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Abstract 

Most people tend to bisect horizontal lines slightly to the left of their true center 

(pseudoneglect), and start visual search from left-sided items. This physiological 

leftward spatial bias may depend on hemispheric asymmetries in the organization 

of attentional networks, but the precise mechanisms are unknown. In this study, 

we aimed at testing and specifying this hypothesis by modeling relevant aspects of 

the ventral and dorsal attentional networks (VAN and DAN) of the human brain. 

First, we demonstrated pseudoneglect in visual search by asking 101 right-handed 

psychology students to perform a cancellation task. Participants consistently 

tended to start the task from a left-sided item, thus showing pseudoneglect. 

Second, we trained five populations of simulated neurorobots to perform a similar 

task, by using a genetic algorithm. The neurorobots’ behavior was controlled by 

artificial neural networks, which simulated the human VAN and DAN in the two 

brain hemispheres. The five populations of neurorobots differed in the connectional 

constraints that were applied to the anatomy and function of the attention 

networks. Results indicated that (1) neurorobots provided with a biologically 

plausible hemispheric asymmetry of the VAN-DAN connections displayed the best 

match with human data, confirming that such connectional asymmetries may well 

play a causal role in pseudoneglect; however, (2) anatomical asymmetry per se 

was not sufficient to generate pseudoneglect; in addition, the VAN must have an 

excitatory influence on the ipsilateral DAN for such a bias to consistently occur. 

These findings provide a proof of concept of the causal link between connectional 

asymmetries and pseudoneglect, and specify important biological constraints that 

result in physiological asymmetries of human behavior.  
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Author summary 

When exploring our environment, most of us tend to start their exploration from the 

left side. In this study, we first provided a demonstration of this tendency in a 

population of undergraduate students, who tended to start a visual search task by 

detecting a target on the left side of the display. We then investigated the possible 

mechanisms of this spatial bias by training artificial agents (neurorobots) to 

perform a similar visual search task. The neurorobots’ behavior was controlled by 

artificial neural networks, whose architecture was inspired by the human fronto-

parietal attentional system. In five distinct populations of neurorobots, different 

constraints were applied on the connections of the attentional networks, within and 

between the brain hemispheres. Only one of the artificial populations 

demonstrated a spatial bias that closely mirrored that shown by the human 

participants. The specific connectional constraints applied to this population 

included known characteristics of the human fronto-parietal networks, but had also 

additional properties not previously described. Thus, our findings specify important 

biological constraints that result in physiological asymmetries of human behavior.  

 

 

Keywords: Spatial exploration, Visual search, Attention, Brain connections, 

Spatial neglect 
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1. Introduction 

A thorough exploration of the space around us is essential to everyday life. 

However, spatial exploration is not perfectly symmetrical in humans. For example, 

when marking the center of a horizontal line, most of us deviate slightly to the left 

of its geometric center [1, 2]. Bowers and Heilman [1] termed “pseudoneglect” the 

physiological leftward bisection error, because it occurs in the direction opposite to 

the rightward shifts typical of patients with right hemisphere damage and signs of 

visual neglect [3]. In a similar way, when we explore a horizontal A4 sheet in order 

to cancel out visual targets, we tend to start the search from the left part of the 

sheet [4, 5]. In addition, leftward spatial bias can occur in such diverse contexts as 

tactile rod bisection [6], picture scanning [7, 8], simulated driving [9], spatial 

navigation [10] (but see [11]), rapid serial visual presentation [12], processing of 

facial emotions [13], and even mental imagery [14, 15]. In these cases, exploratory 

behavior typically starts from the left side more often than it does from the right 

side or from the center. As a consequence, the term “pseudoneglect” has also 

been applied to these forms of leftward spatial bias, by analogy to pseudoneglect 

on line bisection. Interestingly, right hemisphere damage can reverse this lateral 

bias. As a matter of fact, a reversed bias with a right starting side constitutes the 

most sensitive index of spatial bias in patients with right hemisphere damage, even 

in the absence of signs of left neglect [4, 16, 17].  

