipolar disorder in Figures 8(a) and 9).
When data is not available for a node, no glyph is shown.

Finally, we also encode the age of individuals directly in the
graph by drawing a line from the node, which is placed at the year
of birth, to the year of death, or to the current year (see Figure 8).
These age lines conveniently encode an important variable in the
existing coordinate system. We found that the age lines also help
to perceptually connect the nodes to the rows in the table. Since
we do not draw age lines for aggregates, we found it necessary to

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 27, 2018. ; https://doi.org/10.1101/128579doi: bioRxiv preprint 

https://doi.org/10.1101/128579
http://creativecommons.org/licenses/by-nc/4.0/


9

(a) POI: Suicide (b) POI: Age < 40

Fig. 7. Different POI functions applied to the same aggregated subtree.
(a) Suicide as a categorical POI. (b) Age < 40 as a numerical POI.

(a) Categorical attribute (b) Numerical attribute

Fig. 8. Attributes encoded directly in the graph. Age lines visualize the
lifespan of individuals. Age lines for people who are alive continue until
the present. Age lines of deceased individuals are terminated at their
year of death. We can see that the individual represented by the node of
interest died at age 31, and his spouse died shortly thereafter. Selected
attributes can be visualized next to the nodes in glyphs (green rectangles).
(a) The categorical variable bipolar disorder is encoded by a dark-green
color. (b) The numerical variable number of bipolar diagnoses is encoded
as a bar chart.

indicate the connection to the table using a light-gray background,
as can be seen, for example, in Figure 7.

6.2 Table Visualization

The attribute table is designed to visualize both rows representing
individuals and aggregates representing multiple individuals in the
same space. The attributes visualized in the table can be chosen
using the Table Attributes menu in the tool bar. As shown in
Figure 9, we use dot plots to encode numerical data. Combined
with transparency and jitter, dot plots can also be used to encode
aggregate rows. For categorical values, we distinguish between
binary categories, such as deceased or alive, and multivalued
categories, such as race. We encode binary categories in a single
column, as can be seen for “sex (F)”, where a dark cell corresponds
to true and a light cell corresponds to false. For multivalued
categories, we use a method commonly employed by Bertin [8],
and use one binary column for each category instead of, e.g., using
color to encode categories. We represent aggregates of binary or

Fig. 9. The table view. The first column encodes how many individ-
uals are aggregated in that row. Binary categories are represented
as present/absent (e.g., sex). Aggregates of binary variables show
the proportions of the variable in stacked bars. Numerical values are
encoded using dot plots, which are also used for aggregates. The POI is
highlighted using a gray background. The depression column is starred,
also indicated by the gray background.

Fig. 10. The table is sorted by suicide, which causes the rows in the table
to be in a different order than the rows in the graph. The association
between the two is retained by the curves connecting them.

categorical values as stacked bars, which are scaled according to
the number of individuals in a category. Text labels and IDs do not
have adequate visual representations for groups of elements, so we
display an ellipsis (...) for aggregates. Missing values are rendered
as a dash to distinguish them from zero or false values. We also
provide a column that shows how many people are in a given row.

We avoid color to encode data, so we can employ it to highlight
elements of interest, such as to highlight selected rows and to
indicate the column that encodes the user-selected phenotype of
interest and the primary attribute. In Figure 9, the selected attribute
(bipolar) and the POI (suicide) are rendered in color. A menu in
the columns allows analysts to set the POI, set an attribute as a
primary attribute, and star an attribute. Starring an attribute adds it
to the family selector table.

These features, in combination with the graph, allow analysts
to address the tasks related to analyzing individuals (T2) and
comparing cases (T3).

Finally, we also allow analysts to sort the table based on
any column, which enables them to to easily identify clusters of
similar items (T4). However, sorting by attribute removes the close
association with the graph. To partially remedy this problem, we
draw slope charts, similar to what is used in LineUp [26], to relate
the rows of the table to the rows of the graph. These connection
lines work well for a small number of rows, but often result in
significant crossings when dealing with many rows. In that case,
interactive highlighting helps to trace the lines. Lines that end in
an off-screen location are not rendered. Instead, an icon indicates
the direction of their corresponding row. Clicking on the icons
automatically scrolls to the location of the corresponding row in
the table. Figure 10 shows an example of a partially aggregated
graph sorted by suicide.

