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Abstract

One cause of cancer mortality is tumor evolution to therapy-resistant disease. First line
therapy often targets the dominant clone, and drug resistance can emerges from preexisting
clones that gain fitness through therapy-induced natural selection. Such mutations may be
identified using targeted sequencing assays by analysis of noise in high-depth data. Here, we
develop a comprehensive, unbiased model for sequencing error background. We find that noise
in sufficiently deep DNA sequencing data can be approximated by aggregating negative binomial
distributions. Mutations with frequencies above noise may have prognostic value. We evaluate
our model with simulated exponentially expanded populations as well as data from cell line
and patient sample dilution experiments, demonstrating its utility in prognosticating tumor
progression. Our results may have the potential to identify significant mutations that can
cause recurrence. These results are relevant in the pretreatment clinical setting to determine
appropriate therapy and prepare for potential recurrence pretreatment.

1 Introduction

Every extant organism is the result of over three billion years of evolution. Complex organisms
consist of cells whose functions are regulated by a large number of interconnected pathways that
ensure cellular, tissue, and organ homeostasis. Cancer is a result of the breakdown of this process
in a single cell, which results in its unregulated growth. In most cases, the immune system is able
to detect and eliminate such aberrant cells. Sometimes, however, a clone escapes this surveillance
and manifests as clinically detectable disease 40. Consequently, most clinically diagnosable tumors
are clonal, i.e. they grow clonally from a single cell that finds a path to circumvent the body’s
defense mechanisms. The growing tumor accumulates mutations, most of which have low fitness
and therefore are found at low frequencies, outcompeted by the dominant clone.
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The clonal expansion process, which underlies genomic diversification within a tumor, was first
studied by Salvador Luria and Max Delbrück. They designed a simple system of single-cell organ-
isms to investigate patterns of mutation accumulation. Their rigorous quantitative methodology
led them to discover that mutations arise randomly and their numbers follow a distinct probability
distribution24. As the cell population in the tumor diversifies, it is able to explore the fitness land-
scape. Studying the dynamics of this genomic heterogeneity can yield insight into when the clonal
expansion started, how fast the population evolved, and whether specific genomic alterations were
selected in a particular host or under a treatment regimen.

The principal biochemical mechanisms in cancer are often recurrent across tumors in different
tissues. For example, aberrations leading to unregulated cell growth or inactivation of the apoptotic
pathway (cell suicide) are common to almost all tumors. Given the limits within which cells are
regulated, the growing tumor has access to only a finite number of pathways that it can alter. As a
result, tumors arising from different cells of origin often harbor identical genetic mutations, which
alter the same pathways, and often have similar prognostic consequences 5.

First line therapy drugs target a tumor’s dominant, fastest growing clone. Drug resistance
often emerges from the rise of preexisting clones that harbor potential driver mutations that gain
evolutionary fitness via therapy-induced natural selection. It has been shown that the presence
of drug-resistant sub-clones in the primary tumor prior to therapy may be a strong predictor
of poor survival, with direct implications for disease management 28,34,37,44. As cancer therapy
moves towards individualized treatment, it is important to identify and understand the role of such
mutations, some of which may have prognostic value. Such potentially prognostic mutations are
commonly identified using targeted deep sequencing of the tumor DNA in clinical settings, and their
sensitive detection relies on the accurate analysis of background noise, specifically DNA sequencing
errors.

Studying the evolution of chronic lymphocytic leukemia (CLL) under therapy is an illuminating
example of these approaches 19,20. CLL is the most common leukemia in adults and its clinical
course ranges from asymptomatic disease that never requires therapy to rapidly progressive disease
that requires intensive treatment. Genomic alterations in CLL follow a time ordered process 45.
Patients who harbor genomic defects in the TP53 gene, which regulates many pathways including
the cell suicide or apoptotic pathway, are considered at high risk of failing conventional therapies
35. Such patients are good candidates for stem cell transplant or new gene-specific therapeutics
2,39. The presence of such secondary mutations in genes such as TP53 is often assessed using
traditional Sanger sequencing that only provides sufficient power to detect mutations present in
at least 20% of leukemia cells 32. To assess the presence of TP53 prognostic mutations at lower
abundances in newly diagnosed CLL patients, we used deep sequencing and evaluated thousands
of leukemia cells and identified small TP53 mutations that were missed by traditional methods
such as Sanger sequencing 34. We found that TP53 mutated sub-clones identified before treatment
became the predominant population at the time of CLL relapse, as a result of therapy induced
selection pressure. These results suggest that tumors harboring small TP53 mutations have the
same clinical phenotype and risk of failing therapy as those with TP53 defects in the dominant
clone 27,34, and their early detection is essential for the identification and management of high-risk
CLL patients 11.