Evidence shows that visuospatial attention is a major determinant of 

pseudoneglect [18, 19], although cultural factors such as reading habits may also 

contribute [20]. It has thus been suggested that pseudoneglect mainly results from 

asymmetries in the hemispheric control of attention [7, 21]. However, the specific 

neural structures and the mechanisms at the basis of pseudoneglect remain 

unknown. 

In the human brain, visuospatial attention is controlled by fronto-parietal 

networks, which demonstrate substantial asymmetries across the hemispheres 
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[22, 23]. We now know several details on the anatomical organization [24] and 

functional characteristics [25] of these networks, and how their dysfunction in the 

right hemisphere can lead to signs of neglect for left-sided events [26, 27]. When 

normal participants perform cued detection tasks [28], a bilateral dorsal attentional 

network (DAN), composed by the intraparietal sulcus / superior parietal lobule and 

the frontal eye field / dorsolateral prefrontal cortex, shows increased blood 

oxygenation level dependent (BOLD) responses during the cue – target period 

[25]. Thus, the DANs appear to be important for spatial orienting towards 

contralateral events. The same studies also demonstrated the presence of a 

ventral attentional network (VAN), which includes the temporoparietal junction and 

the ventral frontal cortex (inferior and middle frontal gyri), and shows increased 

BOLD responses when participants have to respond to invalidly cued targets [25]. 

Thus, the VAN is considered important for detecting unexpected but behaviorally 

relevant events, by inducing the DANs to reorient attention towards these events. 

Importantly, the VAN is strongly lateralized to the right hemisphere, whereas the 

DAN is bilateral and symmetric (although other studies have provided some 

evidence of right lateralization of the DAN [29-31]). The DANs are also crucial for 

abilities interacting with attention, such as visual working memory [32]. 

Anatomically, three branches of a long-range white matter pathway, the Superior 

Longitudinal Fasciculus (SLF), connect these networks. Evidence obtained with 

advanced white matter tractography [24] demonstrated that the SLF has a ventro-

dorsal gradient of hemispheric asymmetry. The ventral branch of the SLF connects 

the VAN and is anatomically larger in the right hemisphere than in the left 

hemisphere, whereas the dorsal branch (connecting the DAN) is more 

symmetrical. The lateralization of the intermediate branch of the SLF displays 

interindividual differences, and is strongly correlated to the individual amount of 

spatial bias in line bisection and in the speed of detection between the right and 
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the left hemifield. Specifically, larger SLF volumes in the right hemisphere correlate 

with larger leftward bias [24].  

A further potential source of performance asymmetry resides in the pattern 

of inter-hemispheric connections. Behavioral and electrophysiological evidence 

suggests that inter-hemispheric communication is not strictly symmetrical in 

humans, but it is faster from the right to the left hemisphere [33]. Also, the posterior 

callosal connections from the right parietal node of the DAN to its left hemisphere 

homologue seem to be predominantly inhibitory [34]. Concerning the VAN, its right 

and left temporo-parietal caudal nodes are not strongly connected by callosal 

fibers [35], and thus work in relative isolation from one another. 

It is tempting to relate these biological constraints to the widespread 

leftward bias that occurs in human exploratory behavior. However, little is known 

about the specific dynamic interplay between the attentional networks resulting in 

spatial bias. On the one hand, methods used in humans have substantial 

limitations of spatiotemporal resolution and of inferential power, which severely 

limit their scope. On the other hand, it is difficult to draw firm conclusions from 

monkey neurophysiology, because of important differences between humans and 

primates in the organization of attention networks [36]. In the present study, we 

took a different approach to unravel these issues. First, we tested a group of 

human participants to establish the presence and characteristics of pseudoneglect 

in a visual search task (Experiment 1). In Experiment 2, we trained neurally 

controlled robots (neurorobots) to perform a task as similar as possible to the 

human one. We then articulated detailed implementations of several instances of 

attention network architecture, which directed the neurorobots’ performance, in 

order to identify the structural and functional network constraints crucial for 

simulating human performance.  
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2. Experiment 1: Pseudoneglect in human visual search 

2.1 Introduction 

Pseudoneglect has been mainly measured using tasks of perceptual estimation of 

the length of horizontal lines [2, 19]. Analogous leftward biases seem also to occur 

in visual search tasks, as a tendency to find first targets on the left side of the 

display [4, 37], but evidence in this domain is less systematic. Thus, in the present 

context it was important to test our specific task in order to ensure the validity of 

the human-robotic comparison of performance.  