6.3 Viewing Multiple Families

One important aspect of our collaborators’ workflow is the compar-
ison of multiple families (T5). A requirement for comparison of
families is the ability to select families T1, which is enabled by the
family selection view, shown on the left in Figure 1. The family
selection view shows statistics about the family, such as its size, the
number of people with the currently selected POI, and the number
of people who have a starred attribute. Combined with sorting, this
feature is useful to identify families with a high incidence of an
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attribute, for example, to identify families in which bipolar disorder
is common. Multiple families are seamlessly integrated into the
graph and table views (see Figure 11). To visually separate the
families, a dashed line is drawn between them.

7 IMPLEMENTATION AND PREPROCESSING

Lineage is open source, is implemented in TypeScript as a Caleydo
Phovea client/server application [25], and uses D3 for rendering.
The server component is based on Flask and is provided as a
Docker container for easy deployment. A prototype of Lineage
is available at https://lineage.caleydoapp.org. The source code is
available at https://github.com/caleydo/lineage.

The prototype made available publicly contains 10 selected and
anonymized families from the suicide study based on data from
the Utah Population Database. The anonymization method and
the selection of families were approved by the Utah Resource for
Genetic and Epidemiologic Research (RGE). The anonymization
process involves randomizing the sex of individuals and the birth
and death years and randomly deleting individuals, in addition to
omitting attributes that could be identifiable. Hence, we do not
recommend making clinical inferences based on the data provided.

8 CASE STUDIES

We present two forms of validation for Lineage: case studies,
a method employed widely to demonstrate the fitness for use
of visualization design studies [37], [64], and informal usability
testing and analyst feedback, which is described in the next section.

The case studies outlined below were conducted with Dr. Hilary
Coon, a psychiatry researcher and principal investigator studying
the genetic and environmental factors in suicide. Dr. Coon, who is
a coauthor of this paper, also participated in the analyst feedback
sessions described in Section 9, and contributed to the design
and development of Lineage. She was familiar with the interface
from the earlier analyst feedback sessions as well as through
demonstrations during the design phase. For the case study, we
deployed Lineage on a secure, password protected and HIPPA
compliant server instance on Amazon Cloud Services, which
allowed her to access the tool from her personal computer, in
her own work environment, and at a time that was convenient.

For the case studies, Dr. Coon used the full dataset described
in Section 2 and performed analysis tasks representative of her
research. She documented her analysis process with notes and
screenshots, which she shared with the team. Sections 8.2 and 8.3
were written by Dr. Coon and reflect her detailed accounts of the
analysis workflow. These case studies were subsequently used in a
research grant proposal.

These case studies demonstrate how Lineage allows our
collaborators to complete several tasks, including (1) selecting
families most likely to point to genetic factors of suicide, and
determining additional defining characteristics of cases in these
families for familial analysis (T1); (2) visualizing aspects of famil-
ial cases contributing to genomic shared regions with genome-wide
significant evidence (T3); (3) searching for supporting evidence by
visualizing additional families with evidence of familial sharing in
the same genomic region (T5); and (4) prioritizing new families
for additional analysis based on visualization of risk and clustering
of defining characteristics (T4).

8.1 Prioritizing Families for Analysis
Dr. Coon uses the suicide dataset described in Section 2 for her
analysis. Using established familial relative risk methods [31], she
ascertains a large number (>200) of extended multigeneration
high-risk families for analysis [14]. Limited time for analysis
and resources requires her to prioritize these families based on
data visualized in Lineage. Our collaborator’s goal is to select
a promising family for the computationally expensive analysis
of Shared Genomic Segments (SGS) [74]. SGS investigates the
significance of genomic segments shared between distantly related
affected cases. If an observed shared segment of the genome is
significantly longer than expected by chance, then inherited sharing
is implied. A greater distance separating cases (i.e., path-distance
in the genealogy graph) translates to the increased statistical power
of the method: chance inherited sharing in distant relatives is
improbable. Finding cases with shared sequences that also have
a shared phenotype (suicide, plus potentially other comorbidities)
allows Dr. Coon to reason that the sequence is a factor in these
phenotypes.

