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Abstract 

Most people tend to bisect horizontal lines slightly to the left of their true center 

(pseudoneglect), and start visual search from left-sided items. This physiological 

leftward spatial bias may depend on hemispheric asymmetries in the organization 

of attentional networks, but the precise mechanisms are unknown. Here we 

modeled relevant aspects of the ventral and dorsal attentional networks (VAN and 

DAN) of the human brain. First, we demonstrated pseudoneglect in visual search 

in 101 right-handed psychology students. Participants consistently tended to start 

the task from a left-sided item, thus showing pseudoneglect. Second, we trained 

populations of simulated neurorobots to perform a similar task, by using a genetic 

algorithm. The neurorobots’ behavior was controlled by artificial neural networks, 

which simulated the human VAN and DAN in the two brain hemispheres. 

Neurorobots differed in the connectional constraints that were applied to the 

anatomy and function of the attention networks. Results indicated that (1) 

neurorobots provided with a biologically plausible hemispheric asymmetry of the 

VAN-DAN connections, as well as with inter-hemispheric inhibition, displayed the 

best match with human data; however, (2) anatomical asymmetry per se was not 

sufficient to generate pseudoneglect; in addition, the VAN must have an excitatory 

influence on the ipsilateral DAN; (3) neurorobots provided with bilateral 

competence in the VAN but without inter-hemispheric inhibition failed to display 

pseudoneglect. These findings provide a proof of concept of the causal link 

between connectional asymmetries and pseudoneglect, and specify important 

biological constraints that result in physiological asymmetries of human behavior.  
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Significance statement 

Most of us start our exploration of the environment from the left side. Here we 

demonstrated this tendency in undergraduate students, and trained artificial agents 

(neurorobots) to perform a similar visual search task. The neurorobots’ behavior 

was controlled by artificial neural networks, inspired by the human fronto-parietal 

attentional system. In seven distinct populations of neurorobots, different 

constraints were applied on the network connections within and between the brain 

hemispheres. Only one of the artificial populations behaved in a similar way to the 

human participants. The connectional constraints applied to this population 

included known characteristics of the human fronto-parietal networks, but had also 

additional properties not previously described. Thus, our findings specify biological 

constraints that induce physiological asymmetries of human behavior.  

 

 

Keywords: Spatial exploration, Visual search, Attention, Brain connections, 

Spatial neglect  
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1. Introduction 

A thorough exploration of the space around us is essential to everyday life. 

However, spatial exploration is not perfectly symmetrical in humans. For example, 

when we explore a scene in order to cancel out visual targets, we tend to start the 

search from the left part of the sheet (Azouvi et al., 2006; Bartolomeo, D'Erme, & 

Gainotti, 1994). This physiological leftward spatial bias is analogous to the slight 

physiological leftward shift typically observed in horizontal line bisection, termed 

pseudoneglect (Bowers & Heilman, 1980) because it goes in the opposite direction 

to the typical rightward bias showed by patients with left visual neglect after right 

hemisphere damage (Schenkenberg, Bradford, & Ajax, 1980; Urbanski & 

Bartolomeo, 2008). 

Evidence shows that visuospatial attention is a major determinant of 

pseudoneglect (McCourt, Garlinghouse, & Reuter-Lorenz, 2005; Toba, Cavanagh, 

& Bartolomeo, 2011), which might thus result from asymmetries in the hemispheric 

control of attention (McCourt & Jewell, 1999; Ossandón, Onat, & König, 2014). 

However, the specific neural structures and the mechanisms at the basis of 

pseudoneglect remain unknown. 

In the human brain, visuospatial attention is controlled by fronto-parietal 

networks, which demonstrate substantial asymmetries favoring the right 

hemisphere (Corbetta & Shulman, 2002; Heilman & Van Den Abell, 1980; 

