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Abstract 

Animals are able to flexibly adapt to new environments by controlling different behavioral patterns. Identification 

of the strategy used for this control (behavioral strategy) is important for understanding animals’ decision making, 

but methods available for quantifying such behavioral strategies have not been fully established. In this study, we 

propose a computational approach to identify an animal’s behavioral strategy from behavioral time-series data. To 

this end, we utilized inverse reinforcement learning (IRL) of a linearly-solvable Markov decision process (LMDP), 

with the assumption that animals behave optimally by minimizing costs, i.e., state cost and control cost. As a 

particular target, we focused on the thermotactic behaviors in C. elegans under a thermal gradient. After 

identifying the behavioral strategy dependent on thermosensory state, we found it comprised mixture of two 

strategies: directed migration (DM) and isothermal migration (IM). First, the DM is a strategy that the worms 10 
efficiently reach to specific temperature, which not only explained observation that the worms migrate toward the 

cultivated temperature, but also clarifies how the worms control thermosensory state through the migration. 

Second, the IM is a strategy that the worms track along a constant temperature, which reflects isothermal tracking 

well observed in previous studies. Furthermore, we applied our method to thermosensory neuron-deficient worms, 

which then identified neural basis of the DM strategy. Therefore, we believe this novel approach can 

quantitatively visualize hidden strategies extracted from the behavioral time-series data.  

  
Keywords: Machine learning; Optimal control; Reward; LMDP, KL control 
 
 20 

Significance Statement  
Understanding animal decision-making has been a fundamental problem in neuroscience and behavioral 
ecology. Many studies analyze actions that represent decision-making in behavioral tasks, in which rewards 
are artificially designed with specific objectives. However, it is impossible to extend this artificially designed 
experiment to a natural environment, because in a natural environment, the rewards for freely-behaving 
animals cannot be clearly defined. To this end, we must reverse the current paradigm so that rewards are 
identified from behavioral data. Here, we propose a new reverse-engineering approach that can estimate a 
behavioral strategy from time-series data of freely-behaving animals. By applying this technique with 
thermotaxis in C. elegans, we successfully identified the reward-based behavioral strategy.  
 30 
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Introduction  
Animals develop a behavioral strategy, a set of sequential decisions necessary for organizing the proper 
actions in response to environmental stimuli, to ensure their survival and reproduction. Such strategies lead 
the animal to its preferred states. For example, foraging animals are known to optimize their strategy to most 
efficiently exploit food sources (1). Although the behavioral sequence can reflect the overall behavioral 
strategy, a method to quantitatively identify the behavioral strategy from the behavioral time-series data has 
not been well established. To this end, we here propose a new computational framework based on the idea of 
reinforcement learning (RL).  
 RL is a mathematical paradigm to represent how animals adaptively learn behavioral strategy to 
maximize cumulative rewards via trial and error (2) (upper panel in Fig. 1A). Neuroscience studies over the 10 
last two decades have clarified that ventral tegmental area (VTA) dopaminergic neural activity encodes 
prediction error of reward (3), which is similar to temporal difference (TD) learning in RL (4). Thus, it is 
widely believed that RL is localized to the basal ganglia, a group of brain nuclei heavily innervated by VTA 
dopaminergic neurons (5–8). Therefore, an animal’s behavioral strategy should be associated with reward-
based representation in its neural system.  

Here, our aim was to identify the reward-based representation for the animal’s behavioral strategy. In 
particular, we utilized inverse reinforcement learning (IRL), which is a recently-developed machine learning-
related framework that solves an inverse problem of RL (lower panel in Fig. 1A) (9, 10). IRL estimates state-
dependent rewards from the history of an agent’s actions and states, working from the assumption that the 
agent has already acquired the optimal strategy to maximize its cumulative rewards. One application is 20 
apprenticeship learning. For example, the seminal studies of IRL employed a radio-controlled helicopter, for 
which the state-dependent rewards of an expert were estimated by using the observed time-series of both the 
human expert’s manipulation and the helicopter’s state. Consequently, autonomous control of the helicopter 
was achieved by a (forward) RL that utilized the estimated rewards (11, 12). This engineering application 
prompted studies in which IRL was used to identify the behavioral strategies of animals, including humans. 
Recently, application studies of IRL have emerged, mostly regarding human behaviors, with a particular 
interest in constructing artificially intelligent systems that mimic human behaviors (13–15). In these studies, 
the experimenters designed the behavioral tasks with specific objectives, and hence the behavioral strategies 
therein are usually expected.  