Previous analyses exploring the statistical power of SGS using
simulated high-risk families indicated that power is determined by
familial distance (path length) between cases with genomic data
for analysis, indexed by counting the total number of generations
separating the cases (meioses). In this study, if families had at least
15 meioses between cases, then 3-10 families were sufficient to
gain excellent power (>80%) to see at least one true positive within
any given family [35]. For all scenarios considered, genome-wide
association studies (i.e., studies that do not consider familiarity)
would have negligible power to detect the simulated variants. This
study therefore dictated that extended high-risk families should be
selected with the highest familial relative risk, and with the largest
number of cases with genotyping available for analysis through
interrogating numbers of cases with DNA, and familial distance
of these cases from one another. Familial distance is visualized in
the graph view in Lineage and serves as a useful predictor of the
statistical significance of shared regions among cases. However,
additional data about the cases shown in the table view of Lineage
is useful in later prioritization of genes in regions with significant
evidence of sharing. These attributes include gender, young age at
death, and clustering of comorbidities.

Figure 11 shows two families of high interest (709, 42623),
based on significant familial risk ratios (p<0.0001). These familial
risk ratios are calculated with a separate tool. Significant families
are selected by ID in Lineage. Both families have more than three
cases available for analysis, as indicated by the LabID attribute.
However, 42634 was not chosen for analysis given that cases
are not sufficiently separated (of the four cases with a LabID,
two have a parent-child relationship, for instance), and little co-
occurring diagnostic information is apparent in this family. Lineage
reveals that family 709, in contrast, suggests clustering of multiple
conditions, and has 15 suicide cases with genetic material available
that are also adequately separated (T4).

Our collaborator hence selected family 709 for the computa-
tionally intensive analysis of shared genomic segments. Creation
of files for this analysis was facilitated by exporting the LabIDs
from the family, which serve as the input “proband list”.

8.2 Identifying Comorbidities of Cases Contributing to
Significant Familial Genomic Sharing.
Analyses of selected families to date have produced significant
evidence of genomic sharing. An example is a shared region in
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Fig. 11. Two families with high familial risk for suicide. Our collaborator uses Lineage to prioritize families for an analysis of shared genomic sequences
of suicide cases. Although both families seem promising based on risk alone, Lineage reveals that the few cases with genetic material (indicated by
the presence of a LabID, highlighted in orange) in Family 42623 are too closely related. Family 709, in contrast, contains 15 cases with genetic
material available that are also widely separated. Furthermore, a large cluster of relevant comorbidities (depression, anxiety, alcohol abuse, bipolar
disorder, personality disorder) indicates a likely genetic component of suicide in this family.

family 601627 with genome-wide significance (p=1.94E-10). A
single gene in this region, neurexin 1 (NRXN1), has evidence from
the published literature of involvement in psychiatric risk [48] and
inconclusive evidence for risk of suicide [54]. The shared region in
family 601627 is shared by six cases, shown in Figure S4 in the
supplemental material. Dr. Coon used Lineage to interactively
explore demographic attributes and clustering of clinical co-
occurring conditions (T3). Cases contributing to sharing had
young age at death, ranging from age 17 to 39; average age at
death in the research cohort is 40. The clustering of co-occurring
depression is not completely unexpected, as approximately half
of the suicide cases show evidence of depression. However, the
multiple cases with personality disorders (PD) are more unexpected.
These disorders include less commonly used diagnoses such as
antisocial personality, borderline personality, conduct disorder, and
obsessive personality.