Mesulam, 1999). Dysfunction of these networks after right hemisphere damage 

can induce signs of neglect for left-sided events (Bartolomeo, Thiebaut de 

Schotten, & Chica, 2012; Corbetta & Shulman, 2011). A bilateral dorsal attentional 

network (DAN), composed by the intraparietal sulcus / superior parietal lobule and 

the frontal eye field / dorsolateral prefrontal cortex, shows increased BOLD 

responses during the orienting period (Corbetta & Shulman, 2002). A right-

lateralized ventral attentional network (VAN) includes the temporoparietal junction 

and the ventrolateral prefrontal cortex. The VAN is important for detecting 
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unexpected but behaviorally relevant events, and induces the DANs to reorient 

attention towards these events. Anatomically, three branches of a long-range white 

matter pathway, the Superior Longitudinal Fasciculus (SLF), connect these 

networks. The SLF has a ventro-dorsal gradient of hemispheric asymmetry 

(Thiebaut de Schotten et al., 2011). The ventral branch (SLF III) connects the VAN 

and is anatomically larger in the right hemisphere than in the left hemisphere, 

whereas the dorsal branch (SLF I, connecting the DAN) is more symmetrical. The 

lateralization of the intermediate branch (SLF II) displays interindividual 

differences, and is strongly correlated to the individual amount of pseudoneglect in 

line bisection and to differences in the speed of detection between left-sided and 

right-sided targets. Specifically, larger SLF volumes in the right hemisphere 

correlate with larger leftward bias (Thiebaut de Schotten et al., 2011).  

A further potential source of performance asymmetry resides in the pattern 

of inter-hemispheric connections. Behavioral and electrophysiological evidence 

suggests that inter-hemispheric communication is not strictly symmetrical in 

humans, but it is faster from the right to the left hemisphere (Marzi, 2010). Also, 

the posterior callosal connections from the right parietal node of the DAN to its left 

hemisphere homologue seem to be predominantly inhibitory (Koch et al., 2011). 

Concerning the VAN, its right and left temporo-parietal caudal nodes are not 

strongly connected by callosal fibers (Catani & Thiebaut de Schotten, 2012), and 

thus work in relative isolation from one another. 

It is tempting to relate these biological constraints to the widespread 

leftward bias that occurs in human exploratory behavior. However, little is known 

about the specific dynamic interplay between the attentional networks resulting in 

pseudoneglect. On the one hand, methods used in humans have substantial 

limitations of spatiotemporal resolution and of inferential power, which severely 

limit their scope. On the other hand, it is difficult to draw firm conclusions from 

monkey neurophysiology, because of important differences between humans and 
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primates in the organization of attention networks (Patel et al., 2015). In the 

present study, we took a different approach to unravel these issues. First, we 

tested a group of human participants to establish the presence and characteristics 

of pseudoneglect in a visual search task (Experiment 1). In Experiment 2, we 

trained neurally controlled robots (neurorobots) to perform a task as similar as 

possible to the human one. We then articulated detailed implementations of 

several instances of attention network architecture, which directed the neurorobots’ 

performance, in order to identify the structural and functional network constraints 

crucial for simulating human performance.  
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2. Experiment 1: Pseudoneglect in human visual search 

2.1 Introduction 

Pseudoneglect has been mainly measured using tasks of perceptual estimation of 

the length of horizontal lines (Bowers & Heilman, 1980; Jewell & McCourt, 2000; 

Toba et al., 2011). Analogous leftward biases seem also to occur in visual search 

tasks, as a tendency to find first targets on the left side of the display (Azouvi et al., 

2006; Bartolomeo et al., 1994), but evidence in this domain is much less 

systematic. Thus, in the present context it was important to test our specific task in 

order to ensure the validity of the human-robotic comparison of performance.  

 

2.2. Methods 

2.2.1. Ethics Statement 

The procedure was approved by the local ethics committee. 

 

2.2.2. Participants 

A total of 101 right-handed psychology students (76 females; mean age ± SD, 

22.24 ± 4.40) gave their informed consent to perform a visual search experiment 

for course credit.  

 

2.2.3. Procedure 

The task was designed to be as close as possible to that performed by 

neurorobots (see section 3 below). Participants were instructed to cancel as fast 

as possible targets displayed on a touch-sensitive tablet (Mediacom Winpad 801 

8-inches, 120 dpi, 1280x800 pixels, refresh frequency 60 Hz), by using a stylus 

pen. Participants were comfortably seated with a viewing distance of ~40 cm. Each 

session consisted of 30 trials. Each trial was initiated by the participant touching a 

green round button placed at the center of the screen. Subsequently, a set of 5 
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dark-red (HEX #800000) filled round targets, with a 40-pixel radius (0.76° visual 

angle), was presented. Targets were randomly scattered on a display area of 

512x512 pixels (9.7° x 9.7°), placed at the center of the screen. Upon participant’s 

touch, cancelled targets became bright red (HEX #FF0000). To assess lateral bias, 

we first defined the center of the display as 0, so that the values of the X 

coordinate went from -256 pixels (-4.85°) on the extreme left to +256 pixels 

(+4.85°) on the extreme right. Second, we measured the average position on the X 

axis of the first cancelled stimulus for each trial. 

