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ABSTRACT 

Concerns regarding the reproducibility of findings have been raised in the field of resting-state 

functional magnetic resonance imaging (R-fMRI). However, little is known about operationally 

defined R-fMRI reproducibility and to what extent it is affected by multiple comparison 

correction strategies and sample sizes. We comprehensively assessed test-retest reliability 

and replicability, two aspects of reproducibility, on widely used R-fMRI metrics in both 

between-subjects contrasts of sex differences as well as within-subject comparisons of 

eyes-open and eyes-closed (EOEC) conditions. We noted permutation test with 

Threshold-Free Cluster Enhancement (TFCE), a strict multiple comparison correction strategy, 

reached the best balance between family wise error rate (under 5%) and test-retest reliability / 

replicability (e.g., 0.68 for test-retest reliability and 0.25 for replicability of amplitude of 

low-frequency fluctuations (ALFF) for between-subject sex differences, 0.49 for replicability of 

ALFF for within-subject EOEC differences). Although the effects in R-fMRI metrics can attain 

moderate reliability, they were poorly replicated in a distinct dataset (replicability < 0.3 for 

between-subject sex differences, < 0.5 for within-subject EOEC differences). By randomly 

drawing different sample sizes from a single site, we found reliability, sensitivity and positive 

predictive value (PPV) rose as sample size increased. Small sample sizes (e.g., < 80 (40 in 

each group)) not only minimized power (sensitivity < 2%), but also decreased the likelihood 

that significant results reflect “true” effects (PPV < 0.26). Our findings have implications for 

how to select multiple comparison correction strategies and highlight the importance of 

sufficiently large sample sizes in future R-fMRI studies. 
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1. INTRODUCTION 

The ability to replicate an entire experiment is essential to the scientific method (Open Science 

Collaboration, 2015). Much of the scientific enterprise, such as providing detailed descriptions 

of methods and peer-reviewing manuscripts before publication, is intended to optimize 

agreement of results when performed by different researchers. Such efforts are crucial 

because science cannot progress if results cannot be reproduced (Blackford, 2017). However, 

concerns regarding the reproducibility of biomedical and psychological research are 

increasingly being expressed (Open Science Collaboration, 2015; Ioannidis, 2005; Prinz, et al., 

2011). This is particularly relevant to the field of resting-state functional magnetic resonance 

imaging (R-fMRI) (Carp, 2012a; Poldrack, et al., 2017), which has appeared to be a fruitful 

approach for basic, translational and clinical neuroscience (Biswal, et al., 1995; Fox and 

Raichle, 2007; Fox, et al., 2005). Beyond its reported sensitivity to developmental, aging and 

pathological processes (Hjelmervik, et al., 2014; Luo, et al., 2011; Tomasi and Volkow, 2012), 

R-fMRI is being increasingly adopted due to its relative ease of data collection and amenability 

to aggregation across studies and sites (Zuo, et al., 2014). These advantages are balanced 

against high dimensionality of data, relatively small sample size of most studies and the great 

amount of flexibility in data analysis, all of which threaten reproducibility.  

 

Some aspects of reproducibility have been examined in regard to R-fMRI. Intra-class 

correlation (ICC), which models the ratio of between-subject variability and within-subject 

variability (Caceres, et al., 2009; Shrout and Fleiss, 1979), has been used to assess test-retest 

reliability, and moderate to high ICC have been reported for most R-fMRI metrics (Cao, et al., 
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2014; Shehzad, et al., 2009; Zuo and Xing, 2014; Zuo, et al., 2013; Zuo, et al., 2010a). 

However, ICC may be less informative, given the common practice in the field of reporting P- 

or Z-thresholded statistical maps (Kristo, et al., 2014). Different thresholding techniques 

delineate different sets and numbers of voxels, it is crucial evaluate the test-rest reliability and 

replicability of the supra-threshold voxels. Therefore, in the current study, we sought to 

propose a quantitative method to calculate the test-retest reliability as well as replicability of 

R-fMRI metrics, which has a diversity of potential applications, such as evaluating the 

reproducibility of new neuroimaging metrics. We did so by comparing differences of common 

R-fMRI metrics between males and females (between-subject) and between eyes-open (EO) 

and eyes-closed (EC) conditions (within-subject) and examining how well the significant 

clusters are reproduced in retests (test-retest reliability) or in totally different datasets/studies 

(replicability). Sex differences were chosen because sex is an objective category that can be 

readily investigated across large scale datasets. To wit, differences in brain function between 

men and women have been well documented in the R-fMRI literature (Allen, et al., 2011; 

et al., 2015; Bluhm, et al., 2008; Filippi, et al., 2013; Hjelmervik, et al., 2014; Kilpatrick, et al., 

2015; Scheinost, et al., 2015; Tomasi and Volkow, 2012; Xu, et al., 2015). We chose to 

examine differences between EO and EC conditions to test whether our findings generalize 

within-subject designs. EO and EC differences have been reported to differ considerably in 

R-fMRI studies (Yan, et al., 2009; Zou, et al., 2009). 

 

By examining the likelihood that significant results can be reproduced in a retest of the same 

group of subjects or in a dataset with a completely different group of subjects, we can 
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examine both test-retest reliability and replicability. However, reproducibility is highly sensitive 

to the statistical threshold used to define significance. Reported reproducibility decreases as 

the significance threshold is enhanced (Duncan, et al., 2009). However, introducing a liberal 

statistical threshold can dramatically increase the family wise error rate (FWER), as shown in 

a recent study which systematically evaluated the FWERs of widely-used statistical methods 

(Eklund, et al., 2016). The trade-off between reproducibility and FWER requires a 

comprehensive investigation into different statistical approaches for multiple comparison 

correction to try to reach a balance. Accordingly, the impact of statistical method, especially 

multiple comparison correction strategies, on reproducibility is the second focus of the 

present study.  

 

Another major concern is the low statistical power of small samples, which are prevalent in 

the field of neuroscience. Carp reviewed over 200 fMRI studies published since 2007, and 

found the median sample size was 15 for one group studies and 14.75 for two group studies, 

resulting in unacceptable statistical power for most studies (Carp, 2012b). Another recent 

analysis (Poldrack, et al., 2017), reviewed 1131 sample sizes in neuroimaging studies over 

more than 20 years. Despite the steady increase in sample size (with median sample size up 

to 28.5 for single-group studies and 19 per group in multi-group studies), the median study in 

2015 was only sufficiently powered to detect effects greater than 0.75 SD units. Button and 

colleagues calculated the statistical power of neuroscience studies with data extracted from 

meta-analyses. They found that the median statistical power of studies in the field of 

neuroscience was optimistically estimated to be between ~8% and ~31% (Button, et al., 
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2013). Moreover, the statistical findings of low power studies are unlikely to reflect true effects 

(i.e., they have low positive predictive value, PPV) (Button, et al., 2013; Ioannidis, 2005). 

Although these concerns have long been known, empirical evidence of how sample size 

influences reliability, as well as power and positive predictive value (PPV) of R-fMRI data are 

still scant. The attempt to establish sensitivity and PPV is hampered by the problem of how to 

define truly positive results. Using findings that are reproducible in many datasets as the “gold 

standard”, it is possible to quantify sensitivity and PPV as a function of sample size.  

 

To address the above issues, we systematically analyzed four independent datasets to 

quantify both the test-retest reliability and replicability of R-fMRI data and investigate how 

multiple comparison correction strategies impact them. We also considered how sample size 

might influence reliability as well as power and PPV. Five common R-fMRI metrics, namely, 

the amplitude of low frequency fluctuation (ALFF) and its fractional version (fALFF), regional 

homogeneity (ReHo), degree centrality (DC) and voxel-mirrored homotopic connectivity 

(VMHC) were employed to encompass possible sex and EOEC differences. We conclude by 

recommending a guideline based on this quantitative analysis to address the challenge of 

reproducibility in R-fMRI research. 