In contrast to these advanced applications, IRL applications to animal behavior in a natural environment 30 
are far from established. In the helicopter control example above, the measurable variables of the helicopter 
(e.g., location, velocity, and acceleration) were fully monitored for IRL. In human behavior experiments, the 
dimensions of the state and reward spaces, which represent behavioral strategies, are restricted by the 
artificially-designed task, and thus can be easily set for the RL and IRL. However, the natural environment in 
which animals live is quite different; animals always face a degree of uncertainty, and can only partially 
observe a current state due to sensory constraints. Moreover, animals exhibit stochastic behaviors even in the 
same condition. This makes it very difficult to set the state and reward space, as well as the dimension to be 
used. This difficulty has limited the applicability of IRL to the field of basic bioscience. In this study, we 
tried to identify the hidden strategies of freely-moving animals. 
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To this end, we chose freely migrating Caenorhabditis elegans, because this nematode is a well-studied 
model animal whose whole-body movements are tractable. In addition, a tracking system for freely 
migrating C. elegans has been established, and provides behavioral time-series data that are required for IRL 
(16). C. elegans have a behavioral strategy by which the worms sense external environments and migrate to 
preferred places; we especially focused on thermotaxis, in which worms cultivated at a certain temperature 
tend to migrate toward that temperature when placed within a thermal gradient (17, 18).	 Although the 
worms are not aware of either the spatial temperature profile or the location of the place with the target 
temperature, they often reach the preferred (target) place anyway.  

In this study, we propose a new IRL-based framework for animal behavior analyses. Applying this 
framework to C. elegans behavioral data measured by the worm tracking system, we successfully identified 10 
the reward-based representation associated with the worms’ thermotactic behavior strategy. 
 
 

Results  
Conceptualization of the IRL-based approach 
To identify an animal’s behavioral strategy based on IRL, we initially assume that the animal’s behaviors are 
produced as a balance between two factors: passive dynamics (blue worm in Fig. 1B) and reward-
maximizing dynamics (red worm in Fig. 1B). These factors correspond to inertia-based and purpose-driven 
body movements, respectively. That is, even if a worm moving in a straight line wants to make a purpose-
driven turn towards a reward, it cannot turn suddenly due to the inertia of its already-moving body. Thus, it 20 
is reasonable to consider that animals’ behaviors are optimized by taking both factors into account, namely 
by minimizing resistance to the passive dynamics and maximizing approach to the destination (reward). Such 
behavioral strategy has recently been modeled as a linearly-solvable Markov decision process (LMDP) (19), 
in which the agent requires not only a state-dependent cost (i.e., a negative reward), but also a control cost 
for quantifying resistance to the passive dynamics (Fig. 1C) (see Materials and Methods). Importantly, the 
optimal strategy in the LMDP is analytically obtained as a probability of controlled state transition: 

 ,              [1] 

where st and v(s) indicate the animal’s state at time step t and a value function defined as the expected sum of 

state-dependent costs, q(s), and control cost, 
 
, from state s toward the future , respectively; 

P(st+1|st) represents a probability of uncontrolled state transition, which represents the passive dynamics from 30 
st to st+1. In this equation, the entire set of v(s) represents the behavioral strategy. Thus, the identification of 
the animal’s behavioral strategy is equivalent to an estimation of the value function v(s) based on observed 
behavioral data (s1, s2,…st,…sT). This estimation was performed by maximum likelihood estimation (MLE) 
(20), and is an instance of IRL. In this study, introduction of smoothness constraints to the value function 
enabled us to stably estimate the behavioral strategy of C. elegans, in terms of the value function v(s), when 

applied to behavioral data measured during the worms’ thermotactic migration (lower panel in Fig. 1A).  
 

π st+1 | st( ) = P(st+1 | st )exp −v(st+1){ }
P(s | st )exp −v(s){ }

s∑

KL π (⋅ | s) p(⋅ | s)#$ %&
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Behavioral data acquired in C. elegans 
For identifying the behavioral strategy of C. elegans thermotactic behavior specifically, behavioral data were 
collected through population thermotaxis assays, in which 80–150 worms that had been cultivated at 20 °C 
were placed on the surface of an agar plate with controlled thermal gradients (see Fig. 2A). Behavioral 
crosstalk is negligible, because the rate of physical contacts is low at this worm density. We prepared three 
different thermal gradients centered at 17 °C, 20 °C, and 23 °C to collect behavioral data; these gradients 
would encourage ascent up the gradient, movement around the center, and descent down the gradient, 
respectively. We confirmed that the fed worms aggregated around the cultivated temperature in all gradients 
(Fig. 2B). Using multi-worm tracking software (16), we tracked the trajectories of individual worms over 60 
min within each gradient (Fig. 2C), and also obtained time-series data indicating the temperature that each 10 
individual worm experienced (upper panel in Fig. 2D).  
 