 

2.2. Methods 

2.2.1. Ethics Statement 

The procedure was approved by the Department of Humanistic Studies of the 

University Federico II of Naples. 

 

2.2.2. Participants 

A total of 101 right-handed psychology students (76 females; mean age ± SD, 

22.24 ± 4.40) gave their informed consent to perform a visual search experiment 

for course credit. Participants were recruited in November 2016. 

 

2.2.3. Procedure 

The task was designed to be as close as possible to that performed by 

neurorobots (see section 3 below). Participants were instructed to cancel as fast 

as possible targets displayed on a touch-sensitive tablet (Mediacom Winpad 801 

8-inches, 120 dpi, 1280x800 pixels, refresh frequency 60 Hz), by using a stylus 

pen. Participants were comfortably seated with a viewing distance of ~40 cm. Each 

session consisted of 30 trials. Each trial was initiated by the participant touching a 

green round button placed at the center of the screen. Subsequently, a set of 5 
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dark-red (HEX #800000) filled round targets, with a 40-pixel radius (0.76° visual 

angle), was presented. Targets were randomly scattered on a display area of 

512x512 pixels (9.7° x 9.7°), placed at the center of the screen. Upon participant’s 

touch, cancelled targets became bright red (HEX #FF0000). To assess lateral bias, 

we first defined the center of the display as 0, so that the values of the X 

coordinate went from -256 pixels (-4.85°) on the extreme left to +256 pixels 

(+4.85°) on the extreme right. Second, we measured the average position on the X 

axis of the first cancelled stimulus for each trial. 

 

2.3. Results 

As expected with this easy task, accuracy was at ceiling, with all participants 

correctly cancelling all the targets. Results showed a left-biased distribution of the 

first found target (see Fig. 9A below). The average X value was -80.23 pixels (-

1.52°), which significantly differs from the central position at X = 0 (Wilcoxon-

Mann-Whitney two-tailed test, Z=-6.37, p<0.001).  

 

2.4. Discussion 

During a visual search task similar to that used for our simulations, normal 

participants exhibited a leftward bias (pseudoneglect), consisting in a significant 

tendency to start the visual search from a left-sided target. This result was 

observed in an experimental setting as close as possible to that used for 

neurorobots, and replicates and extends previous results obtained with different 

types of visual search tasks, such as the line cancellation test [4] and the bells test 

[37]. 
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3. Experiment 2: Visual Search in Neurorobots 

3.1. Introduction 

A neurorobot is a real or simulated robot whose behavior is controlled by an 

artificial neural network. For the present experiment, we developed distinct 

populations of simulated neurorobots controlled by artificial neural networks with 

different connectivity contraints. 

 

3.2. Models 

The simulated robot (Fig. 1) has a single artificial eye and an actuator (simulated 

hand) able to perform the cancellation task. The robot’s eye can move and zoom, 

and can thus be described as a pan/tilt/zoom camera, because it can move along 

the horizontal and vertical axes and can zoom in a range between 1x to 12x. The 

use of a zoom was inspired by models of attention, which stipulate that attention 

can either be distributed over the whole field, but with low resolving power, or be 

continuously constricted to small portions of the visual field with a concomitant 

increase in processing power [38].  