These results are also pertinent to other hematological malignancies where the presence of
leukemia-associated mutations in remission is associated with significantly increased risk of relapse
and poor survival31,37. These data lead to the conclusion that it is imperative to identify alterations
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that induce therapeutic resistance in leukemia patients in the early stages of disease in order to
properly guide individualized therapy with the goal of preventing disease relapse. However, the
detection of mutations at low allele frequencies (e.g., 1 mutation in 10,000 cells) is hindered by the
lack of a precise model of noise in diagnostic sequencing assays.

Targeted sequencing is the most commonly used method to track prognostic markers in both
clinical and basic research applications 10. However, finding such mutations in sequencing reads is
often confounded by misreading a base in the sequencing instrument or mis-incorporation of DNA
bases (nucleotides) during library enrichment by polymerase chain reaction (PCR) amplification
cycles. More accurate sequencing protocols, which perform overlapping reads of the same genomic
DNA region, allows the merging of such reads for improved accuracy. This facilitates correcting
errors accumulated in the sequencer, while leaving uncorrected PCR errors that arise during library
preparation steps 4,46.

The challenge in identifying potentially functional sub-dominant mutations is to determine the
sensitivity thresholds of sequencing platforms, i.e. the depths above which PCR errors happen with
a probability below a statistical cut-off. Such thresholds can be estimated by hypothesizing that all
variants are due to errors and using deviations from this null hypothesis to indicate the presence of
true variants. This can sometimes be confounded by the fact that different sequencing errors occur
at different rates 3,6. Hence a single threshold cannot comprehensively test the significance of all
variants. As a result, more sophisticated statistical modeling of the background error distribution
is necessary.

To model background error one may use different types of error distributions: (i) a single
or a linear combination of Luria-Delbrück distributions, characterizing the expected number of
spontaneous mutations during tumor growth, where the PCR error rate is assumed to be constant
17; (ii) the negative binomial distribution, describing the depth distribution of clones after PCR
amplification through a Poisson-Gamma mixture model 29; and iii) the beta-binomial distribution,
suitable for Bayesian models, where error rates are assumed to follow the Beta distribution 21.
Although the Luria-Delbrück distribution is expected to better describe the long tail of the error
depths, empirical analysis has shown that the negative binomial distribution gives the best fit to the
observed error depths based on goodness-of-fit log-likelihood 34. The beta-binomial distribution,
in conjunction with multiple filtering criteria based on normal control DNA samples, has also been
proposed for somatic mutation detection from cancer genomes 8,9,23,36.

In this manuscript, we revisit this problem and provide a comprehensive model that illustrates
how aggregate negative binomial distributions describe PCR error depths in ultra-deep targeted
sequencing. We test our model with in silico as well as cell line and patient dilution experiments,
and propose a highly sensitive, mutation-specific approach to detect true mutations, without the
need for control data from un-mutated (wild type) normal tissue DNA.

2 Methods

Derivation of the error depth distribution. Here we will only be discussing the distribution
of low frequency errors in deep DNA sequencing analysis of tumor samples. Let us assume an
experiment in which S independent tissue samples are subjected to ultra-deep sequencing. DNA
sequencing of tumor samples produces strings of nucleotides (A, C, G, and T) of 100-200 base-pair
length that correspond to the DNA sequences of different sections of the genome in the tumor sam-
ple. These sequences of DNA reads are mapped to a “reference” genome and deviations/mismatches
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are identified as potential mutations. Ideally, the reference sequence is the sequence from the pa-
tient’s “germ-line”, usually obtained from blood or some other tissue with normal cells. The
sequencing read depth is the average number of reads that map to the same locus (section of the
genome). At a nucleotide, three potential single base substitutions can occur: A (adenine)→ C, G,
T, or C (cytosine) → A, G, T, or G (guanine) → A, C, T, or T (thymine) → A, C, G. Alternately,
there might be an insertion (addition of one or more A, C, G, T nucleotides) or a deletion (loss
of A, C, G, T nucleotides). All of these will henceforth be referred to as variants. We want to
derive the posterior probability distribution for these variants, assuming they are stochastic, i.e.
they represent noise (statistical random errors).