 

2.3. Results 

As expected with this easy task, accuracy was at ceiling, with all participants 

correctly cancelling all the targets. Results showed a left-biased distribution of the 

first found target (see Fig. 9A below). The average X value was -80.23 pixels (-

1.52°), which significantly differs from the central position at X = 0 (Wilcoxon-

Mann-Whitney two-tailed test, Z=-6.37, p<0.001).  

 

2.4. Discussion 

During a visual search task similar to that used for our simulations, normal 

participants exhibited a leftward bias (pseudoneglect), consisting of a tendency to 

start the visual search from a left-sided target. This result was observed in an 

experimental setting as close as possible to that used for neurorobots, and 

replicates and extends previous results obtained with different types of visual 

search tasks, such as the line cancellation test (Bartolomeo et al., 1994) and the 

bells test (Rousseaux et al., 2001). 
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3. Experiment 2: Visual Search in Neurorobots 

3.1. Introduction 

A neurorobot is a real or simulated robot whose behavior is controlled by an 

artificial neural network. For the present experiment, we developed distinct 

populations of simulated neurorobots controlled by artificial neural networks with 

different connectivity constraints. The neurorobots’ task was designed to be as 

close as possible to that performed by human participants in Experiment 1. 

 

3.2. Models 

The simulated robot (Fig. 1) has a single artificial eye and an actuator (simulated 

hand) able to perform the cancellation task. The robot’s eye can move and zoom, 

and can thus be described as a pan/tilt/zoom camera, because it can move along 

the horizontal and vertical axes and can zoom in a range between 1x to 12x. The 

use of a zoom was inspired by models of attention, which stipulate that attention 

can either be distributed over the whole field, but with low resolving power, or be 

continuously constricted to small portions of the visual field with a concomitant 

increase in processing power (Eriksen & Yeh, 1985).  
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Figure 1. Schema of the neurorobot equipped with an artificial eye, provided with a 7x7 

light receptor retina, and controlled by two pairs of simulated extraocular muscles. 

 

The artificial eye is equipped with a retina made up of a 7x7 grid of light receptors 

(see Fig. 1). Each receptor outputs an activation value computed by averaging the 

luminance of the perceived stimuli across the receptive field, with radius set to 80 

pixels. Receptors are evenly distributed within the artificial retina, which has a 

square form with a side varying from 1120 pixels (no zoom) to 96 pixels (maximum 

zoom). Thus, each stimulus can occupy a retinal surface ranging from 0.8% to 

100% of the artificial retina. Horizontal and vertical movements of the eye are 

controlled by four simulated muscles (Massera, Ferrauto, Gigliotta, & Nolfi, 2014) 

(see Fig. 1), in analogy to the medial, lateral, inferior and superior recti of the 

human eye. 
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3.2.1. Neural network 

We used a standard neural network model in which each node of the network has 

a sigmoid activation function φ(x)=1/(1+e-x) and an adjustable threshold ϑ. The 

output, 𝑂, is computed for each node i by using the following equation:  

𝑂! = 𝜑 𝐴!  

Where: 

𝐴! = 𝜗! + 𝑤!"
!,!

𝑂! 

wij is the synaptic weight connecting unit j with unit i. The pattern of connections 

between nodes has been chosen according to biological evidence on dorsal and 

ventral attentional networks in human brains (see below, section 3.5).  