Groundwork for the IRL 
In order to apply our IRL-based approach to the behavioral data, we had to define two elements of LMDP: 
state representation and passive dynamics, which are signified by s and P(st+1|st) in equation [1], respectively.  
 First, we characterized a state, which represents the sensory information that the worms process during 
thermotaxis. Because other studies as well as ours have previously shown that the nematode’s AFD 
thermosensory neuron encodes the temporal derivative of temperature (21, 22), we assumed that the worm 
made decisions to select appropriate actions (i.e., migration direction and speed) based not only on 
temperature, but also on its temporal derivative. We then represented a state by two-dimensional (2D) 20 
sensory space, s=(T, dT), where T and dT denote temperature and its temporal derivative, respectively (Fig. 
2D). This means that the value function in equation [1] is given as a function of T and dT, v(T, dT). 
 Second, we characterized passive dynamics, which is given by state transitions as a consequence of 
unpurposed behaviors. We considered that C. elegans likely migrated in a persistent direction, but in a 
sometimes fluctuating manner, in unpurposed situations. Thus, it is reasonable to define the passive 
transition from a state st=(Tt, dTt) to the next state st+1=(Tt+1, dTt+1), where dTt+1 maintains dTt with white noise 
and Tt+1 is updated as Tt+dTt with white noise. Thus, P(st+1|st) to be simply modeled as a normal distribution 
(see Materials and Methods). Notice that the usages of T and t were discriminated throughout this study.  
 
Thermotactic strategy identified by the IRL 30 
Using the defined state, s=(T, dT), and passive dynamics, P(st+1|st), we performed the IRL (the estimation of 
the value function v(s)) based on behavioral data. In this estimation, we modified an existing estimation 
method called OptV (20) by introducing a smoothness constraint (see Materials and Methods). We 
confirmed that this smoothness constraint was indeed effective in accurately estimating the value function 
when applied to artificial data simulated by equation [1] (Fig. S1). Since the method was able to powerfully 
estimate the behavioral strategy based on artificial data, we next applied it to behavioral data of fed C. 
elegans.  
 Our method successfully estimated the value function of T and dT, v(T, dT) (Fig. 3A), and visualized 
exp(−v(T, dT)), which is called the desirability function (Fig. 3B). Because both the value and desirability 
functions essentially represent the same thermotactic strategy of C. elegans, we discussed only the 40 
desirability function below. We found that the identified desirability function maximized at T=20 ℃ and 
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dT=0, encouraging the worms to reach and stay close to the cultivated temperature; moreover, we identified 
both diagonal and horizontal components. The diagonal component represents directed migration (DM), 
which is a strategy that the worms efficiently reach to the cultivated temperature. For example, when at the 
lower temperatures than the cultivated temperature, the more positive dT is favored, whereas at the higher 
temperatures. This DM strategy is consistent with observation that the worms migrate toward the cultivated 
temperature, and also clarifies how the worms control thermosensory state through the migration. On the 
other hand, the horizontal component represents isothermal migration (IM), which is a strategy that the 
worms track along a particular temperature (i.e., isothermal line). This IM strategy generally explains a well-
known characteristic called isothermal tracking; the worms typically exhibit circular migration under a 
concentric thermal gradient. Note that although we used the linear gradient, but not the concentric gradient, 10 
in our thermotaxis assay, our IRL successfully extracted the isothermal tracking-related IM strategy. We 
further revealed that the IM strategy worked not only at cultivated temperature, but also the other 
temperatures. It must be stressed that the identified desirability function (Fig. 3B) is not equivalent to the 
state distribution of T and dT (Fig. S2), but rather represents the desirability of the next state.  
 Moreover, the reward function, which is equivalent to the negative state cost function, could be 
calculated from the identified desirability function using equation [4] (Fig. 3C). The reward function 
primarily represents the worms’ preference, and is thus a cause of the worms’ developing a behavior 
strategy; the desirability function represents the behavioral strategy, and is thus a result of optimizing 
cumulative reward and control cost. Taken together, our method quantitatively visualized the behavior 
strategy of the cultivated C. elegans. 20 
 