 

2. MATERIALS AND METHODS 

2.1. Participants and Imaging Protocols 

We performed our analyses on four independent datasets. Three of them are publicly 

available via the International Neuroimaging Data-sharing Initiative (INDI, data available at 
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http://fcon_1000.projects.nitrc.org): the Consortium for Reliability and Reproducibility (CORR) 

(Zuo, et al., 2014), the 1000 Functional Connectomes Project (FCP) (Biswal, et al., 2010) and 

Beijing EOEC1 (Liu, et al., 2013). The fourth dataset (Beijing EOEC2) was available through 

The R-fMRI Maps Project (http://rfmri.org/BeijingEOEC2_Raw), and was the basis of 

previous studies (Yan, et al., 2009; Zou, et al., 2009). The first two datasets were analyzed to 

evaluate test-retest reliability, replicability and the influence of sample size on 

between-subject sex differences. The last two datasets were employed to explore whether 

our findings generalize to within-subject design studies (EO and EC differences). In the 

former two datasets, participants were instructed to simply rest while awake in a 3T scanner 

(although three “FCP” sites used 1.5T scanners). In the latter two datasets, participants were 

instructed to open or to close their eyes while being scanned (8 minutes per session, EO and 

EC order counterbalanced across subjects). The R-fMRI data were acquired using an 

echo-planer imaging (EPI) sequence. A high-resolution T1-weighted anatomical image was 

also obtained for each participant for spatial normalization and localization. The 

corresponding institutional review boards of each collection center approved or provided 

waivers for the sharing of anonymized data, which were obtained with written informed 

consent from each participant.  

 

The first dataset originally included 549 subjects who underwent 2 scanning sessions (mean 

time range = 205 ± 161 days) available at CORR. Of those, 420 subjects (age 21.45�2.67, 

208 females, henceforth the “CORR dataset”) were selected after quality control with the 

following exclusion criteria. To avoid the confounds of development or aging, only young 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/128645doi: bioRxiv preprint 

https://doi.org/10.1101/128645
http://creativecommons.org/licenses/by/4.0/


 9

adults (age between 18 and 32) were included. Subjects were excluded if their functional 

scans showed excessive motion, indexed by mean frame-wise displacement (FD), 

(Jenkinson, et al., 2002)), exceeding 0.2mm. Furthermore, participants with poor T1 or 

functional images, low quality normalization or inadequate brain coverage were also 

excluded. The second dataset consisted of 716 young healthy subjects (age 22.34�2.92, 420 

females, henceforth the “FCP dataset”) selected from FCP with the same inclusion criteria as 

the CORR dataset. The third dataset consisted of 48 healthy subjects (age 22.42�2.24, 24 

females, henceforth the “Beijing EOEC1 dataset”). The last dataset included 20 subjects (age 

20.95�1.82, 10 females, henceforth the “Beijing EOEC2 dataset”). The same inclusion 

criteria as the CORR and FCP datasets were applied, but no subject was excluded. For 

further information on the datasets including scanning protocols please refer to the CORR 

(http://fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html), FCP 

(http://fcon_1000.projects.nitrc.org/index.html) and Beijing EOEC1 

(http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEOEC.html) websites. The Beijing 

EOEC2 dataset used the same scanning parameters as the Beijing EOEC1 dataset; the 

detailed protocol can be found in Yan et al. (2009). 

 

2.2. Preprocessing 

Unless otherwise stated, all preprocessing was performed using the Data Processing 

Assistant for Resting-State fMRI (DPARSF, Yan and Zang, 2010, http://rfmri.org/DPARSF), 

which is based on Statistical Parametric Mapping (SPM, http://www.fil.ion.ucl.ac.uk/spm) and 

the toolbox for Data Processing & Analysis of Brain Imaging (DPABI, Yan, et al., 2016, 
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http://rfmri.org/DPABI). First, the initial 10 volumes were discarded, and slice-timing 

correction was performed with all volume slices corrected for different signal acquisition time 

by shifting the signal measured in each slice relative to the acquisition of the slice at the 

mid-point of each repetition time (TR). Then, the time series of images for each subject were 

realigned using a six-parameter (rigid body) linear transformation with a two-pass procedure 

(registered to the first image and then registered to the mean of the images after the first 

re-alignment). After realignment, individual T1-weighted MPRAGE were co-registered to the 

mean functional image using a 6 degree-of-freedom linear transformation without re-sampling 

and then segmented into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) 

(Ashburner and Friston, 2005). Finally, transformations from individual native space to MNI 

space were computed with the Diffeomorphic Anatomical Registration Through 

Exponentiated Lie algebra (DARTEL) tool (Ashburner, 2007). 

 

2.3. Nuisance Regression 

To minimize head motion confounds, we utilized the Friston 24-parameter model (Friston, et 

al., 1996) to regress out head motion effects. The Friston 24-parameter model (i.e., 6 head 

motion parameters, 6 head motion parameters one time point before, and the 12 

corresponding squared items) was chosen based on prior work that higher-order models 

remove head motion effects better (Satterthwaite, et al., 2013; Yan, et al., 2013a). Additionally, 

mean FD was used to address the residual effects of motion in group analyses. Mean FD is 

derived from Jenkinson's relative root mean square (RMS) algorithm (Jenkinson, et al., 2002). 

As global signal regression (GSR) is still a controversial practice in the R-fMRI field, and 
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given the recent advice that analyses with and without GSR be considered complementary 

(Murphy and Fox, 2016), we evaluated results both with and without GSR. Other sources of 

spurious variance (WM and CSF signals) were also removed from the data through linear 

regression to reduce respiratory and cardiac effects. Additionally, linear trends were included 

as a regressor to account for drifts in the blood oxygen level dependent (BOLD) signal. We 

performed temporal bandpass filtering (0.01-0.1Hz) on all time series except for ALFF and 

fALFF analyses. 

 

2.4. A Broad Array of R-fMRI Metrics 

Amplitude of Low Frequency Fluctuations (ALFF) (Zang, et al., 2007) and fractional ALFF 

(fALFF) (Zou, et al., 2008): ALFF is the sum of amplitudes within a specific frequency domain 

(here, 0.01-0.1Hz) from a fast Fourier transform of a voxel’s time course. fALFF is a 

normalized version of ALFF and represents the relative contribution of specific oscillations to 

the whole detectable frequency range. 

Regional Homogeneity (ReHo) (Zang, et al., 2004): ReHo is a rank-based Kendall’s 

coefficient of concordance (KCC) that assesses the synchronization among a given voxel and 

its nearest neighbors’ (here, 26 voxels) time courses. 

Degree Centrality (DC) (Buckner, et al., 2009; Zuo, et al., 2012): DC is the number or sum of 

weights of significant connections for a voxel. Here, we calculated the weighted sum of 

positive correlations by requiring each connection’s statistical significance to exceed a 

threshold of r > 0.25 (Buckner, et al., 2009). 

Voxel-mirrored homotopic connectivity (VMHC, Anderson, et al., 2011; Zuo, et al., 2010b): 
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VMHC corresponds to the functional connectivity between any pair of symmetric 

inter-hemispheric voxels - that is, the Pearson’s correlation coefficient between the time 

series of each voxel and that of its counterpart voxel at the same location in the opposite 

hemisphere. The resultant VMHC values were Fisher-Z transformed. For better 

correspondence between symmetric voxels, VMHC requires that individual functional data be 

further registered to a symmetric template and smoothed (4 mm FWHM). The group 

averaged symmetric template was created by first computing a mean normalized T1 image 

across participants, and then this image was averaged with its left–right mirrored version 

(Zuo, et al., 2010b). 

 

Before entering into further analyses, all of the metric maps were Z-standardized (subtracting 

the mean value for the entire brain from each voxel, and dividing by the corresponding 

standard deviation) and then smoothed (4 mm FWHM), except for VMHC (which were 

smoothed and Fisher-Z transformed beforehand). Of note, all the R-fMRI metrics of the four 

datasets have been openly shared through the R-fMRI Maps Project (http://rfmri.org/maps), 

thus readers can easily replicate the current results based on these shared maps.  

 

2.5. Strategies to Correct for Multiple Comparisons 

We first evaluated the FWER of 31 different kinds of statistical strategies (see Tables 1 and 2). 