Suppose that, at a genomic DNA locus, we see ni such variant reads amongst Ni total reads. The
distribution of ni follows a binomial distribution, Bino(ni|Ni, θ), where θ is the a priori probability
of a variant’s occurrence. Let M =

∑S
i6=j Ni be the total number of reads across samples at that

locus and m =
∑S

i6=j ni be the total number of variant (erroneous) reads across samples at that
DNA locus. Then, the posterior predictive p value for having detected a true mutation in sample
j, given S − 1 other samples, can be obtained from the posterior probability distribution:

P (nj |Nj , {ni, Ni}) =

∫ 1

0

Bino(nj |Nj , θ)
∏
i6=j

Bino(ni|Ni, θ)∫ 1
0

∏
i6=j

Bino(ni|Ni, θ′)dθ′
dθ′

=

(
Nj

nj

)
×
∫ 1

0

θnj+m(1− θ)Nj−nj+M−m∫ 1
0 θ

m(1− θ)M−mdθ
dθ

=

(
Nj

nj

)
× Beta(1 + nj +m, 1 +Nj − nj +M −m)

Beta(1 +m, 1 +M −m)
,

where Beta indicates the Beta function. Simplifying the algebra yields the beta-binomial distribu-
tion,

P (nj |Nj ,m,M) =
1 +M

1 +Nj +M

(
Nj
nj

)(
M
m

)(
Nj+M
nj+m

) . (1)

Variations of equation (1) have been previously derived for sequencing depths > 100× 8,9,36. Today,
it is possible to do ultra-deep sequencing, where Ni > 5,000×. In such cases, for low frequency
variants, we can assume that ni � Ni. Therefore, we can use Stirling’s approximation, and estimate(
Ni
ni

)
≈ N

ni
i

ni!
. Equation (1) can then be approximated by

P (nj |Nj ,m,M) =

(
nj +m

nj

)
(

Nj

Nj +M
)nj (

M

Nj +M
)m+1, (2)

which equals NB(nj |1 + m,
Nj

Nj+M ), with NB indicating the negative binomial distribution, and

where 1 +m and
Nj

Nj+M are its two parameters, which we can interpret as the number of detected

errors and the a priori probability of success in detecting an error, respectively.

Exponential expansions at varying error rates. An exponentially expanded population is
generated through c PCR amplification cycles, where each cycle doubles the DNA population. If
errors accumulate independently at a rate of µ substitutions per site per cycle, the average error
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depth (i.e. the average number of reads harboring errors) is 2cµ. For S such populations, the
error depth distribution is described by equation (1), or is approximated by a negative binomial
distribution, NB(1 + (S − 1)2cµ, 1S ), as derived above in equation (2).

It is well known that different types of PCR errors occur at different rates. For example,
transitions, that exchange two-ring purines (A and G) or one-ring pyrimidines (C and T) are more
common than transversions, which replace an A or G with one of C or T. Assuming R independent
rates, the observed number of variants D(v), with error depth v is then given by,

D(v) =

R∑
r=1

XrP (v|2c, (S − 1)2cµr, (S − 1)2c)

≈
R∑

r=1

XrNB(v|1 + (S − 1)2cµr,
1

S
),

(3)

where Xr represents the number of variants that occur with rate µr. Since error rates are often
unknown and sequence context dependent, we can alternatively bin the variants based on their
average error depth across samples and write D(v) as

D(v) =
B∑
b=1

XbP (v|〈N〉, (S − 1)〈v〉b, (S − 1)〈N〉)

≈
B∑
b=1

XbNB(v|1 + (S − 1)〈v〉b,
1

S
),

(4)

where B is the number of bins, Xb is the number of variants in each bin, and 〈N〉 is the average
sequencing depth across S samples. It has been shown that the sum of negative binomial dis-
tributions with equal success probabilities is also a negative binomial distribution, though with a
random parameter 7,43. Thus, the approximation of D(v) in equations (3) and (4) with sums of
negative binomial distributions that have success probability of 1

S , suggests empirical observations
34.