 

 

Figure 1. Schema of the neurorobot equipped with an artificial eye, provided with a 7x7 

light receptor retina, and controlled by two couples of simulated extraocular muscles. 
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The artificial eye is equipped with a retina made up of a 7x7 grid of light receptors 

(see Fig.1). Each receptor outputs an activation value computed by averaging the 

luminance of the perceived stimuli across the receptive field, with radius set to 80 

pixels. Receptors are evenly distributed within the artificial retina, which has a 

square form with a side varying from 1120 pixels (no zoom) to 96 pixels (maximum 

zoom). Thus, each stimulus can occupy a retinal surface ranging from 0.8% to 

100% of the artificial retina. Horizontal and vertical movements of the eye are 

controlled by four simulated muscles [39] (see Fig. 1), in analogy to the medial, 

lateral, inferior and superior recti of the human eye. 

 

3.2.1. Neural network 

We used a standard neural network model in which each node of the network has 

a sigmoid activation function φ(x)=1/(1+e-x) and an adjustable threshold ϑ. The 

output, 𝑂, is computed for each node i by using the following equation:  

𝑂! = 𝜑 𝐴!  

Where: 

𝐴! = 𝜗! + 𝑤!"
!,!

𝑂! 

wij is the synaptic weight connecting unit j with unit i. The pattern of connections 

between nodes has been chosen according to biological evidence on dorsal and 

ventral attentional networks in human brains (see below, section 3.5).  

Fig. 2A depicts the general template network. The 7x7 retina, consisting of 

49 artificial neurons, constituted the input layer. The output layer controlled the 

zoom with two artificial neurons, the extraocular muscles with four neurons, and a 

decision unit for target detection, which triggered the touch response when 

exceeding a criterion threshold of 0.7. The hidden layer contained the attention 

networks and a hidden network devoted to control vertical eye movements (4 
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neurons, not depicted in Fig. 1). We modeled the DAN and the VAN by building a 

neural model organized across two hemispheres, with visual information from each 

visual field projecting to the contralateral hemisphere. Each DAN had 5 artificial 

neurons; each VAN had 4 artificial neurons. The VAN-DAN connections in the right 

hemisphere outnumbered those in the left hemisphere, in order to simulate 

analogous results for the human SLF II [24]. 

The inter-hemispheric connections were also modeled by following 

anatomical and functional results obtained in the human brain, and outlined in the 

Introduction. Thus, (1) they connected only the DANs, but not the VANs, which 

thus worked in relative isolation from one another (see Fig. 9.4D in Ref. [35]) and 

(2) they were inhibitory, such that each DAN inhibited the contralateral one [see 

34]: each DAN induced contralaterally-directed eye movements and inhibited 

ipsilaterally-directed eye movements.  The DANs controlled zooming and 

cancellation behaviors. All the hidden units within the DANs also had reentrant 

connections, which integrate the previous input with the current one, thus 

simulating a sort of simplified visual memory, in analogy to similar mechanisms 

occurring in the primate brain [32]. Thus, reentrant connections resulted in some 

persistence of the previous inputs across steps within a given trial. The model also 

included an efference copy of movements, sent from the output layer to the input 

layer within each hemisphere.  

 

3.2.2. Cancellation task 

Similar to the human experiment (see section 2), neurorobots performed a 30-trial 

cancellation task. Targets were presented on a virtual display measuring 512 x 512 

pixels. At the start of each trial, the gaze of the artificial eye was initialized at the 

center of the display, with no zoom. Again, similarly to the human experiment, 

each trial consisted of a set of 5 round targets, with a luminance value of 0.5 (in 

conventional units ranging from 0 to 1.0) and a radius of 40 pixels, randomly 
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scattered in the virtual display. Upon cancellation, targets increased their 

luminance to the maximum value of 1.0. 