Reliability of the identified strategy  
We examined the reliability of the identified DM and IM strategies by means of surrogate method-based 
statistical testing. Specifically, we checked whether the DM and IM strategies were not obtained by chance, 
under the null hypothesis that the worms randomly migrated under a thermal gradient with no behavioral 
strategy. We first constructed a set of artificial time-series of temperature that could be observed under the 
null hypothesis. By using the Iterated Amplitude Adjusted Fourier Transform (IAAFT) method (24), we 
prepared 1000 surrogate datasets by shuffling observed time-series of temperature (Fig. 4A), while 
preserving the autocorrelation of the original time-series (Fig. 4B). We then applied our IRL to this surrogate 
dataset to estimate the desirability functions (Fig. 4C). To assess the significance of the DM and IM 30 
strategies, we calculated, as test statistics, sums of the estimated desirability functions within the previously-
described horizontal and diagonal regions, respectively (Fig. 4D). Empirical distributions of these test 
statistics for the surrogate datasets could then serve as null distributions (Fig. 4E). In both the DM and IM 
cases, the test statistic derived by the original desirability function was located above the empirical null 
distribution (p=0 for the DM strategy; p=0 for the IM strategy), indicating that the DM and IM strategies 
were not obtained by chance, but reflected an actual strategy of thermotaxis. 
 In addition, we estimated behavioral strategy based on a one-dimensional (1D) state representation, i.e., 
s=(T). Comparing between the 1D and 2D cases, we used cross-validation (Materials and Methods) to 
confirm that prediction ability for a future state transition in the 2D-behavioral strategy was significantly 
higher than that in the 1D-behavioral strategy (p=0.0002; Mann-Whitney U test) (Fig. S3).  40 
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Strategies of starved worms and thermosensory neuron-deficient worms 
We also estimated the desirability and value functions in the starved condition, in which worms disperse on 
the surface (Fig. 5A and Fig. S4). We found that the DM strategy was lost and the IM strategy remained in 
this case (Fig. 5Ab), compared with the desirability function of the fed worm (Fig. 3B). This suggests that 
the starved worms were not using directed migration. Interestingly, the desirability function at the cultivated 
temperature was lower than surrounding temperatures, suggesting that the worms avoid the cultivated 
temperature. These data indicate that our method could distinguish the difference between strategies of 
normally fed and starved C. elegans.  
 Next, we performed the IRL on behavioral data from two C. elegans strains in which one of the two 
thermosensory neurons, AWC or AFD, were deficient (17, 18, 23). AWC has been genetically ablated via 10 
cell-specific expression of caspases (Materials and Methods), and we employed ttx-1 mutants as AFD-
deficient animals (24). The AWC-deficient worms appeared to show normal thermotaxis (Fig. 5Ba). We also 
estimated the desirability function similar to that of WT (Fig. 5Bb), suggesting that the AWC did not play 
essential role in the thermotaxis.  
 On the other hand, the AFD-deficient worms demonstrate cryophilic thermotaxis (Fig. 5Ca). 
Consistently, the desirability function increased with a decrease in temperature (Fig. 5Cb). We further found 
that the desirability function lacked the dT-dependent structure of the desirability function, indicating that the 
DM strategy observed in the wild type (WT) worms disappeared. This indicated that the AFD-deficient 
worms inefficiently reached to lower temperature by a strategy primarily depending on the absolute 
temperature T, but not on the temporal derivative of temperature, dT (Fig. 5Cb). Moreover, the loss of the 20 
the dT-dependent structure was supported by the fact that the AFD encodes temporal derivative of 
temperature (21). Taken together, AFD, but not AWC, is essential for efficiently navigating to the cultivated 

temperature.    

 
 

Discussion  
We proposed an IRL-based framework to identify animals’ behavioral strategies based on collected 
behavioral time-series data. We validated the framework using artificial data, and then applied it to C. 
elegans behavioral data collected during thermotaxis experiments in wild type worms. We quantitatively 
identified the worms’ thermotactic strategy, which was represented by the desirability function of 2D sensory 30 
space (but not 1D space), i.e., absolute temperature and its temporal derivative. We then visualized the 
properties of the thermotactic strategy in terms of the desirability function, which successfully identified 
what states are pleasant and unpleasant for C. elegans. Finally, we demonstrated the ability of this technique 
to discriminate alterations in components within a strategy by comparing the desirability functions of two 
strains of the worm with impaired thermosensory neuron function; we found that AFD neuron (but not AWC) 

is fundamental to efficient navigation guided to the cultivated temperature.    

 
Validity of LMDP  
It is worth comparing the LMDP and the animals’ behaviors to determine if the starting assumption of an 
LMDP is suitable. First, animals’ movements are usually restricted by external constraints such as inertia and 40 
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gravity, and by internal (musculoskeletal) constraints, including the body’s own passivity. These constraints 
were reflected by the passive dynamics in the LMDP. Second, animals resist entering unlikely states in 
which these restrictions are more powerful; that is, they prefer natural, unrestricted movements. This feature 
was reflected by the cost of resistance to the passive dynamics, and represented by the KL divergence (see 
equation [2]). Because it can deal with these issues satisfactorily, we believe the LMDP is suited for 
modeling the animals’ behavioral strategy.  
 