Statistical maps were thresholded using eight versions of the one-tailed Gaussian random 

field theory (GRF) (Friston, et al., 1994; Nichols and Hayasaka, 2003) correction procedure, 

as implemented in DPABI (Yan, et al., 2016). These eight thresholding approaches used 
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single-voxel thresholds (or cluster-defining thresholds) of P < 0.01 (Z > 2.33), P < 0.005 (Z > 

2.58), P < 0.001 (Z > 3.09), or P < 0.0005 (Z > 3.29), and cluster size thresholds of P < 0.05, 

or P < 0.025. Given that GRF correction is only performed on one-tailed tests, we set P < 

0.025 to perform two one-tailed tests, which is equivalent to two-tailed P < 0.05 after 

Bonferroni correction. Furthermore, we evaluated FWER of two versions of Monte Carlo 

simulation (simulated by 1000 times) based corrections (Ledberg, et al., 1998), which is 

implemented in AFNI (AFNI 3dClusterSim, 

https://afni.nimh.nih.gov/afni/doc/manual/3dclust.pdf) and DPABI (DPABI AlphaSim), 

separately. We note the bug reported in Eklund et al. (2016) had been fixed in the software 

versions used in the current study. Statistical maps were also thresholded using seven 

versions of permutation tests (PT), as implemented in PALM (Winkler, et al., 2016) and 

integrated into DPABI. For PALM approaches, two-tailed P < 0.05 (compared to 1000 

permutations in FWER evaluation, and 5000 permutations for the remaining analyses) was 

set as the final threshold. For cluster-extent PT, voxel thresholds (cluster-defining thresholds) 

of two-tailed P < 0.02 (Z > 2.33), P < 0.01 (Z > 2.58), p < 0.002 (Z > 3.09) and p < 0.001 (Z > 

3.29) were set. The threshold-free cluster enhancement (TFCE) (Smith and Nichols, 2009) 

and voxel-wise correction (VOX) with PT were also tested at two-tailed P < 0.05. Finally, false 

discovery rate (FDR) (Genovese, et al., 2002) correction was also examined. Of note, after 

FWER evaluation, two sets of strategies (AFNI 3dClusterSim and DPABI AlphaSim) were 

excluded from further analyses due to their computational demands and higher FWER than 

GRF correction (see Results below). 
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2.6. Evaluating FWER of Different Strategies to Correct for Multiple Comparisons 

To calculate the FWERs of different approaches for multiple comparison corrections, we 

performed permutation tests (1000 permutations in this study). For this permutation test, we 

first selected 106 female young subjects from the Beijing site within the FCP dataset to 

maximize sample homogeneity. Then, 40 subjects were randomly picked from the set of 106 

subjects and randomly assigned to two equal groups (20 per group). Because assignment 

was fully random, no significant results should have emerged when these two groups’ R-fMRI 

metrics were compared. Detection of a significant difference after multiple comparison 

correction indicated a family wise error had occurred. Thus, FWER was calculated as the 

proportion of such false positives in all comparisons within the permutation test. 

 

2.7. Assessing Test-retest Reliability and Replicability of Different Datasets with 

Regard to Between-Subject Sex Differences and Within-Subject EOEC 

Differences 

We first assessed the test-retest reliability and replicability of sex differences with CORR and 

FCP datasets. For each of the first two datasets, we employed a general linear model to 

examine the sex differences in R-fMRI measures while taking the confounding effects of age, 

head motion (mean FD) and site into account. Sex effect was estimated by the t value of the 

regressor corresponding to sex. Then the group difference map was corrected using different 

multiple comparison correction approaches described above to obtain statistically significant 

clusters.  
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The Dice coefficient was used to evaluate test-retest reliability. It is calculated by the following 

equation:  

���� �
2 � 	�������

	� 
 		
 

 

Where V1 and V2 represents the number of supra-threshold voxels in test 1 and test 2 of the 

CORR dataset, and Voverlap stands for the number of supra-threshold voxels in both tests.  

 

To calculate replicability, we selected the voxels which were significant in both sessions in the 

CORR dataset, and then calculated how they overlapped with the significant voxels in the 

FCP dataset. We used the same Dice formula, with V1 representing the number of voxels 

significant in both sessions in the CORR dataset, V2 representing the number of voxels 

significant in the FCP dataset, and Voverlap standing for the number of voxels that were 

significant in both sessions in the CORR dataset as well as significant in the FCP dataset. 

 

For each multiple comparison correction strategy, we calculated test-retest reliability and 

replicability. To figure out which multiple comparison correction strategy yielded the best 

test-retest reliability and replicability, a non-parametric one-way repeated measures ANOVA 

(Friedman’s test) on 5 metrics by 2 operations (with and without GSR) was conducted, and 

followed by post-hoc analyses corrected by Tukey's honest significant difference criterion.  

 

Finally, we used the voxels that were significant in both CORR sessions and in the FCP 

dataset as the “gold standard” for further evaluation (see section below). We believe these 
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consistently significant voxels reflect true differences between males and females based on 

their high test-retest reliability and replicability in two large sample datasets.  

 

To see whether our findings on between-subject sex differences generalized to within-subject 

design EOEC differences, we further evaluated the replicability of the EOEC differences 

across two Beijing EOEC datasets. For each dataset, paired-t tests between EC and EO 

conditions were performed to examine EOEC differences in R-fMRI measures, while taking 

the confounding effect of head motion (mean FD) into account. Of note, between-subject 

factors (e.g., age and sex) did not need to be covaried in this within-subject design. Then, the 

EOEC difference map was corrected using different multiple comparison correction 

approaches described above to obtain statistically significant clusters. Similar to the sex 

difference analyses, the Dice coefficient was employed to calculate the replicability of EOEC 

differences between the two Beijing EOEC datasets. Then, a non-parametric one-way 

repeated measures ANOVA (Friedman’s test) on 5 metrics by 2 operations (with and without 

GSR) and post-hoc analyses corrected by Tukey's honest significant difference criterion were 

conducted to evaluate all multiple comparison correction strategies with regard to replicability 

of EOEC differences. 

 

2.8. Influences of Sample Size on Test-retest Reliability, Sensitivity and Positive 

Predictive Value 

To estimate the influence of sample size on test-retest reliability, we tested the Dice 

coefficient of the two tests (test/retest) as a function of sample size 
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(k�{30,40,50,60,70,80,90,100,120,140,160,180,200}). First, we randomized 100 times the 

order of female participants (and separately the order of male participants) from a single site 

(the “SWU 4” site in the CORR dataset, which has two sessions of 116 males and 105 

females). Second, for each randomization of each k, we selected the first k/2 female 

participants and the first k/2 male participants. We then performed two-sample t-tests 

between males and females (with head motion as a covariate) and then applied permutation 

test with TFCE (which performs better, see Results) to threshold the results. Finally, we 

calculated the Dice coefficient between the thresholded maps (binarized) of the first test and 

the retest, for each of the 100 randomizations and each k.  

 

We also evaluated the sensitivity and PPV of the voxels which were significant in both tests of 

each randomization and each k, based on the “gold standard” defined in the prior section. 

The sensitivity of a study measures the proportion of positives that were correctly identified as 

such (Altman and Bland, 1994), while PPV is the probability that a positive finding reflects a 

true effect (Ioannidis, 2005). A recent analysis (Button, et al., 2013) demonstrated that studies 

with small sample size not only reduce the chance of detecting a true effect, but also reduce 

the probability that significant findings reflect a true effect. To determine this effect of sample 

size, the sensitivity and PPV were calculated: 

��
�������� �
��

�� 
 ��
 

��	 �
��

�� 
 ��
 

where TP is equal to the number of “true positive voxels”, which were statistically significant 

and reflected the true effect. As the true effect is difficult to define, we used the voxels that 
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were significant in both CORR sessions and in the FCP dataset (the “gold standard” voxels 

defined above) after PT correction with TFCE. FN represents the number of “false negative 

voxels”, that were statistically insignificant but reflected a true effect. And FP stands for the 

number of the false positive voxels that were statistically significant but did not reflect the true 

effect.  

 

3. RESULTS 

3.1. FWER of Different Multiple Comparison Correction Strategies  

To evaluate the test-retest reliability and replicability of R-fMRI metrics, an appropriate 

statistical threshold and multiple comparison correction strategy must be defined in advance. 