 

3.2.3. The Adaptive/Learning process 

For the present work, neurorobots were trained by means of a Genetic Algorithm, 

a form of evolutionary computation that implements a Darwinian process of 

adaptation that can model cognitive development and trial-and-error learning, 

especially when only distal rewards are available [40, 41]. A typical experiment 

starts with the generation of a random set of individual neurorobots (each defined 

by a specific set of parameters of a neurocontroller). Each individual is then 

evaluated according to a fitness function representing the desired performance on 

a requested task. Due to genetic operators such as mutation and crossover, the 

best individuals will populate the next generation. The process iterates until a 

specific performance or a fixed number of generations is reached. In the present 

work, each genetic string encodes the value of synaptic connections wij and 

neuron thresholds in the range (-5, 5). Initially, for each evolutionary experiment a 

set of 100 random individuals (i.e., competing sets of parameters for the neural 

network of the neurorobot) were generated and evaluated for their ability to find 

targets. Targets had to be found as fast as possible on each of 30 cancellation 

trials, lasting 700 time steps each. At the end of the evaluation phase, individuals 

were ranked according to their performance, and the best 20 were used to 

populate the next generation after having undergone a mutation process. Each 

parameter was encoded by an 8-bit string, thus mutations were implemented by 

bits switching with probability p=0.01. The number of generations was set to 3,000.  

Three behavioral components contributed to the overall fitness, F: an 

exploration component, a component proportional to the number of target correctly 

cancelled, and a reward for responses promptness. 
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The exploration component, which was introduced to avoid the bootstrap 

problem [40], rewarded the ability of the neurorobot to explore its visual field. In 

particular, the area that can be explored through eye movements was split in 100 

cells. Exploration fitness (EF) was then computed for each trial by dividing the 

number of visited cells by 100. A second fitness component (TF) was represented 

for each trial by the number of correctly cancelled targets divided by 5 (i.e., the 

total number of presented targets). Finally, a reward for promptness (PF) was 

given when all the five targets were cancelled. PF was inversely proportional to the 

number of time steps nt, used to cancel all the stimuli:  

PF=nt/700  

The overall fitness was calculated as  

F=EF+TF+PF.  

After training, neurorobots’ performance in the cancellation task was 

evaluated on 30 new trials, in order to measure their accuracy in finding the targets 

and the position of the first cancelled target, as estimated by the average value of 

the X coordinate of the first cancelled stimulus across trials. 

 

3.2.4. Valence of VAN-DAN connections 

A set of 5 populations of neurorobots, each composed of 40 individuals, featured 

neurocontrollers with different connectional constraints.  
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Figure 2. Neurocontrollers A, B and C. Arrows indicate connections that can be either 

excitatory or inhibitory; red connections with triangular arrowheads denote excitatory 

connections; round arrowheads represent inhibitory connections. LH, left hemisphere; RH, 

right hemisphere; Canc., cancellation units: LDAN and RDAN, dorsal attention networks in 

the left and in the right hemisphere, respectively; LVAN and RVAN, ventral attention 

networks in the left and in the right hemisphere; LVF and RVF, left and right visual field. 

Right and left VANs have the same number of neurons, but different patterns of connection 

strength. 

 

Neurocontrollers A, B and C (Fig. 2) had left-right asymmetric connections 

between VAN and DAN (i.e., the simulated SLF II), with a greater number of 

connections in the right hemisphere (120) than in the left hemisphere (108). The 

ratio of this asymmetry difference (0.05) corresponds to the average asymmetry 

ratio of SLF II in 20 human subjects, as described by Thiebaut de Schotten et al. 

[24] (see their supplementary Table 1). In neurocontroller A (Fig. 2A) there were no 
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constraints in terms of type of connections (inhibitory or excitatory) along the 

ventral and dorsal attentional networks. In neurocontroller B a further constraint 

was added: VAN to DAN pathways were set to be excitatory during the training 

process (see Fig. 2B). Finally, in neurocontroller C also the connections projecting 

from the retina to the VAN were set to be excitatory (see Fig. 2C). To better 

evaluate the effect on performance of SLF II asymmetry, we trained two additional 

control populations based on neurocontroller C: C0 with completely symmetrical 

VAN-DAN connections (laterality ratio = 0); C1 with VAN-DAN connections only 

present in the right hemisphere, and absent VAN-DAN connections in the left 

hemisphere (complete right lateralization of SLF II).  