Validity of the identified strategies  
We applied our IRL-based approach to several cases of worms (WT and two strains), and confirmed that 
identified behavioral strategies, i.e., the desirability functions, showed no discrepancy in thermotactic 10 
behaviors, as followed. Fed WT worms aggregated at the cultivated temperature (Fig. 2B), which can be 
explained by highest amplitudes of the desirability function at the cultivated temperature (Fig. 3B). Starved 
WT worms disperse around the cultivated temperature (Fig. 5Aa), accompanied by lowered amplitudes of 
the desirability function at the cultivated temperature (Fig. 5Ab). The AWC-deficient worms show normal 
thermotaxis (Fig. 5Ba), and consistently the desirability function was similar to that of WT (Fig. 5Bb). The 
AWC-deficient worms demonstrated cryophilic thermotaxis (Fig. 5Ca), which agreed with higher 

amplitudes of the desirability function at lower temperatures (Fig. 5Cb). In summary, these results 
demonstrated validity of our approach, and provided the potential of the method for determining changes in 
behavior strategy. 
 20 
WT strategy  
We found that the WT worms had a thermotactic strategy consisting of two components, DM and IM 
strategies (Fig. 3B). What is a functional meaning of these two strategies? We propose that the existence of 
these two strategies could be interpreted in terms of balancing exploration and exploitation. Exploitation is 
the use of pre-acquired knowledge in a greedy effort to obtain rewards, and exploration is the effort of 
searching for possibly greater rewards. For example, the worm knows that food is associated with the 
cultivated temperature, and can exploit that association. On the other hand, the worm could explore different 
temperatures to search for a larger cache of food than is available at the cultivated temperature. In an 
uncertain environment, animals usually face an ‘exploration-exploitation dilemma’ (25); exploitative 
behaviors reduce the chance to explore for greater rewards, whereas exploratory behaviors disrupt the 30 
collection of the already-available reward. Therefore, an appropriate balance between exploration and 
exploitation is important for controlling behavioral strategy. We offer a hypothesis that the DM strategy 
generates exploitative behaviors, whereas the IM strategy generates explorative ones; the worms basically, 
through the DM strategy, exploit the cultivated temperature, during which the worms explore the reward 
(food) through the IM strategy with each change in temperature.  

How does the worms acquire these two strategies? We found that in the starved condition, temperature 
and feeding were dissociated, and as a result the DM strategy disappeared, whereas the IM strategy remained 
(Fig. 5Ab). According to these findings, we hypothesized that the DM strategy emerges as a consequence of 
associative learning between the cultivated temperature and food access; the IM strategy, however, could be 
innate. Further investigation could be expected for these hypotheses in the future. 40 
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Comparison between strains and WT 
In addition to WT worms, we identified the desirability functions of the AWC- and AFD-deficient worms 
(Fig. 5B and C). The AWC and AFD neurons are both known to sense the temporal derivative of 
temperature, dT (17)(21). However, the AWC-deficient worms were endowed with similar profile of the 
desirability function to that of WT worms (Fig. 5Bb), whereas the AFD-deficient worms had different 
profile (Fig. 5Cb); the profile lost the DM’s diagonal component and became rather symmetrical and 
unbiased along the dT axis. It then can be implied that impaired AFD neuron prevents the worm from 
deciding whether an increase or decrease in temperature is favorable, which could leads to inefficient 
thermotactic migration. Thus, AFD, but not AWC, produces oriented behaviors based on temporal changes 
in the temperature. 10 

 
Advantages of our IRL-based method  
Our IRL-based approach has several advantages. First, it is generally applicable to behavioral data not only 
of C. elegans, but also that of any animal, as long as suitable modeling of state and passive dynamics can be 
accomplished. Thus, our approach has potential use in other biological fields like ecology and ethology. 
Second, this approach can be applied independently of experimental conditions. Our approach is especially 
suitable for analyzing animals’ behaviors in natural conditions where target animals are freely behaving. To 
the best of our knowledge, this is the first study to identify the behavioral strategy of a freely-behaving 
animal by IRL. Third, our approach is able to identify the behavioral strategy in terms of the desirability 
function, of which the neural substrates are expected to comprise many different functionally networked 20 
cortical (prefrontal cortex) and subcortical (basal ganglia) areas (5, 6). The approach herein thus allows 
analyses of neural correlates, such as comparing regional neural activities of freely-behaving animals with 
strategy-related variables calculated by our IRL. In an era where high-throughput experiments and “big data” 
analyses produce massive amounts of the behavioral data required for our IRL-based approach, it has the 
potential to become a fundamental tool with broad applicability in neuroscience, especially for the study of 
the neural mechanisms underlying behaviors and behavior strategies. 
 