The appropriate multiple comparison correction strategy must control the false positive rate at 

an acceptable level. Here, we evaluated 31 different multiple comparison correction 

strategies with 5 different R-fMRI metrics by 2 different operations (with and without GSR) in 

106 female young adults (selected from the Beijing site of the FCP dataset). Based on the 

group differences of two randomly assigned groups (20 subjects per group, permuted 1000 

times), we calculated FWER for each multiple comparison correction strategy. Table 1 

presents FWERs and cluster sizes of GRF and Monte Carlo Simulation based correction 

strategies on ALFF. Other metric’s FWERs can be found in supplementary materials (Table 

S1-S4). For FWERs under GRF and Monte Carlo Simulation based corrections, the liberal 

voxel P thresholds (cluster-defining threshold) (P < 0.01 (Z > 2.33) and P < 0.005 (Z > 2.58)) 

far exceeded nominal 5% level (Table 1, Figure 1 & Tables S1-S4). Furthermore, as most 

researchers are interested in two-tailed effects (e.g., both patients > controls and patients < 
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controls), if they perform one-tailed thresholding twice (i.e., each tail P < 0.05), then the final 

FWER is higher than the nominal 5% level. Only if the researcher corrects the two tests of 

each tail (e.g., Bonferroni correction, each tail controlled at P < 0.025), can the FWER reach 

the nominal 5% level. For example, GRF was almost valid (FWER = 5.4%) under the strictest 

threshold (voxel-wise P < 0.0005 and cluster-wise P < 0.025, each tail), while FWERs of 

Monte Carlo Simulation based correction exceeded their nominal 5% level (Table 1 & Table 

S1-S4), especially in metrics with higher smoothness. For example, for ReHo maps which 

have relatively higher smoothness (9.4×8.7×8.4mm), FWER can reach 15.7% for AFNI 

3dClusterSim (or 9.7% for DPABI AlphaSim), which is much worse than GRF (5.4% FWER) 

(Table 2). Given their high computational demands and their higher FWER than GRF 

correction, the two versions of Monte Carlo Simulation based correction (AFNI 3dClusterSim 

and DPABI AlphaSim) were excluded from further analyses. Almost all the remaining versions 

of PT and FDR correction controlled the FWER at the nominal 5% level (Table 2 and Figure 

1).  

 

3.2. Test-retest Reliabilities of R-fMRI Metrics under Different Multiple Comparison 

Correction Strategies with Regard to Between-Subject Sex Differences 

Some argue liberal statistical thresholds can achieve better test-retest reliability and 

replicability at the cost of higher FWER. After evaluating the FWER, we systematically 

evaluated the test-retest reliabilities of five R-fMRI metrics under 15 different multiple 

comparison correction strategies on the CORR dataset (Table 3). On average, test-retest 

reliability reached 0.49 (SD: 0.14, Range: 0.11 ~ 0.75) among different R-fMRI metrics. ALFF, 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/128645doi: bioRxiv preprint 

https://doi.org/10.1101/128645
http://creativecommons.org/licenses/by/4.0/


 20

fALFF and ReHo had relatively high test-retest reliability: ALFF: 0.65 ± 0.01, fALFF: 0.60 ± 

0.11, ReHo: 0.53 ± 0.03. In contrast, DC and VMHC had lower test-retest reliability: DC: 0.39 

± 0.05, VMHC: 0.40 ± 0.07. Interestingly, we found GSR decreased test-retest reliability of 

R-fMRI metrics. For example, DC’s test-retest reliability decreased from 0.37 to 0.11 under 

correction of PT with VOX.  

 

Similar to the findings of Duncan et al. (Duncan, et al., 2009) , we also found test-retest 

reliability under GRF correction with stricter cluster defining thresholds were lower than those 

with looser thresholds. To fully investigate test-retest reliability under different thresholds, we 

further performed a Friedman test on 5 metrics by 2 operations (with and without GSR) to 

identify the best multiple comparison correction strategy that can balance test-retest reliability 

and FWER (see Figure 2). Results showed significant differences among the 15 different 

multiple comparison correction strategies (Friedman’s chi-square = 74.45, df = 14, N = 10, P 

< 0.001). Further post-hoc analysis revealed that GRF with liberal thresholds (voxel-wise P < 

0.01 and cluster-wise P < 0.05 or 0.025, each tail) and PT with TFCE achieved better 

test-retest reliability. For example, PT with TFCE had significantly higher test-retest reliability 

than GRF (voxel-wise threshold of P < 0.0005 (Z > 3.29) with cluster-wise thresholds of P < 

0.05, or P < 0.025, each tail), PT (voxel-wise threshold of P < 0.002 (Z > 3.09) and P < 0.001 

(Z > 3.29) with cluster-wise thresholds of P < 0.05 (two tailed)) and PT with voxel-wise 

correction (VOX) in the post-hoc analysis (P < 0.05, multiple comparison corrected by 

Tukey's honest significant difference criterion) (Figure 2A). However, even at the cost of high 

FWER, GRF with loose thresholds (voxel-wise P < 0.01 with cluster-wise P < 0.05, each tail) 
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did not show significantly higher test-retest reliability than PT with TFCE. Thus we conclude 

PT with TFCE was best able to balance FWER and test-retest reliability.  

 

3.3. Replicability of R-fMRI Metrics under Different Multiple Comparison Correction 

Strategies with Regard to Between-Subject Sex Differences 

To calculate replicability, we selected the voxels that were significant in both CORR sessions, 

and then calculated their overlap with the significant voxels in the FCP dataset (Table 3). 

Generally, replicability was lower than test-retest reliability, achieving a mean of 0.10 (SD: 

0.07, Range: 0.00 ~ 0.25). Under the multiple comparison correction of PT with TFCE, ALFF 

reached a replicability of 0.25. None of the measures reached replicability higher than 0.3. 

This means that even voxels that could be reliably detected in two different sessions in the 

same subjects, were difficult to replicate in a totally different dataset. This might be due to the 

many different factors between the two different datasets, for example, variation in ethnicity, 

sequence type, coil type, scanning parameters, participant instructions, head-motion restraint 

techniques, etc.  

 

A Friedman’s test was conducted to compare replicability under different multiple comparison 

correction strategies. Results showed significant differences among 15 different multiple 

comparison correction strategies (Friedman’s chi-square = 86.11, df = 14, N = 10, P < 0.001). 

PT with TFCE had significantly higher replicability than PT with VOX in the post-hoc analysis 

(P < 0.05, multiple comparison corrected by Tukey's honest significant difference criterion) 

(Figure 2B). Again, we found that, even at the cost of high FWER, GRF with liberal thresholds 
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(voxel-wise P < 0.01 and cluster-wise P < 0.05, each tail) did not show significantly higher 

replicability than PT with TFCE.  

 

3.4. Core Brain Regions with Reliable and Replicable Sex Differences  

Sections 3.1 ~ 3.3 showed that PT with TFCE yielded moderate test-retest reliability and 

replicability while maintaining FWER under the nominal 5% level, thus outperforming the 

alternative multiple comparison correction strategies. This allowed us to determine the core 

brain regions which differ by sex in R-fMRI metrics by identifying voxels that were replicated 

across both sessions of the CORR dataset and the FCP dataset when applying PT with 

TFCE correction. As shown in Figure 3, significant differences between males and females 

were reproducibly observed for all R-fMRI metrics. Brain regions with sex differences varied 

across R-fMRI metrics, although they converged at the posterior cingulate cortex (PCC). PCC 

demonstrated lower spontaneous activity in males compared with females in all the metrics 

except for DC (i.e., ALFF, fALFF, ReHo and VMHC). The voxels with replicable sex 

differences were considered the “gold standard” in Section 3.6 to calculate sensitivity and 

PPV with different sample sizes.  

 

3.5. Replicability of R-fMRI Metrics under Different Multiple Comparison Correction 

Strategies with Regard to Within-Subject EOEC Differences 

To verify whether our results from between-subject design sex differences generalize to 

within-subject design studies, we further calculated replicability of significant voxels from two 

EOEC datasets (Beijing EOEC1 and EOEC2 datasets). Again, we used the Dice coefficient to 
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evaluate replicability (see Table 5). In sum, our results from between-subject sex differences 

were largely verified. Although replicabilities of within-subject EOEC differences were higher 

than between-subject sex differences (Mean: 0.22, SD: 0.14, Range: 0.00 ~ 0.50), overall 

replicability still did not reach adequate levels. Similarly, replicabilities of ALFF (0.27 ± 0.15), 

fALFF (0.18 ± 0.10) and ReHo (0.36 ± 0.12) were higher than those of DC (0.13 ± 0.10) and 

VMHC (0.15 ± 0.07). The best replicability that could be achieved was 0.49 for ALFF under 

PT correction with TFCE. Then we conducted a Friedman’s test to compare replicability 

under different multiple comparison correction strategies. Results revealed a significant 

difference among different multiple comparison correction strategies (Friedman’s chi-square 

= 12.73, df = 14, N = 10, P < 0.001). Again, post-hoc analysis revealed that PT with TFCE 

had the best replicability (Figure 2C). 