 

3.3. Results 

3.3.1. Behavioral Results 

Figure 3 reports the performance of the three populations equipped with 

neurocontrollers A, B, and C on correct cancellations. Each boxplot contains data 

collected for 40 neurorobots tested on 30 cancellation tasks. 
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Figure 3.  Average x values of the first cancelled target, computed across 30 trials for each 

population of 40 neurorobots provided with neurocontrollers A, B, and C. The middle bar of 

the boxplot indicates the median of the tested population. The left side and the right side of 

the box indicate respectively the first (q1) and the third (q3) quartiles. Whisker length 

extends until the last data point that is not considered as an outlier, I.e. a point that is 

greater than q3 + 1.5 × (q3 – q1) or less than q1 – 1.5 × (q3 – q1). There were no outliers 

in the current dataset.  

 

There were no significant differences in the percentage of correct cancellations 

across the three populations [Kruskal-Wallis test, χ2
(2, n = 120) = 1.44, p = .49]. 

However, the position of the first cancelled target (X value for each trial) did differ 

across the tested populations, χ2
(2, n = 120) = 18.41, p < .001. While the position of 

the first cancelled target was not different from 0 (central position) in neurorobots 

equipped with neurocontroller A  (Wilcoxon-Mann-Whitney, p=0.1, two-tailed), the 

remaining neurorobots tended to start their exploration of the display on the left of 

the center (neurocontroller B, Md = -33.27, z = -2.057, p = 0.02; neurocontroller C, 

Md = 63.29, z = -5.35, p < .001), thus showing a leftward bias reminiscent of 

human pseudoneglect. The control populations with complete SLF II symmetry 
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(C0), or extreme rightward SLF II asymmetry (C1) showed the predicted patterns of 

performance: no pseudoneglect for C0 (Md=20.435, z=-0.823, p=0.411), and large 

pseudoneglect for C1 (Md=-96.526, z=-7.406, p=1.299*10-13) (Fig. 4). 

 

 

 

Figure 4. Average x values of the first cancelled targets, for all the neurorobots provided 

with neurocontrollers C0, C, and C1. Average x values of neurorobots C0 is not 

significantly different from 0, while average x values of neurocontrollers C and C1 

significantly differ from 0. 
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3.3.2. Neural results 

 

 

Figure 5. Average position on the X axis of the first cancelled targets for human 

participants (H) and artificial neurorobots equipped with neural networks A, B, C, C0 and 

C1. 

 

To better understand the neural dynamics leading to the exploratory bias, we 

examined the average activations of the DANs across all the individuals for each 

population, equipped with neurocontrollers C (biologically-inspired asymmetry) and 

C0 (symmetrical attention networks). We then computed a laterality index of DAN 

average activations between the two hemispheres: (Mean Right DAN activation - 

Mean Left DAN activation)/(Mean Right DAN activation + Mean Left DAN 

activation), with a possible range from -1 (prevalent left DAN activity) to +1 

(prevalent right DAN activity). Figure 6 reports the course of the laterality index 

across time steps. As expected, left and right DAN activations were balanced with 

neurocontroller C0. On the other hand, in neurocontroller C activations were 

unbalanced toward the right hemisphere DAN. A crucial aspect for pseudoneglect 
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concerns the initial time steps in which the exploratory bias occurs. A higher 

imbalance toward the right hemisphere DAN is present at the outset of the 

cancellation task for neurorobots C, as a consequence of asymmetries in their 

network architecture, while it is obviously absent for neurorobots C0, with 

symmetrical networks. The initial imbalance favoring the right hemisphere DAN is 

the likely basis of the spatial bias towards the initial cancellation of a left-sided item 

in neurorobots C.  

 

Figure 6. Laterality indexes of DAN activation computed for individuals equipped with 

neurocontroller C and C0. A value of 0 means that activation in left and right hemisphere 

DANs is balanced; positive values denote prevalence of right hemisphere DAN, negative 

values indicate prevalence of left hemisphere DAN. 
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Figure 7. Average activation of hidden neurons in right hemisphere DAN and in left 

hemisphere DAN, for the first 30 steps of individuals equipped with neurocontrollers C and 

C0. The activity scale goes from 0 (blue) to 1 (magenta). Note the early, large left-right 

asymmetry in neurobiologically inspired C agents (arrows), which subsequently decreases. 