3 Data

In the first experiment, a series of dilutions was generated using the SU-DHL-6 cell line (Diffuse
Large B-Cell Lymphoma), which carries a heterozygous (one allele altered)TP53-Y234C missense
mutation (one that changes an amino acid in a protein sequence) 26. The cells were serially diluted
at (1:10, 1:102, 1:103, 5:104, 1:104, 5:105, and 1:105) by mixing the cell line DNA with TP53 wild-
type genomic DNA from a healthy donor. The TP53 mutation locus was sequenced at depths of
10,000× (10K×), 100,000× (100K×), and 1,000,000× (1M×).

In the second experiment, genomic samples from 18 healthy individuals as well as samples from
undiluted and 1:103 diluted cancer cells from a CLL patient, harboring a heterozygous SF3B1-
K700E missense transition substitution were analyzed and the SF3B1 mutated locus was sequenced
at a mean depth of 620,000×.

For both experiments, each cell line dilution and patient sample was barcoded and targeted
with amplicon multiplexed sequencing using the Illumina MiSeq (2 × 150 bp) (Genewiz, South
Plainfield, NJ). The primers were designed so that the paired-end reads substantially overlapped
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Figure 1: Number of variants with error depth of v from aggregated simulated cycles of PCR
amplification at four error rates: 12 cycles (left), 14 cycles (middle), and 18 cycles (right). Ptheo.

and NBtheo. are calculated using equation (3), and Pemp. and NBemp. are calculates using equation
(4). The χ2 test was used to compare the distributions.

with each other and each read pair was merged to correct sequencing errors. The merged reads
were mapped to the human reference genome (hg19) using the Burrows-Wheeler Aligner (BWA)
alignment tool22, and all variable sites were identified using an inclusive variant caller, adapted
from the SAVI algorithm41.

4 Results

Simulated data. We generated a set of in silico experiments with exponentially expanded popu-
lations starting from a single, homogenous, 100 base-long sequence of binary bases. Each population
was aggregated from four expansions that followed error rates of 10−3, 10−4, 10−5, and 10−6 substi-
tutions per site per cycle. The number 12, 14, and 18 of cycles were chosen to produce populations
with 16,384, 65,536 and 1,048,576 total reads respectively. Each experiment contained 50 indepen-
dent populations (S = 50) and for each experiment, D(v), the expected number of variants with
depth v was calculated using equations (3). This experiment was repeated 100 times. Figure 1
shows the results, as well as statistically significant χ2 p values indicating high accuracy of the
estimates from both the beta-binomial model and its NB approximation.

Dilution experiments. We removed the real diluted TP53 mutation from cell line sequencing
data, and arranged the erroneous variants based on their depth in 5×-sized bins. We then counted
the number of variants Xb in each bin, and calculated D(v) using equation (4). Figures 2, 3,
and 4 show the results for sequencing depths of 10K×, 100K×, and 1M×, indicating statistically
significant χ2 p values that show a strong concordance between estimates from the beta-binomial
model, its NB approximation, and ultra-deep sequencing data. Distinguishing transitions and
transversions further clarified the importance of classifying variants using sequencing depth as a
proxy for the error rates. We obtain similar results from modeling the ultra-deep sequencing data
from the SF3B1 locus (Figure 5).

Detecting true mutations. We propose two comprehensive approaches to assess the presence
of true mutations at very low abundance relative to background. Our methodology does not require
matched normal samples or extensive filtering based on variant annotation resources.
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Figure 2: Error depth distribution in ultra-deep sequencing of a TP53 locus at 10,000× for all
variants (left), transitions (middle), and transversions (right).

Figure 3: Error depth distribution in ultra-deep sequencing of a TP53 locus at 100,000× for all
variants (left), transitions (middle), and transversions (right).

Figure 4: Error depth distribution in ultra-deep sequencing of a TP53 locus at 1,000,000× for all
variants (left), transitions (middle), and transversions (right).

Figure 5: Error depth distribution in ultra-deep sequencing of a SF3B1 locus at mean 620,000×
for all variants (left), transitions (middle), and transversions (right).

First, having established an accurate model to describe the sequencing error distribution, a
threshold is determined above which sequencing errors happen with a probability below an estab-
lished statistical cut-off. These thresholds can be derived from all variants or a subset of variants, for
example, only transitions or transversions. Figure 6 shows such thresholds for detecting the TP53-
Y234C transition mutation in dilution experiments, where we are able to identify the mutation in
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abundances as low as 5:104 at 10K× and 100K×, and 1:104 at 1M×, without any false positive
calls. As shown in Figures 2, 3, and 4, there is better sensitivity for detecting a transversion
substitution.