 

Materials and Methods 
Reinforcement learning  30 
Reinforcement learning (RL) is a machine learning model that describes how agents learn to obtain an 
optimal policy, i.e., behavioral strategy, in a given environment. An RL consists of several constituents: an 
agent, an environment and a reward function. The agent learns and makes decisions, and the environment is 
defined by everything else. The agent continuously interacts with the environment, in which the state of the 
agent transits based on its action (behavior), and the agent gets a reward at the new state according to the 
reward function. The aim of the agent is identify an optimal strategy (policy) that maximizes cumulative 
rewards in the long term.  
 In this study, the environment and the agent’s behavioral strategy were modeled as LMDP, which is one 
of the settings of RL. An LMDP is characterized by passive dynamics of the environment in the absence of 
control, and controlled dynamics that reflect the behavioral strategy. Passive and controlled dynamics were 40 
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defined by transition probabilities from state s to s’, p(s’|s) and π(s’|s), respectively. At each state, the agent 
not only acquires a cost (negative reward), but also receives resistance to the passive dynamics (Fig. 1C). 
Thus, net cost is described as  

 ,             [2] 

where q(s) denotes a state cost and KL[π(.|s)||p(.|s)] indicates Kullback–Leibler (KL) divergence between 
π(.|s) and p(.|s); this represents the resistance to the passive dynamics.  
 The optimal policy that minimizes the cumulative net cost has been analytically obtained as  

 ,              [3] 

where v(s) is a value function, i.e., the expected cumulative net costs from state s toward the future, which 
satisfies Bellman’s self-consistency:  10 

 .            [4] 

 
Inverse reinforcement learning (estimation of the value function)  
To estimate the value function v(s), we assumed that the observed sequential state transitions {st, st+1}t=1:T 
were generated by the optimal policy π*. We then maximized the likelihood of the sequential state transition:  

 ,                 [5] 

where π*(st+1|st) corresponds to equation [3]. This maximum likelihood estimation (MLE) was called OptV 
[17]. Based on the estimated value function, the primary cost function, q(s), can be calculated by using 
equation [4]. 
 It is reasonable to assume that animals have value functions that are smooth in their state space in order 20 
to compensate noisy sensory systems. To obtain smooth value functions, we regularized MLE as   

 ,           [6] 

where the first term represents negative log-likelihood, and the second term represents a smoothness 
constraint introduced to the value function; a positive constant λ indicates the strength of the constraint, and 
χ(s) indicates a set of neighboring states of s in the state space. Notice that the cost function, the regularized 
negative log-likelihood, is convex with respect to v(s), which means there are no local minima in its 
optimization procedure.  
 
Passive dynamics of thermotaxis in C. elegans  
To apply the IRL to thermotactic behaviors of C. elegans, state s and passive dynamics p(s’|s) must be 30 
defined. We previously found that the thermosensory AFD neuron encodes the temporal derivative of the 
environmental temperature (21), so we assumed that the worm can sense not only absolute temperature T, 
but also the temporal derivative of temperature dT/dt. Thus, we set a 2D state representation as (T, dT). Note 
that dT/dt is simply denoted as dT.  

The passive dynamics were described by the transition probability of a state (T, dT) as   

l s,π (⋅ | s)( ) = q(s)+KL π (⋅ | s) p(⋅ | s)#$ %&

π * ′s | s( ) = P( ′s | s)exp −v( ′s ){ }
P( ′s | s)exp −v( ′s ){ }

′s∑

exp(−v(s))= exp(−q(s)) P( "s | s)exp −v( "s ){ }
"s∑

L = π * s t+1 | st( )
t
∏

v̂(s)= argmin
v(s )

− logL(v(s))+λ v(s)− v( #s ) 2
#s ∈χ (s )
∑

s
∑

'

(
)
)

*

+
,
,
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 ,         [7] 

where N(x|µ, σ) indicates a Gaussian distribution of variable x with mean µ and variance σ, and Δt indicates 
the time interval of monitoring in behavioral experiments. This passive dynamics aspect can be loosely 

interpreted that the worms inertially migrate in a short time interval under a thermal gradient, but is also 
perturbed by white noise. 
 
Artificial data  
We confirmed that our regularized version of OptV (equation [6]) provided a good estimation of the value 
function using simulation data. First, we designed the value function of T and dT as the ground truth (Fig. 
S2A), and passive dynamics through equation [7]. Thus, the optimal policy was defined by equation [3]. 10 
Second, we generated a time-series of state transitions according to the optimal policy, and separated these 
time series into training and test datasets. After that, we estimated the value function from the training 
dataset, varying the regularization parameter λ in equation [6] (Fig. S2B). We then evaluated the squared 
error between the behavioral strategy based on the ground truth and the estimated value function, using the 
test dataset. Since the squared error on the test data was substantially reduced (by 88.1%) due to 
regularization, we deemed it effective for avoiding overfitting (Fig. S2C).  
 