Fig. 2A depicts the general template network. The 7x7 retina, consisting of 

49 artificial neurons, constituted the input layer. The output layer controlled the 

zoom with two artificial neurons, the extraocular muscles with four neurons, and a 

decision unit for target detection, which triggered the touch response when 

exceeding a criterion threshold of 0.7. The hidden layer contained the attention 

networks and a hidden network devoted to control vertical eye movements (4 

neurons, not depicted in Fig. 1). We modeled the DAN and the VAN by building a 

neural model organized across two hemispheres, with visual information from each 

visual field projecting to the contralateral hemisphere. Each DAN had 5 artificial 

neurons; each VAN had 4 artificial neurons. These parameters were based on pilot 

work, and reflect a tradeoff between network complexity and the time needed to 

run simulations. With these parameters, each simulation required about a week to 

be completed on our hardware. The VAN-DAN connections in the right hemisphere 

outnumbered those in the left hemisphere, in order to simulate analogous results 

for the human SLF II (Thiebaut de Schotten et al., 2011). 

The inter-hemispheric connections were also modeled by following 

anatomical and functional results obtained in the human brain, and outlined in the 
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Introduction. Thus, (1) they connected only the DANs, but not the VANs, which 

thus worked in relative isolation from one another (see Fig. 9.4D in Catani & 

Thiebaut de Schotten, 2012) and (2) they were inhibitory, such that each DAN 

inhibited the contralateral one (Koch et al., 2011): each DAN induced 

contralaterally-directed eye movements and inhibited ipsilaterally-directed eye 

movements. The DANs controlled zooming and cancellation behaviors. All the 

hidden units within the DANs also had reentrant connections, which integrate the 

previous input with the current one, thus simulating a sort of simplified visual 

memory, in analogy to similar mechanisms occurring in the primate brain (Salazar, 

Dotson, Bressler, & Gray, 2012). Thus, reentrant connections resulted in some 

persistence of the previous inputs across steps within a given trial.  

Given the importance of eye position in visually-guided target reaching 

(Lewis, Gaymard, & Tamargo, 1998), we provided eye position information to 

neurorobots through an efference copy of the motor output. In particular, motor 

outputs controlling the four ocular muscles were connected one to one with the 

four input neurons, with a fixed weight of 1 (i.e., perfect copy from input to output). 
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3.2.2. Cancellation task 

Similar to the human experiment (see section 2), neurorobots performed a 30-trial 

cancellation task. The human and robotic tasks were designed with the explicit 

constraint of being as similar as possible. Targets were presented on a virtual 

display measuring 512 x 512 pixels. At the start of each trial, the gaze of the 

artificial eye was initialized at the center of the display, with no zoom. Again, 

similarly to the human experiment, each trial consisted of a set of 5 round targets, 

with a luminance value of 0.5 (in conventional units ranging from 0 to 1.0) and a 

radius of 40 pixels, randomly scattered in the virtual display. Upon cancellation, 

targets increased their luminance to the maximum value of 1.0. 

 

3.2.3. The Adaptive/Learning process 

For the present work, neurorobots were trained by means of a Genetic Algorithm, 

a form of evolutionary computation that implements a Darwinian process of 

adaptation that can model cognitive development and trial-and-error learning, 

especially when only distal rewards are available (Di Ferdinando, Parisi, & 

Bartolomeo, 2007; Nolfi & Floreano, 2000). Genetic algorithms are a useful 

alternative to supervised learning in settings such as the present one, because we 

employed a fitness function based on the number of cancelled targets, and not a 

set of input-output pairings which could be used to minimize the error by a 

supervised learning mechanism such as back-propagation. A typical experiment 

starts with the generation of a random set of individual neurorobots (each defined 

by a specific set of parameters of a neurocontroller). Each individual is then 

evaluated according to a fitness function representing the desired performance on 

a requested task. Due to genetic operators such as mutation and crossover, the 

best individuals will populate the next generation. The process iterates until a 

specific performance or a fixed number of generations is reached. In the present 
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work, each genetic string encodes the value of synaptic connections wij and 

neuron thresholds in the range (-5, 5). Initially, for each evolutionary experiment a 

set of 100 random individuals (i.e., competing sets of parameters for the neural 

network of the neurorobot) were generated and evaluated for their ability to find 

targets. Targets had to be found as fast as possible on each of 30 cancellation 

trials, lasting 700 time steps each. At the end of the evaluation phase, individuals 

were ranked according to their performance, and the best 20 were used to 

populate the next generation after having undergone a mutation process. Each 

parameter was encoded by an 8-bit string, thus mutations were implemented by 

bits switching with probability p=0.01. The number of generations was set to 3,000.  