This association was previously unknown to Dr. Coon, and
would have been very difficult to identify given the number of cases
in the family (831) and the number of case attributes. Knowledge
of clustering of attributes in these cases with evidence for this
particular genetic risk will direct our collaborator in her selection
of additional families for resource-intensive replication studies.
The attributes will also guide selection of other nonfamilial cases
from their much larger cohort and of external cohorts for further
replication. If replication is achieved, knowledge of case attributes
could also drive the design of additional targeted studies in specific
high-risk subgroups.

Based on these discoveries, our collaborator then extended her

search for other families associated with shared regions that are
associated with the gene NRXN1 (for details, see Section 2 in the
supplementary material). She found two more families associated
with the gene NRXN1 and consistent demographic attributes and
comorbidities (Figure S5 in the supplement). Across all three
families, the occurrence of PD in the cases supporting the genomic
regions was 8/19=42%. Once the three families had been visualized,
another feature was observed (T5). Of the 19 cases across all
families, 6 were female (31.6%). The percentage of female cases
in the overall cohort was 20.8%. The occurrence of this trend for
this important demographic attribute will help with selection of
additional families to continue to follow up evidence for this and
related genes.

8.3 Prioritizing Additional Families
Our collaborator has found Lineage to be particularly helpful in
prioritizing additional families to follow up initial results based
on clustering of important attributes. For the case study above,
the important attributes were young age at death, presence of PD,
enrichment for female cases, and possibly presence of depression.
Within these selection attributes, families had to also meet minimum
requirements of number and separation of cases with available data,
as discussed in the first case study (T1).

Our collaborator started by sorting the families by the occur-
rence rate of personality disorders (PD) within Lineage, which
resulted in relatively few families with a concentration of cases
with these disorders. She looked not only at overall percentage
of suicide cases in the families with PD, but also at numbers of
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cases with DNA for analysis; even if a family has overall high
enrichment of this diagnosis, if only one or two cases have genetic
data, the family will be of little interest. Given this initial filter,
three families were prioritized at the top (T1): families 540781
(7 PD cases total, 3 with DNA), 10724 (6 PD cases total, 4 with
DNA), and 565350 (5 PD cases total, 3 with DNA). Figure S6 in the
supplement shows the attribute table for these families. As Dr. Coon
was performing this initial task, she noticed that a high number of
the PD suicide cases were also women, even in families not at the
top of this follow-up priority list (T4). Although the association
between these attributes was present in the family described in the
previous case study (6 of the 19 PD cases supporting sharing in the
initial three families were female), this signal was even stronger
in these families identified based on the phenotype characterized.
In families 540781, 10724, and 565350, the proportions of female
PD cases were 4/7, 2/6, and 5/5, respectively. Taking all families
together, the proportion of female cases among those with PD was
11/18 = 61%. Given that female suicide makes up only about 20%
of cases overall, this observed pattern is striking. Our collaborator
is now interested specifically in this association as it may relate to
NRXN1 genetic risk, but also more generally in the association of
these attributes and how this may relate to other phenotypic and
genetic aspects of the research sample.

It became apparent to her that the initial prioritization already
fulfilled another criterion, enrichment for female suicide, likely due
to the association between this characteristic and the occurrence of
PD. Note that this enrichment for female suicide is apparent only
when also considering the PD attribute; taken as a whole, these
families are not significantly enriched for female suicide.

Another attribute of interest was age at death. Taking all age
at death for cases with DNA in families 540781, 10724, and
565350, Dr. Coon found averages of 32.86 (sd=12.48), 43.42
(sd=13.98), and 26.33 (sd=9.06), respectively (T3). This factor
suggests that families 565350 and 540781 may be most interesting
for computationally intensive follow-up of the initial findings, and
will help her and her team makes decisions regarding which cases
to select for expensive molecular sequencing.

Overall, the case study revealed several ways in which Lineage
aided in the analysis process, as detailed above, as well as a few
limitations of the tool. One such drawback is the need to identify
families of interest prior to using Lineage in order to select relevant
families for comparison within the tool. Another limitation is the
need to manually count selected individuals in order to calculate
the percentage of a certain family represented by a selection. These
limitations are addressed in further detail in Section 11.