 

We further analyzed the spatial locations of significant EOEC differences. As illustrated in 

Figure S1, replicable significant EOEC differences were observed mainly in bilateral 

precentral and postcentral gyrus (EC > EO) and bilateral occipital cortices (EO > EC).  

 

3.6. Influences of Sample Size on Test-retest Reliability, Sensitivity and PPV 

Firstly, we assessed the test-retest reliability of sex differences across different sample sizes 

(k), which we measured using the Dice coefficient (Figure 5A, Table 6). Our results revealed 

that mean test-retest reliability gradually increased from 0.02 (Dice coefficient, SD = 0.08, k = 

30) to 0.46 (Dice coefficient, SD = 0.07, k = 200). However, at a classical sample size for 

R-fMRI (k = 60, 30 per group), mean test-retest reliability was only 0.08 (Dice coefficient, 
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Table 6).  

 

For significant voxels in both tests of each randomization and each k, we calculated 

sensitivity (power) and PPV using the previously defined “gold standard” (significant voxels in 

both CORR sessions and in the FCP dataset after correction of PT with TFCE). As shown in 

Figure 5B and Table 6, mean sensitivity increased from 0.0007 (SD = 0.004, k = 30) to 0.43 

(SD = 0.07, k = 200). For PPV, after increasing from 0.02 (SD = 0.09, k = 30) to 0.26 (SD = 

0.24, k = 80), PPV reached an asymptote at around 0.30 (Figure 5C, Table 6). 

 

4. DISCUSSION 

A recent analysis observed that the conclusions drawn from many neuroimaging studies are 

probably irreproducible (Poldrack et al., 2017). Lack of reproducibility may partly be due to (a) 

the abuse of liberal multiple comparison correction strategies and (b) the high prevalence of 

small sample size studies. Here, we provided a comprehensive examination of the impact of 

different multiple comparison correction strategies and sample size on test-retest reliability 

and replicability across widely used R-fMRI metrics. We found that multiple comparison 

correction strategies with liberal thresholds could yield higher test-retest reliability and 

replicability but at the cost of dramatically increasing the family wise error rate (FWER) to 

unacceptable levels. We noted that permutation test with TFCE, a strict multiple comparison 

correction strategy, reached the best balance between FWER (under 5%) and test-retest 

reliability and replicability (e.g., 0.68 test-retest reliability and 0.25 replicability of sex 

differences in ALFF). Although sex differences in R-fMRI metrics could be detected with 
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moderate test-retest reliabilities, they were poorly replicated in another different dataset 

(replicability of sex differences < 0.3). Among the brain regions showing the most 

reproducible sex differences, PCC demonstrated consistently lower spontaneous activity in 

males compared with females. Furthermore, by calculating replicabilities with two 

independent within-subject EOEC datasets, we found that our main findings from 

between-subject sex differences generalized to within-subject design studies. Defining the 

most reproducible brain regions in two large sample datasets as a “gold standard”, and 

randomly drawing subjects with different sample sizes from one single site, we found that 

both test-retest reliability and sensitivity increased with sample size. However, PPV reached a 

plateau at k=80 (40 per group) and remained around 0.30 even with further sample size 

increases. Here we discuss the implications of our findings on decision-making regarding the 

choice of multiple comparison correction strategies and approach towards addressing the 

challenge of reproducibility. 

 

4.1. Selecting a Multiple Comparison Correction Strategy with Respect to FWER 

Appropriate multiple comparison correction strategies must control the false positive rate at 

an acceptable level. Our results replicated the findings of prior work (Eklund, et al., 2016), 

which analyzed R-fMRI data with a putative task design to compute FWER in task fMRI 

studies. They also performed between-group comparisons on simulated null task activation 

maps and calculated the FWER. They found an unacceptably high FWER for most widely 

used multiple comparison correction strategies. Our results provide additional evidence from 

group comparisons with a range of R-fMRI metrics. Our results confirmed that multiple 
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comparison correction strategies with a liberal threshold (e.g., with voxel wise P < 0.01 and 

cluster wise P < 0.05) led to an unacceptably high FWER, while PT can maintain the FWER 

at nominal 0.05 levels. 

 

Beyond replicating Eklund et al.’s conclusions regarding FWER, two additional points should 

be noted. First, researchers should pay close attention to whether the test is one-tailed or 

two-tailed. As most researchers are interested in two-tailed effects (e.g., both patients > 

controls and patients < controls), if they perform one-tailed thresholding twice (i.e., each tail P 

< 0.05), then the final FWER will be higher than 10% even if the voxel-level p is set to 0.0005 

(Z > 3.29). Such researchers have to correct for the two tests at each tail, that is, researchers 

could perform one-tailed correction twice, with each tail voxel-wise P < 0.0005 and 

cluster-wise P < 0.025. With such a setting in GRF correction, the FWER almost reaches the 

nominal level of 5%. Second, we recommend against using Monte Carlo Simulation based 

corrections (AFNI 3dClusterSim and DPABI AlphaSim), given their high computational 

demands and higher FWER than GRF correction. At the strict level (P < 0.0005 and cluster 

wise P < 0.025), GRF is almost valid, while Monte Carlo Simulation based corrections inflated 

FWER, especially in metrics with higher smoothness (e.g., ReHo). Of note, the bug reported 

in Eklund et al. (2016) has been fixed in the software versions (Cox, et al., 2016) used in the 

current study. Furthermore, several new options and programs, such as the “ACF” option 

implemented in 3dClusterSim, 3dLocalACF and the “ETAC” option in 3dXClustSim have 

been proposed to overcome deficits pointed out by Eklund et al. However, according to the 

recent redux by the AFNI group, these approaches were either inefficient in reducing FWERs 
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or still under development (Cox, et al., 2017). Thus we did not apply these new methods in 

the current study, but we believe these efforts deserve further investigation in future studies. 

 

In sum, in considering FWER, eight different multiple comparison correction strategies can be 

used: 1) GRF correction with strict p values (voxel wise P < 0.0005 and cluster wise P < 0.025 

for each tail); 2) four kinds of PT with extent thresholding; 3) PT with TFCE; 4) PT with 

voxel-wise correction; and 5) FDR correction. 

 

4.2. Selecting a Multiple Comparison Correction Strategy with Regard to Test-retest 

Reliability and Replicability 

FWER is not the only criterion in selecting a multiple comparison correction strategy; 

test-retest reliability and replicability may be even more crucial. An appropriate strategy 

should best balance FWER and reproducibility. For example, GRF with liberal thresholds 

(e.g., with voxel wise P < 0.01 and cluster wise P < 0.05) has relatively high test-retest 

reliability and replicability, but it has unacceptably high FWER. On the other hand, PT with 

voxel-wise correction can control FWER at a low level (< 5%), but results in the lowest 

test-retest reliability and replicability, thus it is also not an appropriate strategy to correct for 

multiple comparisons. Fortunately, PT with TFCE provides a good balance between FWER 

and reproducibility. PT with TFCE can maintain the FWER under 5%, while yielding moderate 

test-retest reliability and replicability, e.g., 0.68 test-retest reliability for ALFF on sex 

differences. Of note, test-retest reliability (sex differences) and replicability (both sex 

differences and EOEC differences) of PT with TFCE were not significantly lower than for the 
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liberal GRF threshold (e.g., with voxel wise P < 0.01 and cluster wise P < 0.05).  

 

In considering both FWER as well as test-retest reliability and replicability in both 

between-subject and within-subject design studies, we recommend using PT with TFCE. As 

an approach for defining a cluster-like voxel-wise statistic, TFCE avoids the limitation of 

defining the initial cluster-forming threshold as do other common cluster-based strategy 

thresholding strategies (Smith and Nichols, 2009). TFCE uses the height parameter (H) and 

the extent parameter (E) to enhance cluster-like features in a statistical image. Although 

tweaking of these two parameters is possible, we found the default parameters (H = 2, E = 

0.5) already perform well. Of note, PT with TFCE can be easily performed for many different 

kinds of statistical tests in DPABI, which integrated functions from PALM (Winkler, et al., 

2016). 