Cross-validation  
In estimation of the value function, we performed cross-validation to determine λ in equation [6], and σT and 
σdT in equation [7], with which the prediction ability is maximized. We divided the behavioral time-series 20 
data equally into nine parts. We then independently performed estimation of the value function nine times; 
for each estimation, eight of the nine parts of the data were used for estimation, while the remaining part was 
used to evaluate the prediction ability of the estimated value function by the likelihood (equation [5]). We 
then optimized those parameters at which we obtained the lowest negative log-likelihood as averaged from 
the nine estimations.  
 
C. elegans preparation  
All worms were hermaphrodites and cultivated on OP50 as bacterial food using standard techniques (26). 
The following strains were used: N2 wild-type Bristol strain, IK0615 ttx-1(p767), IK2808 njIs79[ceh-
36p::cz::caspase-3(p17), ceh-36p::caspase-3(p12)::nz, ges-1p::NLS::GFP]. The AWC-ablated strain 30 
(IK2808) was generated by the expression of reconstituted caspases (27). Plasmids carrying the reconstituted 
caspases were injected at 25 ng/µl with the injection marker pKDK66 (ges-1p::NLS::GFP) (50 ng/µl). 
Extrachromosomal arrays were integrated into the genome by gamma irradiation, and the resulting strains 
were outcrossed four times before analyses. To assess the efficiency of cell killing by the caspase transgenes, 
the integrated transgenes were crossed into integrated reporters that expressed GFPs in several neurons, 
including the neuron of interest, as follows: IK2811 njIs82[ceh-36p::GFP, glr-3p::GFP] for AWC. Neuronal 
loss was confirmed by the disappearance of fluorescence; 100% of njIs80 animals displayed the loss of AFD, 
and 98.4% of njIs79 animals displayed the loss of AWC.  
 

40 

 
P ( ′T ,d ′T ) (T ,dT )( ) = N ′T T + dTΔt,σ T( )N d ′T dT ,σ dT( )
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Thermotaxis assay  
Thermotaxis (TTX) assays were performed as previously described (28). Animals cultivated at 20 °C were 
placed on the center of an assay plate (14 cm × 10 cm, 1.45 cm height) containing 18 ml of TTX medium 
with 2% agar, and were allowed to freely move for 60 min. The center of the plate was adjusted to 17 °C, 
20 °C, or 23 °C, to create three different gradient conditions, and the plates then maintained at a linear 
thermal gradient of approximately 0.45 °C/cm.  
 
Behavioral recording 
Worm behaviors were recorded using a Multi-Worm Tracker (16) with a CMOS sensor camera-link camera 
(8 bits, 4,096 × 3,072 pixels; CSC12M25BMP19-01B; Toshiba-Teli), a Line-Scan Lens (35 mm, f/2.8; 10 
YF3528; PENTAX), and a camera-link frame grabber (PCIe-1433; National Instruments). The camera was 
mounted at a distance above the assay plate that consistently produced an image with 33.2 µm per pixel. The 
frame rate of recordings was approximately 13.5 Hz. Images were captured and processed by custom 
software written in LabView (National Instruments), and a custom image analysis library written in C++, to 
detect worm bodies and measure behavioral parameters such as the position of the centroid. 
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Figure Legends 

  
Figure 1: Concept and procedure of the inverse reinforcement learning (IRL)-based 
approach 
A. The RL is a forward problem, in which a behavioral strategy is determined to maximize the 

cumulative reward given as a series of state-dependent reward. The IRL is an inverse problem, 
in which a behavioral strategy, or its underlying reward function, is estimated in order to 
reproduce an observed series of behaviors. In the IRL procedure used here, we first extracted 
a series of behaviors by tracking animals during behavioral experiments, then identified the 
value function and reward function from the behavioral series. The behavioral strategy is 10 
evaluated by the profiles of the identified functions.  

B. Examples of passive dynamics and controlled dynamics. Here, an animal migrates upwards 
whereas the food (reward) is placed to its right. In this situation, if the animal continues migrate 
upwards, the food becomes distant. If the animal could take a harder body control, i.e., a 
change in its migrating direction toward the food, on the other hand, the food becomes nearer. 
Thus, the animal should make decisions via a tradeoff between the two different dynamics.  