9 ANALYST FEEDBACK

In addition to the case studies, we ran an informal feedback session
with two faculty members, one research scientist, and one PhD
student. With the exception of one faculty member, who is also
a co-author, the participants did not contribute to the design and
development of Lineage, except for the requirement analysis as
described in Section 3.

After an introduction to Lineage, the participants were asked to
use the tool with their own data and articulate their thought process
and observations according to the think-aloud protocol, followed
by a brief interview. The sessions took between 90 minutes and
two hours.

The feedback we received was overwhelmingly positive, includ-
ing statements such as “This is going to completely change how

we do things”. One analyst noted that Lineage will allow him to
properly use visualization for the exploration of genealogies for the
first time because their current tools are not suitable for discovery,
since they can only effectively visualize one or two attributes at the
same time, and the tools are essentially static and difficult to use.

The analysts consistently noted that the integration of attributes
and family structure is critical for them to make decisions about
where to follow up with subsequent analysis, making comments
such as “I think it’s really helpful to see the attributes next to the
graph. It really helps to pinpoint the important cases”.

We asked the analysts about their opinions on attribute-
preserving aggregation and how it compared to attribute-hiding
aggregation. They commented that attribute-preserving aggregation
is not particularly useful for their suicide dataset due to the sparse
attributes of the nonaffected individuals, but that they can imagine
it might be very useful when applied to their autism dataset, which
contains more data on family members. One analyst gave the
example that he would be interested to see autism spectrum scores
aggregated for a whole family.

The analysts also stated that they believe that Lineage graphs
are appropriate for presentations in publications and presentations,
as the visual encodings are easy to explain. They asked for some
features in support of presentations, such as the ability to hide
irrelevant branches or nodes of the graph, or to redefine the founder
to clean up the genealogy. Finally, we also asked for other features
that they wished the tool had. The answers to that were mostly
regarding data, i.e., to load more data into the tool and to provide
export capabilities for a subsequent statistical analysis. Also, a
search features for individuals and families was mentioned by
multiple participants.

10 DISCUSSION

Although details of our design study and our implementation,
such as how we display parents and family grids, are specific to
genealogies, we argue that our linearization and attribute-driven
aggregation approach can be applied broadly when analyzing
multivariate trees or tree-like graphs, such as phylogenies or
file directories. The species and their relationships depicted in
phylogenies, for example, are associated with vast numbers of
attributes capturing traits (is flightless, has tail, color, etc.), and
judging which attribute is inherited at which point in the tree of life
is crucial for understanding the process of evolution. Answering
these questions is important in a basic science context as well as in
a human health context. An example for the latter is the study of
the development of viruses such as influenza, Zika, or HIV [57].
Our approach also has the potential to be combined with more
generic graph-to tree extraction approaches, as discussed by Lee et
al. [40]. Using their method, arbitrary multivariate graphs could be
converted into trees and explored in Lineage.

Lineage as a clinical genealogy visualization tool specifically
can be applied to study other diseases with a major impact on
human health. We have already deployed Lineage with an autism
dataset (see supplemental Figure S3), which has characteristics
that emphasize the importance of attribute visualization of nonleaf
nodes. In this dataset, attributes are also available for parents and
other relatives of autism cases.

We also argue that our strategy of combining explicit node-link
layouts with the implicit layout of the family grids is transferable
to other application scenarios.
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Our described linearization approach makes the association
between nodes and attributes obvious and enables a tight integration
of attribute-based and topology-based graph analysis tasks. Both
aggregation methods described serve to reduce the space usage of
the linearized tree while preserving the topology and the desired
level of information about the attributes. The aggregation is based
on two principles: assigning nodes to be aggregated to the same
row and combining the explicit node-link layout with the implicit
encoding for aggregated nodes and their leaves (family grids).