 

4.3. Are R-fMRI Findings Reproducible? 

Concerns regarding the reproducibility of R-fMRI findings are increasing (Poldrack et al., 

2017). Assessing reproducibility is highly sensitive to the statistical threshold used to define 

significance (Rombouts et al., 1998). After identifying the appropriate statistical approach (PT 

with TFCE), we could evaluate two important aspects of the reproducibility, test-retest 

reliability and replicability, in common R-fMRI metrics. We found most R-fMRI metrics 

demonstrated moderate test-retest reliability in between-subject design studies (sex 

differences, Table 3). Without GSR, fALFF reached the highest test-retest reliability (0.75), 

followed by ALFF (0.68) and ReHo (0.54). DC (0.48) and VMHC (0.44) had the lowest 
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test-retest reliabilities in between-subject design studies (sex differences). Using a 

within-subject design, prior studies reported test-retest reliabilities of R-fMRI networks 

localized by either seed based analysis (Kristo, et al., 2014) or independent component 

analysis (Meindl, et al., 2010; Pinter, et al., 2016), showing moderate to high test-retest 

reliability (between 0.29 and 0.76 in most regions). Our study confirmed the moderate 

test-retest reliability, while extending the within-subject design (e.g., the pattern of default 

mode component) to a between-subject design (the sex differences between females and 

males as in the current study), as the latter is more common and informative in clinical studies 

(Kristo, et al., 2014).  

 

Beyond test-retest reliability, a unique contribution of our study is the investigation of 

replicability. That is, to what extent can a finding in one dataset (usually one study) be 

replicated in another dataset (another study)? We found replicability was much lower than 

test-retest reliability in a between-subject design (sex differences): replicability of all the 

R-fMRI metrics was below 0.3. ALFF had the best balance between test-retest reliability (0.68) 

and replicability (0.25), outperforming the other R-fMRI metrics. Although fALFF reached a 

high test-retest reliability, its replicability was poor (0.06), possibly because it is sensitive to 

variations in repetition time (TR) used in different datasets. It is not surprising to see such a 

low replicability, given the substantial differences between two different datasets, e.g., 

variation in ethnicity, sequence type, coil type, scanning parameters, participant instructions 

and head-motion restraint techniques. In evaluating replicabilities with within-subject design 

EOEC datasets, our results revealed that, although replicability of the within-subject design 
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was better than for the between-subject design, it was still not adequate (all replicabilities 

below 0.5). The best replicability that could be achieved was 0.49 for EOEC differences of 

ALFF under PT correction with TFCE. The present results question the generalizability of 

both between-subject and within-subject results reported in R-fMRI studies, and support the 

suggestion that future studies incorporate advanced data standardization techniques (Yan, et 

al., 2013b) to improve replicability. 

 

It is noteworthy that we found convergent sex differences and EOEC differences across all 

metrics and all datasets, despite low replicability. The most replicable sex difference was 

located in PCC. Greater activity in females versus males was found in PCC, which is similar 

to previous studies (Allen, et al., 2011; Biswal, et al., 2010). As this phenomenon replicated in 

two sessions of the same dataset, and was reproduced in two different datasets, we believe 

this reflects a true sex difference that should be reproducible in future studies. PCC has been 

shown to be more active in females than in males in several fMRI activation experiments 

based on working and episodic memory (Filippi, et al., 2013). It has been suggested that the 

PCC is associated with self-referential thoughts, emotions relating to others, remembering 

the past and thinking about the future (Fransson and Marrelec, 2008; Leech and Sharp, 2014; 

Maddock, et al., 2001), thus our results are consistent with more inward thinking and empathy 

in women compared to men. As for EOEC differences, we found greater activity in EC status 

versus EO status in precentral and postcentral gyrus and weaker activity in bilateral occipital 

cortex. Our results were in line with previous studies (Liu, et al., 2013; Marx, et al., 2004; Yan, 

et al., 2009; Yang, et al., 2007), indicating a subtle and important difference in brain activities 
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between these two states. 

 

4.4. What Can Be Done for Small Sample Size R-fMRI Studies? 

A recent theoretical study (Button et al., 2013) highlighted the detrimental effect of low 

statistical power induced by small sample size on reproducibility. Our findings indicate that 

the reliability of small sample size results was very low. For example, under PT with TFCE 

correction, test-retest reliability was only 0.08�0.17 when k=60 (30 subjects per group), 

which is a “classical” sample size in the R-fMRI field. According to the mathematical model of 

bias in scientific research (Button, et al., 2013), studies with a small sample size not only 

have a reduced chance to detect true effects, but they also reduce the likelihood that a 

statistically significant result reflects a true effect. The current study used empirical data 

(R-fMRI metrics) to confirm that the power (sensitivity) of small sample size comparisons is 

extremely low (around 0.01 when k=60), which is consistent with the prior finding that median 

statistical power across 461 neuroimaging studies was 8% (Button, et al., 2013). Further, 

using small, under powered samples is more likely to provide a positive result through 

selective analysis and outcome reporting, which are prevalent in R-fMRI studies across a 

broad range of experimental design and data analytic strategies (Carp, 2012a; Poldrack, et 

al., 2017). Thus, our results add to the growing consensus in the field calling for larger sample 

sizes. Indeed, according to our results, with sample size increasing from k=30 to 200, 

reliability increased steadily from 0.02�0.08 to 0.46�0.07, and sensitivity increased from 

0.0007�0.0004 to 0.43�0.07. Although PPV reached a plateau at k = 80, it increased from 

0.02�0.09 (k=30) to 0.30�0.02 (k=200). In conclude, our results added evidence to the 
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insufficiency of the present classical sample size in the R-fMRI field. A sample size less than 

80 (40 in each group) may need to be considered preliminary in finding the true effects, given 

their low reliability (< 0.23), sensitivity (< 0.02) and PPV (< 0.26). 

 

Many suggestions have been proposed to address the challenges of reproducibility, e.g., 

establishing large-scale consortia to accumulate big data, sharing custom analysis code, 

following accepted standards for reporting methods, and encouraging replication studies 

(Button, et al., 2013; Poldrack, et al., 2017). Recently, data-sharing initiatives (e.g., 

grassroots efforts such as FCP/INDI, openfMRI, fMRIDC and coordinated efforts such as 

ADNI, HCP, PING and UKBiobank) enable big data research models to address the 

reproducibility challenge. However, raw data sharing requires intensive coordinating efforts, 

huge manpower demand and large-capacity data storing/management facilities. Furthermore, 

sharing raw data entails privacy concerns arising from the possibility of being able to identify 

participants from high dimensional raw data. These concerns, together with the demands of 

data organization and the limitation of large data uploading, prevents the wider imaging 

community from sharing valuable brain imaging datasets to the public. The R-fMRI Maps 

project (http://rfmri.org/maps) was proposed to address the above concerns by only sharing 

the final maps of various R-fMRI indices, which only need light data storing/uploading 

requirements and remove the privacy concerns regarding raw data sharing. All of the R-fMRI 

metric maps of the current study have been made available through the R-fMRI Maps project, 

thus readers can easily confirm/reanalyze this data. Through the R-fMRI Maps project, we 

hope to build an unprecedented big data repository of brain imaging analyses across a wide 
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variety of individuals: including different neurological and psychiatric diseases and disorders, 

as well as healthy people with different traits. We hope the availability of such a big data 

repository will help to address the challenge of reproducibility. 

 

CONCLUSIONS 

To our knowledge, this was the first effort to comprehensively evaluate the impact of different 

strategies to correct for multiple comparisons as well as of sample size on the reproducibility 

of group differences in R-fMRI metrics. Our results revealed that PT with TFCE, a strict 

multiple comparison correction strategy, reached the best balance between FWER and 

test-retest reliability / replicability. We found moderate test-retest reliability of the R-fMRI 

metrics we assessed. By contrast, replicability was low, bringing into question the 

generalizability of the results reported in R-fMRI studies. Finally, the present research 

demonstrated that replicability, sensitivity and PPV increase steadily as sample size grows.  

Of note, findings from R-fMRI studies with small sample sizes are poorly reliable, as well as 

yielding low sensitivity and PPV, which reinforces the calls for increasing sample size in future 

R-fMRI studies. 
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TABLES 
Table 1. Family wise error rate and cluster size of ALFF (smoothness: 7.9×7.3×6.9) under corrections of Gaussian Random Field Theory, AFNI 
3dClusterSim and DPABI AlphaSim. 
 