The symmetrical C0 agents do not show any asymmetry of performance.  

 

Figure 7 shows the average activation of the hidden DAN neurons in the left and in 

the right hemisphere during the first 30 time steps of the cancellation task, for 

agents equipped with the biologically inspired neurocontroller C, and for those 

equipped with the symmetrical neurocontroller C0. The initial activation is 

symmetrical for the C0 agents, but it is higher in the right hemisphere than in the 

left hemisphere for the C agents. Thus, an asymmetry of VAN connections results 

in a corresponding activation asymmetry in the anatomically symmetrical DANs. 

The DAN asymmetry in the initial phases of the task is the simulated neural 

correlate of behavioral pseudoneglect. After the initial phase, the left-right 

differences are absorbed by the increased activity of the hidden units; when left 

and right activities reach saturation, the behavioral asymmetry decreases (see Fig. 
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6, where asymmetry of performance decreases around time step 150 for 

neurocontroller C).  

 

3.3.3. Comparison between human and robotic performance 

Human participants and robotic populations as a whole did not show the same 

distribution of the position of the first cancelled targets (Kruskal-Wallis test, χ2(5, n 

= 301) = 67.88, p < .001). Post-hoc tests (Dunn's test with Bonferroni correction) 

demonstrated a difference in distribution between humans and neurocontrollers A 

(p <.001), B (p=0.0394), C0 (p < .001), C1 (p = 0.0153). However, the position 

distribution derived from human performance and neurocontroller C’s performance 

showed a similar degree of leftward asymmetry (Fig. 8; Dunn's test, p = 1.0; 

Levene test of homogeneity, p = 0.39). Thus, all robotics agents performed 

differently from humans, except from the neurocontroller C neurorobot population, 

whose performance provided a good approximation to human performance. 

 

 

Figure 8. Distribution of the position of the first cancelled target for 101 human participants 

(see Experiment 1) and for the population of neurorobots equipped with the biologically 

inspired neurocontroller C. 
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4. General Discussion 

In this study, we established specific connectivity constraints leading to a lateral 

spatial bias (pseudoneglect) in artificial organisms trained to perform a visual 

search task by using genetic algorithms. A form of pseudoneglect that was 

qualitatively and quantitatively similar to that shown by normal participants did 

emerge in artificial neurorobots, but only in those harboring hemispheric 

asymmetries of connectivity that simulated those typically occurring in the human 

brain. As a further condition, a general excitatory influence of VAN on the 

ipsilateral DAN was necessary for pseudoneglect to occur in neurorobots. This 

novel result suggests that hemispheric asymmetry alone is not sufficient to 

generate a leftward bias, and thus further specifies the likely connectional 

constraints of pseudoneglect. 

In their recent review, Borji and Itti [42] provided a taxonomy of nearly 65 

computational models of visual attention. Many of these models focused on 

reproducing eye movements (e.g., the saliency-based models reported in Borji and 

Itti [42]), following a bottom up approach. Typically, these models extract a set of 

features, represented as maps, from an incoming image. Then, feature maps are 

combined in a saliency map where a winner-take-all mechanism will designate the 

spatial region to be attended. Saliency-based attention models in general do not 

account for exploration biases, with the exception of a recent model [43], where an 

object center bias (the tendency to focus on the center of objects) is reproduced by 

adding an ad-hoc bias map to the saliency map. While important for building 

predictive models, this result seems little relevant to lateral biases such as 

pseudoneglect. Other models [44, 45] simulate attention as emerging from the 

competition of several brain areas subjected to bottom-up and top-down biases. 