C. The agent-environment interaction. The agent autonomously acts in the environment, observes 
the resultant state-transition through its sensory system, and receives not only the state reward 
but also the body control cost. The behavioral strategy is optimized to maximize the 
accumulation of net reward, which is given as state reward minus body control cost.  20 
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Figure 2: Data acquisition of C. elegans behaviors  
A. Thermotaxis assay with a thermal gradient. In each assay, a linear temperature gradient was 

set along the agar surface, whose center was set at either of 17, 20, or 23 °C. At the onset of 
the assays, fed or starved worms were uniformly placed on the agar surface.   

B. Temporal changes in the worms’ spatial distribution under the 20 °C-centered thermal gradient 
in the fed condition.  

C. Trajectories of a number of worms extracted by the multi-worm tracking system. Different 
colors indicate different individual worms. 10 

D. Time series of the temperature experienced by the migrating worms shown in C (colors 
correspond to those in C) and its derivative. 
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Figure 3: Behavioral strategy identified for fed wild type (WT) worms  
The behavioral strategies of fed WT worms represented by the value (A), desirability (B) and 
reward (C) functions. The worms prefer and avoid the red- and blue-colored states, respectively.  
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Figure 4: Statistical test for reliability of behavioral strategies with the surrogate method  
The reliability of the directed migration (DM) and isothermal migration (IM) strategies (Fig. 3) was 
assessed by means of statistical testing with the null hypothesis that the worms randomly migrate 
with no behavioral strategy. (A) To generate time-series data under the null hypothesis, original 
time-series data of temperature (left panel) was surrogated by the IAAFT method (right panel). (B) 
Before and after the surrogation, the autocorrelations were almost preserved. (C) The desirability 
functions estimated from the surrogate datasets. (D) The DM and IM strategies correspond to the 
red-highlighted diagonal and horizontal regions of the desirability function, respectively. Within 
these regions, sums of the estimated desirability functions were calculated as test statistics. (E) 10 
Histograms of the empirical null distributions of the test statistics for the DM and IM strategies. The 
test statistics derived by the original desirability function (red arrows) are located above the 
empirical null distributions (p=0 for the PT strategy; p=0 for the IT strategy).  
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Figure 5: Inverse reinforcement learning (IRL) analyses of starved worms, AWC- and AFD-
deficient worms 
Temporal changes in distributions of starved worms, AWC-deficient worms and AFD-deficient 
worms in the 20 °C-centered thermal gradient after the behavior onset are graphed in column a of 
A, B and C, respectively. Starved worms disperse under a thermal gradient; the AWC-deficient 
worms migrate to the cultivated temperature similarly to fed wild type worms and the AFD-deficient 
worms show cryophilic thermotaxis. Corresponding desirability functions are shown in column b of 
A, B and C. 
 10 
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Figure S1: Validation of the regularized (OptV) estimation method in artificial data  
(A) The desirability function corresponding to the ground truth value function used for generation of 
artificial data. Time-series data were artificially generated as training and test data sets by 
sampling equation [1] given the ground truth of the value function.  
(B) The desirability functions described by equation [6] under 3 different regularization parameters 
(λ) were visualized from the estimated value functions.  
(C) Squared error between the behavioral strategies based on the ground truth and estimated 
value functions using the test data set. The presence of an optimal λ, at which minimal squire error 
is obtained, indicates that the regularization was effective for accurately estimating the value 10 
function.  
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Figure S2: State distributions in the fed wild type (WT) worms  
Observed distributions of T and dT in fed WT worms are shown by heat map. Notice that the 
distribution is substantially different from the desirability function (Fig. 3B).  
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Figure S3: Inverse reinforcement learning (IRL) analysis with the one-dimensional state 
representation  
IRL was analyzed with one-dimensional state representation (s=(T)).  
(A) The desirability function was calculated by the estimated value function. In the estimation, the 
regularization parameter, λ, in equation [6] was optimized by cross-validation.  
(B) Prediction ability was compared between IRLs with s=(T, dT) and s=(T) using a cross-validation 
dataset. The negative log-likelihood of the behavioral strategies (equation [1]) with the estimated 
value function of both of T and dT (Fig. 3B) was significantly smaller than that with the estimated 
value function of T alone (Fig. S3A) (p=0.0002; Mann-Whitney U test). Thus, the behavioral 10 
strategy with s=(T, dT), was more appropriate than that with s=(T).  
(C) The desirability function became smoother as λ was increased. This desirability function peaks 
around the temperature to which the worm has been most exposed (i.e., the temperature in which 
they were cultivated, 20℃).  
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Figure S4: Estimated value/reward functions and state distributions  
The estimated value functions (a), reward functions (b) and state distributions (c) were depicted for 
the starved wild type worm (A), the AWC-deficient worms (B) and the AFD-deficient worms (C).  
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