Voxel Threshold Cluster 

Threshold 

AFNI 3dClusterSim  DPABI AlphaSim  Gaussian Random Field 

（One Tailed Twice） 
Family Wise 

Error Rate 

Cluster Size  Family Wise 

Error Rate 

Cluster Size  Family Wise Error 

Rate 

Cluster Size 

P < 0.01 (Z > 2.33) P < 0.05 41.2% 65.2±1.3  50.2% 60.2±1.7  38.0% 69.3±1.1 

P < 0.005 (Z > 2.58) P < 0.05 30.7% 42.9±0.9  35.3% 39.5±1.1  26.1% 46.7±0.8 

P < 0.001 (Z > 3.09) P < 0.05 10.8% 19.9±0.4  15.3% 18.4±0.6  9.9% 21.3±0.5 

P < 0.0005 (Z > 3.29) P < 0.05 12.3% 14.2±0.4  13.1% 13.9±0.5  10.3% 15.8±0.4 

P < 0.01 (Z > 2.33) P < 0.025 28.7% 73.8±1.9  37.0% 67.7±2.4  25.4% 79.0±1.2 

P < 0.005 (Z > 2.58) P < 0.025 24.9% 47.1±1.0  26.8% 44.5±1.6  18.2% 53.5±0.8 

P < 0.001 (Z > 3.09) P < 0.025 8.9% 22.4±0.4  11.2% 21.0±0.9  7.9% 24.9±0.4 

P < 0.0005 (Z > 3.29) P < 0.025 6.9% 16.7±0.3  7.1% 16.0±0.7  5.4% 18.5±0.5 
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Table 2. Family wise error rate under correction of 3 versions of cluster based correction, 6 versions of Permutation Test (PT) based correction as 
well as False Discovery Rate (FDR) correction. 
 

 Voxel Threshold 
Cluster 

Threshold 

Family Wise Error Rate 

ALFF fALFF ReHo DC VMHC 
ALFF with 

GSR 

fALFF with 

GSR 

ReHo with 

GSR 
DC with GSR 

VMHC with 

GSR 

Smoothness (mm, x×y×z) 7.9×7.3×6.9 7.3×7.4×7.2 9.4×8.7×8.4 7.9×8.0×7.8 6.3×6.9×6.6 8.0×7.3×6.8 7.3×7.4×7.2 9.2×8.6×8.2 8.1×8.2×8.1 6.1×6.6×6.4 

Gaussian Random 

Field (One Tailed) 

P < 0.0005 (Z > 3.29) P < 0.025 

5.4% 5.9% 5.4% 6.3% 7.1% 4.7% 6.9% 5.9% 5.6% 7.5% 

AFNI 3dClusterSim 

(One Tailed) 
6.9% 6.7% 15.7% 10.2% 4.1% 7.7% 7.8% 16.2% 10.6% 4.8% 

DPABI AlphaSim 

(One Tailed) 
7.1% 8.5% 9.7% 10.5% 9.7% 6.9% 8.1% 9.2% 9.6% 9.3% 

PT Cluster Extent 

Correction (Two 

Tailed) 

P < 0.02 (Z > 2.33) P < 0.05 5.8% 3.6% 5.8% 4.6% 5.2% 4.8% 3.9% 5.5% 5.2% 4.3% 

P < 0.01 (Z > 2.58) P < 0.05 5.4% 4.0% 5.7% 4.6% 5.5% 5.3% 3.8% 5.3% 5.0% 4.5% 

P < 0.002 (Z > 3.09) P < 0.05 4.5% 4.1% 5.3% 4.8% 4.2% 4.5% 5.0% 5.1% 4.7% 4.3% 

P < 0.001 (Z > 3.29) P < 0.05 4.8% 4.5% 4.5% 4.9% 3.4% 4.3% 4.8% 5.4% 4.2% 3.9% 

PT Threshold-Free Cluster Enhancement (TFCE) 4.6% 3.9% 5.7% 5.0% 4.3% 5.3% 4.2% 5.5% 4.7% 4.8% 

PT Voxel-Wise Correction (VOX) 4.9% 4.9% 5.7% 3.9% 4.7% 6.0% 4.5% 5.6% 4.0% 4.6% 

FDR Correction 5.0% 5.0% 6.0% 4.0% 4.9% 6.1% 4.6% 5.7% 4.0% 4.8% 

 
 
 
 
 
 

.
C

C
-B

Y
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted July 18, 2017. 
; 

https://doi.org/10.1101/128645
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/128645
http://creativecommons.org/licenses/by/4.0/


 46

Table 3. Test-retest reliability of sex differences for all R-fMRI metrics with and without Global Signal Regression (GSR) under correction of 
Gaussian Random Field (GRF), Permutation Test (PT) and False Discovery Rate (FDR) correction, calculated between the first and second 
sessions in the CORR dataset. 
 

   Test-retest Reliability (Dice Coefficient) 

 Voxel Threshold 
Cluster 

Threshold 
ALFF fALFF ReHo DC VMHC 

ALFF 

with GSR 

fALFF 

with GSR 

ReHo 

with GSR 

DC with 

GSR 

VMHC 

with GSR 

GRF (One Tailed) 

P < 0.01 (Z > 2.33) P < 0.05 0.67 0.71 0.58 0.45 0.49 0.65 0.67 0.50 0.40 0.44 

P < 0.005 (Z > 2.58) P < 0.05 0.67 0.67 0.58 0.42 0.47 0.63 0.63 0.50 0.35 0.45 

P < 0.001 (Z > 3.09) P < 0.05 0.64 0.56 0.49 0.34 0.42 0.63 0.53 0.47 0.27 0.32 

P < 0.0005 (Z > 3.29) P < 0.05 0.65 0.51 0.48 0.34 0.40 0.64 0.48 0.44 0.28 0.27 

P < 0.01 (Z > 2.33) P < 0.025 0.66 0.71 0.56 0.45 0.45 0.64 0.67 0.47 0.40 0.44 

P < 0.005 (Z > 2.58) P < 0.025 0.66 0.66 0.55 0.41 0.49 0.63 0.63 0.47 0.35 0.42 

P < 0.001 (Z > 3.09) P < 0.025 0.64 0.56 0.53 0.34 0.41 0.64 0.53 0.47 0.28 0.33 

P < 0.0005 (Z > 3.29) P < 0.025 0.64 0.51 0.50 0.35 0.39 0.65 0.48 0.43 0.28 0.24 

PT Cluster Extent 

Correction (Two 

Tailed) 

P < 0.02 (Z > 2.33) P < 0.05 0.65 0.70 0.56 0.45 0.40 0.62 0.68 0.45 0.30 0.40 

P < 0.01 (Z > 2.58) P < 0.05 0.67 0.66 0.52 0.32 0.33 0.60 0.63 0.46 0.27 0.32 

P < 0.002 (Z > 3.09) P < 0.05 0.63 0.55 0.51 0.36 0.38 0.63 0.52 0.47 0.23 0.32 

P < 0.001 (Z > 3.29) P < 0.05 0.64 0.51 0.48 0.37 0.38 0.64 0.48 0.44 0.28 0.26 

PT Threshold-Free Cluster Enhancement (TFCE) 0.68 0.75 0.54 0.48 0.44 0.66 0.74 0.44 0.31 0.42 

PT Voxel-Wise Correction (VOX) 0.66 0.34 0.48 0.37 0.22 0.65 0.31 0.38 0.11 0.14 

FDR Correction 0.64 0.67 0.54 0.39 0.37 0.63 0.64 0.47 0.23 0.29 
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Table 4. Replicability of sex differences for all R-fMRI metrics with and without Global Signal Regression (GSR) under correction of Gaussian 
Random Field (GRF), Permutation Test (PT) and False Discovery Rate (FDR) correction, calculated using significant results in both sessions in 
the CORR dataset and those significant in the FCP dataset. 
 