These models do not drive eye movements; the scan path is simulated as a 

sequence of activations of the simulated posterior parietal cortex. Lanyon and 

Denham [46, 47] added to these models simulated eye movements and an 
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adjustable attention window scaled according to stimuli density. Despite being 

successful at reproducing scan paths in healthy individuals and neglect patients, 

these models do not address the issue of pseudoneglect. Other models of 

attention did not consider pseudoneglect because of their training procedure or 

design constraints [41, 48-50]. Di Ferdinando et al. [51] explored line bisection and 

target cancellation performance in four biologically inspired neural networks. The 

networks’ patterns of connectivity varied along different degrees of asymmetry, 

inspired by specific theories. Pseudoneglect occurred in line bisection but not in 

visual search. In these models, motor outputs were only used for target selection; 

there was no active exploration of the environment, whereas when our neurorobots 

explored their environment the corresponding input information changed as a 

function of eye movements. Nonetheless, the present study shares with Di 

Ferdinando et al. [51] and other work from the Zorzi group [52] the stress on 

accounts of attentional phenomena relying on sensory-motor transformations, as 

stated by the premotor theory of attention [53].  

Thus, at variance with most available models of attention, our artificial 

robots are trained to correctly cancel target stimuli, and are free to self-organize in 

order to find a proper solution, within the sole limits of the imposed connectivity 

constraints. These constraints were inspired by available data concerning the 

anatomical and functional organization of the attentional networks in the human 

brain [24, 25, 34]. To the best of our knowledge, this is the first attempt to simulate 

the dorsal and ventral attention networks in the two hemispheres of the human 

brain. Another original feature of the present models is the embodiment factor, 

consisting of the explicit modeling of eye and hand movements (see also Refs. [41, 

46, 54-56]). In particular, the present models extended the models devised by Di 

Ferdinando et al [41], by increasing the complexity of the organisms’ retina, the 

biological plausibility of the motor system and that of the neural controllers. Conti 

et al. [57] also adopted an embodied perspective, based on a humanoid robot 
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platform. In their study, an iCub robot was trained to remove objects from a table, a 

task reminiscent of a cancellation task. Intra-hemispheric disconnections were able 

to produce neglect-like behavior. However, the embodiment of the model was 

limited by the facts that selection of a visual target was carried out independently 

of the motor behavior, and that robot’s eyes were kept fixed during the cancellation 

task. Moreover, although hemisphere asymmetry was modeled by increasing the 

number lf right hemisphere processing units, no bias in normal performance is 

reported.  

Moreover, at variance with most published work, our model attempted to 

simulate the relationships between the visual pathways and the attentional 

networks by respecting important biological constraints. Visual pathways project 

mainly to the hemisphere contralateral to each visual field. However, theoretical 

models of visual attention posit that the left hemisphere mainly deals with the 

contralateral hemispace, whereas the right hemisphere has a more bilateral 

competence [22, 58]. In previous computational models this asymmetry has not 

always been simulated in a biologically plausible way. In some cases, both 

simulated hemispheres received visual information from the whole visual field, with 

attention asymmetries being represented in inner layers [41, 49]. In the Conti et 

al.’s model [57], the right hemisphere received information from both visual 

hemifields, whereas the left hemisphere processes only the contralateral visual 

hemifield. However, there is no anatomical evidence of such asymmetries in the 

visual pathways, and information exchange in the occipital visual areas is mainly 

limited to the vertical meridian [59].  In our model, these important biological 

constraints of visual information processing were respected, because each artificial 

hemisphere received visual information from the contralateral hemifield; inter-

hemispheric connections were only present at a later stage of processing, between 

the artificial DANs. 
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Finally, we note that the present population-based model can be potentially 

used to explore in a natural manner the universal properties (the basic brain 

architecture) and individual differences in network efficiency, two aspects recently 

underlined by Michael Posner [60] as appropriate features for future models of 

attention.  

In conclusion, we have demonstrated the emergence of pseudoneglect 

behavior in artificially evolving neurorobots searching for visual objects, under 

specific connectional constraints. These neurorobots provide a plausible model for 

the dynamic interactions between fronto-parietal attention networks in the human 

brain. 
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