In the absence of matched normal samples, this approach is especially practical for identifying
mutations that may exist in more than one tumor sample. Its application to 309 newly diagnosed
CLL patients identified small sub-clonal prognostic mutations in four frequently mutated drivers
of this neoplasm, present in 2 out of 1,000 wild-type alleles. These mutations were missed by
traditional Sanger sequencing, but were validated by independent deep sequencing and allele-specific
PCR 33,34.

Second, we tested an individual mutation in each sample against all other sequenced samples and
calculated the cumulative P using equation (1). After correcting for multiple hypotheses using the
Benjamini and Hochberg method 1, we generated a list of variants that satisfied a pre-determined
false discovery rate. This approach is particularly powerful in identifying patient-specific mutations.
We assess the presence of the SF3B1-K700E mutation in patient samples, and find the probability
of observing the mutation in 1:103 CLL dilution to be extremely significant compared to controls
(Table 1). This approach can accurately identify sample-specific mutations by comparing multiple
samples at the same exact mutated base.

In comparison of our method to other published variant calling algorithms, one comparable
unbiased method is EBCall, whose implementation is based on beta-binomial distributions and
establishing priors from normal sequencing data 36. EBCall requires normal samples; therefore,
we removed the reads harboring the diluted mutations in the EBCall analysis to simulate matched
normal data. EBCall, with a sensitivity-adjusted configuration, successfully identified the SF3B1-
K700E mutation in 1:103 CLL dilution sample, as well as the TP53-Y234C mutation in the least
diluted samples at all sequencing depths (i.e. 1:10 in 10K×, 1:102 in 100K×, and 1:103 in 1M×).
However, it failed to detect the mutation at higher dilution levels, and also resulted in four false
positive calls at 1M×.

5 Conclusion

Therapeutic resistance, one of the main causes of eventual disease relapse and mortality in cancer
patients, is often associated with natural selection of preexisting resistant clones under treatment
12,34. The detection of such low frequency sub-clones is hindered by a lack of precision-tested
diagnostic assays.

Allele-specific, real-time PCR assays have been proposed to identify prognostic variants 15,25,42.
These approaches only target known mutations, and their adaptation to situations with large num-
bers of variants requires extensive primer calibration. In contrast, high-throughput sequencing
provides an unbiased view of tumor heterogeneity and its genomic profile. Various techniques
based on unique molecular identifiers have been proposed to correct both polymerase and sequenc-
ing errors 14,16,18,30 that facilitate distinguishing real mutations from mistakes that arise during
amplification. However, the main hurdle in clinical utilization of these approached is the require-
ment for generating very large numbers of sequencing reads to assemble the genome of a single
DNA molecule with high confidence at depth > 2,000×.

Here, we addressed this important problem in cancer therapy by introducing a highly sensitive
method to model sequencing noise, which allows the detection of prognostic markers of disease
recurrence using ultra-deep targeted sequencing. Our approach is based on interrogating data from
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Figure 6: Sensitivity of detecting TP53-Y234C mutation dilutions. Assessing the presence of a
variant requires correcting for multiple hypotheses based on the number of sequenced genomic
positions (Bonferroni correction). Testing the presence of a discovered variant does not require
such a correction; here, the p value of significance is set at 0.01.

multiple tumor samples at identical genomic regions and provides an accurate assessment of the
error rate at a given position without relying on normal samples. Instead of establishing a fixed
detection threshold for all variants, we directly calculate mutation-specific sensitivities. Overall,
since ultra-deep sequencing methods are now routinely implemented in the clinic, we believe that
the application of our comprehensive model to tumor samples will increase the speed with which
patients can be evaluated during disease surveillance. Our method opens up the possibility of
exploring the dynamics of cancer clones after treatment, timing the rise of resistance to therapy,
and determining the clinical importance of minimal residual disease assessed from liquid biopsy
samples for precise disease management 13,38.
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R., Dalla-Favera, R., Gaidano, G.: Integrated mutational and cytogenetic analysis identifies
new prognostic subgroups in chronic lymphocytic leukemia. Blood 121(8), 1403–1412 (2013)