   Replicability (Dice Coefficient) 

 Voxel Threshold 
Cluster 

Threshold 
ALFF fALFF ReHo DC VMHC 

ALFF 

with GSR 

fALFF 

with GSR 

ReHo 

with GSR 

DC with 

GSR 

VMHC 

with GSR 

GRF (One Tailed) 

P < 0.01 (Z > 2.33) P < 0.05 0.21 0.13 0.17 0.20 0.07 0.20 0.10 0.11 0.26 0.09 

P < 0.005 (Z > 2.58) P < 0.05 0.19 0.11 0.11 0.17 0.05 0.17 0.09 0.11 0.24 0.05 

P < 0.001 (Z > 3.09) P < 0.05 0.14 0.10 0.08 0.10 0.02 0.12 0.10 0.04 0.10 0.03 

P < 0.0005 (Z > 3.29) P < 0.05 0.12 0.09 0.07 0.07 0.02 0.10 0.11 0.02 0.08 0.02 

P < 0.01 (Z > 2.33) P < 0.025 0.21 0.13 0.15 0.20 0.07 0.19 0.10 0.11 0.28 0.09 

P < 0.005 (Z > 2.58) P < 0.025 0.19 0.11 0.11 0.17 0.05 0.16 0.09 0.10 0.24 0.05 

P < 0.001 (Z > 3.09) P < 0.025 0.14 0.10 0.08 0.10 0.02 0.12 0.10 0.04 0.11 0.03 

P < 0.0005 (Z > 3.29) P < 0.025 0.13 0.10 0.07 0.07 0.01 0.10 0.11 0.02 0.08 0.02 

PT Cluster Extent 

Correction (Two 

Tailed) 

P < 0.02 (Z > 2.33) P < 0.05 0.21 0.13 0.14 0.17 0.05 0.21 0.06 0.12 0.22 0.10 

P < 0.01 (Z > 2.58) P < 0.05 0.19 0.11 0.11 0.16 0.02 0.17 0.09 0.08 0.24 0.08 

P < 0.002 (Z > 3.09) P < 0.05 0.14 0.10 0.08 0.11 0.02 0.12 0.10 0.03 0.05 0.03 

P < 0.001 (Z > 3.29) P < 0.05 0.12 0.10 0.07 0.07 0.01 0.10 0.11 0.02 0.08 0.02 

PT Threshold-Free Cluster Enhancement (TFCE) 0.25 0.06 0.13 0.20 0.01 0.25 0.03 0.09 0.26 0.02 

PT Voxel-Wise Correction (VOX) 0.02 0.00 0.01 0.00 0.00 0.01 0.05 0.00 0.00 0.00 

FDR Correction 0.15 0.06 0.11 0.09 0.02 0.13 0.04 0.05 0.08 0.00 
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Table 5. Replicability of eyes-open eyes-closed (EOEC) differences for all R-fMRI metrics with and without Global Signal Regression (GSR) under 

correction of Gaussian Random Field (GRF), Permutation Test (PT) and False Discovery Rate (FDR) correction, calculated using significant 

results in Beijing EOEC1 and EOEC2 datasets. 

 

   Replicability (Dice Coefficient) 

 Voxel Threshold 
Cluster 

Threshold 
ALFF fALFF ReHo DC VMHC 

ALFF 

with GSR 

fALFF 

with GSR 

ReHo 

with GSR 

DC with 

GSR 

VMHC 

with GSR 

GRF (One Tailed) 

P < 0.01 (Z > 2.33) P < 0.05 0.46 0.31 0.45 0.22 0.24 0.42 0.30 0.46 0.25 0.23 

P < 0.005 (Z > 2.58) P < 0.05 0.40 0.25 0.42 0.18 0.22 0.36 0.24 0.44 0.21 0.21 

P < 0.001 (Z > 3.09) P < 0.05 0.23 0.16 0.32 0.06 0.14 0.20 0.17 0.35 0.10 0.13 

P < 0.0005 (Z > 3.29) P < 0.05 0.15 0.11 0.26 0.03 0.10 0.14 0.11 0.31 0.07 0.09 

P < 0.01 (Z > 2.33) P < 0.025 0.46 0.30 0.45 0.22 0.24 0.42 0.30 0.46 0.25 0.23 

P < 0.005 (Z > 2.58) P < 0.025 0.40 0.25 0.43 0.18 0.22 0.36 0.24 0.45 0.21 0.21 

P < 0.001 (Z > 3.09) P < 0.025 0.23 0.16 0.32 0.06 0.14 0.19 0.16 0.35 0.09 0.12 

P < 0.0005 (Z > 3.29) P < 0.025 0.15 0.11 0.27 0.04 0.10 0.14 0.11 0.30 0.05 0.10 

PT Cluster Extent 

Correction (Two 

Tailed) 

P < 0.02 (Z > 2.33) P < 0.05 0.46 0.27 0.44 0.24 0.21 0.41 0.30 0.50 0.28 0.17 

P < 0.01 (Z > 2.58) P < 0.05 0.39 0.24 0.40 0.20 0.16 0.35 0.21 0.48 0.18 0.21 

P < 0.002 (Z > 3.09) P < 0.05 0.22 0.16 0.32 0.06 0.14 0.19 0.16 0.35 0.09 0.12 

P < 0.001 (Z > 3.29) P < 0.05 0.15 0.11 0.27 0.04 0.10 0.14 0.11 0.30 0.05 0.09 

PT Threshold-Free Cluster Enhancement (TFCE) 0.49 0.31 0.45 0.29 0.20 0.46 0.32 0.47 0.30 0.20 

PT Voxel-Wise Correction (VOX) 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

FDR Correction 0.09 0.00 0.29 0.03 0.08 0.12 0.00 0.34 0.12 0.10 
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Table 6. Test-retest reliability, sensitivity and positive predictive value (PPV) across different sample sizes (k). Both mean and standard deviation 

(SD) across 100 randomizations were listed. 

 

Sample Size (k) 
Test-retest Reliability 

(Dice Index) 
Sensitivity PPV 

30 0.02±0.08 0.001±0.004 0.02±0.09 

40 0.03±0.11 0.001±0.01 0.07±0.21 

50 0.05±0.13 0.004±0.01 0.07±0.19 

60 0.08±0.17 0.01±0.02 0.12±0.22 

70 0.16±0.21 0.01±0.02 0.17±0.22 

80 0.23±0.22 0.02±0.03 0.26±0.24 

90 0.28±0.21 0.04±0.04 0.25±0.16 

100 0.32±0.19 0.05±0.04 0.28±0.14 

120 0.36±0.14 0.10±0.06 0.29±0.08 

140 0.39±0.11 0.17±0.08 0.29±0.04 

160 0.39±0.09 0.23±0.09 0.30±0.03 

180 0.42±0.08 0.32±0.09 0.30±0.02 

200 0.46±0.07 0.43±0.07 0.30±0.02 
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FIGURE LEGENDS 

Figure 1. Family wise error rates of ALFF under 31 kinds of different multiple comparison correction strategies. AFNI 3dClusterSim and DPABI 

AlphaSim are two versions of Monte Carlo simulation based correction implemented in AFNI and DPABI, separately. GRF, PT and FDR are 

Gaussian Random Field correction, Permutation Test and False Discovery Rate correction implemented in DPABI, separately. TFCE stands for 

Threshold-Free Cluster Enhancement and VOX stands for Voxel-Wise Correction which are both correction approaches accompanied with PT. 

The red solid line shows the nominal 5% positive false positive rate, and the gray dashed line shows its theoretical 95% confidence interval, 

3.65%-6.35%.  

 

Figure 2. Results of the Friedman Test of both test-retest reliabilities and replicabilities regarding between-subject sex differences and 

within-subject eyes-open eyes-closed (EOEC) differences on 5 metrics by 2 operations (with and without GSR) among all multiple comparison 

correction strategies (A: test-retest reliability regarding between-subject sex differences B: replicability regarding between-subject sex 

differences C: replicability regarding within-subject EOEC differences). Larger median rank numbers represent the better reproducibility 

compared with other statistical threshold approaches. PT with TFCE is outlined with red, and those are significantly different from PT with TFCE 

in reproducibility are outlined with yellow (multiple comparison corrected by Tukey's honest significant difference criterion). GRF, PT and FDR 

stand for Gaussian Random Field correction, Permutation Test and False Discovery Rate correction, separately. All versions of GRF correction 

are one-tailed P values while all versions of PT are two tailed P values. 

 
Figure 3. Sex differences those are significant in both sessions in the CORR dataset as well as significant in the FCP dataset (“gold standard”), 
under the correction of Permutation Test (PT) with Threshold-Free Cluster Enhancement (TFCE). 
 
Figure 4. Test-retest reliability (Dice index), sensitivity and positive predictive value (PPV) as functions of sample size.  
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