The Lineage genealogy visualization tool can be broadly used
with other genealogical datasets, e.g., to study autism, diabetes,
or cancer. Many groups at the University of Utah make use of
the Utah Population Database, and we have already established
contact with other potential collaborators who are in need of a
clinical genealogy visualization tool. Some of these datasets also
have detailed attributes for nonaffected cases, which will make our
attribute-preserving aggregation approach more valuable. Although
our data is unique with respect to its scope, detailed genealogical
datasets are becoming more common because they have shown
immense potential for population genetics [47]. We believe that our
approach could also be adapted to datasets containing many small
families (siblings, parents, grandparents of affected individuals)
since they are commonly collected to study the genetic disease of
one family member.

10.1 Scalability
In contrast to other tools, such as the DOITree [27], our aggregation
approach preserves all the structure of the tree, which is suitable
for trees with hundreds of nodes, but not for trees with tens of
thousands of nodes or more. To scale to larger trees, our algorithms
could be combined with hiding parts of the tree. Also, although our
algorithms work for any tree and any phenotype of interest, they are
most efficient if the number of nodes of interest is small compared
to the number of nodes in total. A common phenotype of interest
for our collaborators is suicide, and the typical genealogies they
study contain between 5-15% suicide cases. For these conditions,
we found the resulting layouts to be compact and useful.

We found Lineage to scale well to families with about 1500
individuals, which covers most families in our collaborators’ dataset
(547 of 550 families have fewer than 1000 individuals). We also
experimented with the largest families in our dataset, which contain
about 2500 individuals. For these families, we observed several
seconds of wait time until the decycling and the layout were
computed. We anticipate addressing these performance limitations
through precomputing and caching initial layouts.

In terms of the scalability of the visual encodings, we argue
that Lineage produces a more readable layout in less space than
Progeny, the tool that is currently used by our collaborators for
displaying genealogies. Note that Progeny has only very limited
capabilities for showing attributes by encoding attributes directly
on the nodes and displaying text underneath nodes, and attributes
cannot be dynamically selected or manipulated. For a comparison
between Progeny and Lineage, please refer to the supplementary
document. When using suicide as a POI (the most common use
case) and when using attribute-hiding aggregation, a family with
about 400 individuals fits onto a single screen without scrolling (see
Supplementary Figure S2). Larger families, attribute-preserving
aggregation, or no aggregation more commonly require scrolling.

The number of attributes that can be displayed for each
individual is limited by the horizontal screen size. On a large,
2560x1600 pixel display, about 20-40 dimensions can be shown,

depending on the type (text and numerical columns need more
space than binary categorical, for example). We found that this
number typically exceeds the number of attributes our collaborators
would like to study simultaneously.

11 CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel approach for visualizing mul-
tivariate trees and tree-like graphs using a linearization approach.
We demonstrate the usefulness of our approach by realizing it in
the Lineage system, which is designed for the visualization of
genealogies in a clinical context. Using Lineage, our collaborators
are now able to efficiently explore the structure of large families and
even multiple families at the same time, in addition to analyzing
dozens of attributes for the individuals in these families. They
can use Lineage to identify phenotypes of interest that appear
in multiple families, and then use this knowledge to inform and
narrow down their search for genetic variants.

Lineage in its current form is already useful to our collaborators,
but there are many directions in which it could be extended.
Specifically, we currently deal with only a selected subset of
the 3000 dimensions that are available for each of our cases. We
plan to develop integrated visual and analytical methods to select
dimensions of interest for any given subset of patients. For example,
the system could identify that for a given family, PTSD is a common
comorbidity and suggest that the analyst add PTSD to the table.
Such an approach will be especially important when we start to
integrate the detailed genetic data that is available for many of
these cases.

The case studies and the feedback session also revealed areas
for future work. First, it is desirable to integrate search and filter
functionality, so that analysts can quickly identify families of
interest based on attribute data. In our current implementation, par-
ticipants used an external spreadsheet with statistical information
about the families, and combined it with the browser search feature
to find families of interest. A second aspect is a panel that displays
basic information about a selection, such as the number of selected
individuals, as well as the percentage of the total family selected. In
our case study, these numbers were achieved by manual counting.

Finally, we are exploring other application areas for Lineage.
We are currently discussing Lineage with evolutionary biologists,
who are excited about the potential of our multivariate tree
visualization method for trait analysis in large phylogenetic trees.
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