[36] Shiraishi, Y., Sato, Y., Chiba, K., Okuno, Y., Nagata, Y., Yoshida, K., Shiba, N., Hayashi, Y.,
Kume, H., Homma, Y., Sanada, M., Ogawa, S., Miyano, S.: An empirical bayesian framework
for somatic mutation detection from cancer genome sequencing data. Nucleic Acids Res 41(7),
e89 (2013)

[37] Shlush, L.I., Mitchell, A., Heisler, L., Abelson, S., Ng, S.W.K., Trotman-Grant, A., Medeiros,
J.J.F., Rao-Bhatia, A., Jaciw-Zurakowsky, I., Marke, R., McLeod, J.L., Doedens, M., Bader,
G., Voisin, V., Xu, C., McPherson, J.D., Hudson, T.J., Wang, J.C.Y., Minden, M.D., Dick,
J.E.: Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature 547(7661),
104–108 (2017)

[38] Siravegna, G., Marsoni, S., Siena, S., Bardelli, A.: Integrating liquid biopsies into the man-
agement of cancer. Nat Rev Clin Oncol advance online publication, – (2017)

[39] Souers, A.J., Leverson, J.D., Boghaert, E.R., Ackler, S.L., Catron, N.D., Chen, J., Dayton,
B.D., Ding, H., Enschede, S.H., Fairbrother, W.J., Huang, D.C.S., Hymowitz, S.G., Jin, S.,
Khaw, S.L., Kovar, P.J., Lam, L.T., Lee, J., Maecker, H.L., Marsh, K.C., Mason, K.D., Mitten,
M.J., Nimmer, P.M., Oleksijew, A., Park, C.H., Park, C.M., Phillips, D.C., Roberts, A.W.,
Sampath, D., Seymour, J.F., Smith, M.L., Sullivan, G.M., Tahir, S.K., Tse, C., Wendt, M.D.,
Xiao, Y., Xue, J.C., Zhang, H., Humerickhouse, R.A., Rosenberg, S.H., Elmore, S.W.: Abt-
199, a potent and selective bcl-2 inhibitor, achieves antitumor activity while sparing platelets.
Nat Med 19(2), 202–208 (2013)

13

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2017. ; https://doi.org/10.1101/128587doi: bioRxiv preprint 

https://doi.org/10.1101/128587


[40] Stewart, T.J., Abrams, S.I.: How tumours escape mass destruction. Oncogene 27(45), 5894–
5903 (2008)

[41] Trifonov, V., Pasqualucci, L., Tiacci, E., Falini, B., Rabadan, R.: Savi: a statistical algorithm
for variant frequency identification. BMC Syst Biol 7 Suppl 2, S2 (2013)

[42] Vargas, D.Y., Kramer, F.R., Tyagi, S., Marras, S.A.E.: Multiplex real-time pcr assays that
measure the abundance of extremely rare mutations associated with cancer. PLoS One 11(5),
e0156,546 (2016)

[43] Vellaisamy, P., Upadhye, N.S.: On the sums of compound negative binomial and gamma
random vaariables. Journal of Applied Probability 46(1), 272–283 (2009)

[44] Wang, J., Cazzato, E., Ladewig, E., Frattini, V., Rosenbloom, D.I.S., Zairis, S., Abate, F.,
Liu, Z., Elliott, O., Shin, Y.J., Lee, J.K., Lee, I.H., Park, W.Y., Eoli, M., Blumberg, A.J.,
Lasorella, A., Nam, D.H., Finocchiaro, G., Iavarone, A., Rabadan, R.: Clonal evolution of
glioblastoma under therapy. Nat Genet 48(7), 768–776 (2016)

[45] Wang, J., Khiabanian, H., Rossi, D., Fabbri, G., Gattei, V., Forconi, F., Laurenti, L., Marasca,
R., Del Poeta, G., Fo, R., Pasqualucci, L., Gaidano, G., Rabadan, R.: Tumor evolutionary
directed graphs and the history of chronic lymphocytic leukemia. eLife 3, e02,869 (2014)

[46] Zhang, J., Kobert, K., Flouri, T., Stamatakis, A.: Pear: a fast and accurate illumina paired-
end read merger. Bioinformatics 30(5), 614–620 (2014)

14

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 4, 2017. ; https://doi.org/10.1101/128587doi: bioRxiv preprint 

https://doi.org/10.1101/128587

	Introduction
	Methods
	Data
	Results
	Conclusion