Three behavioral components contributed to the overall fitness, F: an 

exploration component, a component proportional to the number of target correctly 

cancelled, and a reward for responses promptness. 

The exploration component, which was introduced to avoid the bootstrap 

problem (Nolfi & Floreano, 2000), rewarded the ability of the neurorobot to explore 

its visual field. In particular, the area that can be explored through eye movements 

was split in 100 cells. Exploration fitness (EF) was then computed for each trial by 

dividing the number of visited cells by 100. A second fitness component (TF) was 

represented for each trial by the number of correctly cancelled targets divided by 5 

(i.e., the total number of presented targets). Finally, a reward for promptness (PF) 

was given when all the five targets were cancelled. PF was inversely proportional 

to the number of time steps nt, used to cancel all the stimuli:  

PF=nt/700  

The overall fitness was calculated as  

F=EF+TF+PF.  

After training, neurorobots’ performance in the cancellation task was 

evaluated on 30 new trials, in order to measure their accuracy in finding the targets 
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and the position of the first cancelled target, as estimated by the average value of 

the X coordinate of the first cancelled stimulus across trials. 

 

3.2.4. Valence of VAN-DAN connections 

A set of 5 populations of neurorobots, each composed of 40 individuals, featured 

neurocontrollers with different connectional constraints.  

 

 

Figure 2. Panels A, B and C depict different implementations of the attentional networks 

with inter-hemispheric inhibition (Koch et al., 2011) and DAN/VAN architecture (Corbetta & 

Shulman, 2002). Panels D and E represent two implementations of right-hemisphere 

networks with bilateral competence (Heilman & Van Den Abell, 1980; Mesulam, 1981) and 

no inter-hemispheric inhibition. Arrows indicate connections that can be either excitatory or 

inhibitory; red connections with triangular arrowheads denote excitatory connections; blue 

round arrowheads represent inhibitory connections. LH, left hemisphere; RH, right 

hemisphere; Canc., cancellation units; LDAN and RDAN, dorsal attention networks in the 

left and in the right hemisphere, respectively; LVAN and RVAN, ventral attention networks 

in the left and in the right hemisphere; LVF and RVF, left and right visual field. Right and 

left VANs have the same number of neurons, but different patterns of connection strength.  
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Neurocontrollers A, B and C (Fig. 2) had left-right asymmetric connections 

between VAN and DAN (i.e., the simulated SLF II), with a greater number of 

connections in the right hemisphere (120) than in the left hemisphere (108). The 

ratio of this asymmetry difference (0.05) corresponds to the average asymmetry 

ratio of SLF II in 20 human subjects, as described by Thiebaut de Schotten et al. 

(2011) (see their supplementary Table 1). In neurocontroller A (Fig. 2A) there were 

no constraints in terms of type of connections (inhibitory or excitatory) along the 

ventral and dorsal attentional networks. In neurocontroller B a further constraint 

was added: VAN to DAN pathways were set to be excitatory during the training 

process (see Fig. 2B). Finally, in neurocontroller C also the connections projecting 

from the retina to the VAN were set to be excitatory (see Fig. 2C). To better 

evaluate the effect on performance of SLF II asymmetry, we trained two additional 

control populations based on neurocontroller C: C0 with completely symmetrical 

VAN-DAN connections (laterality ratio = 0); C1 with VAN-DAN connections only 

present in the right hemisphere, and absent VAN-DAN connections in the left 

hemisphere (complete right lateralization of SLF II).  

Earlier models of spatial attention (Heilman & Van Den Abell, 1980; 

Mesulam, 1981) postulated a bilateral competence of the right hemisphere for both 

hemispaces, without explicit consideration of inter-hemispheric interactions. To 

simulate these models, we trained two additional populations of neurorobots 

(neurocontrollers D and E in Fig. 2; 40 individuals for each population). In these 

neurocontrollers, the right hemisphere received visual information from both the 

right and the left visual hemifields, while the left hemisphere received information 

only from the right, contralateral visual hemifield. Moreover, there were no 

inhibitory connections between the right DAN and its left homolog. The rest of the 

architecture was the same as for all the other neurocontrollers. The only difference 

between neurocontroller D and neurocontroller E was the valence of the 

connections running from the visual fields to VAN and DAN.  In neurocontroller D, 
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the valence of the visuo-attentional connections was not constrained, and could 

thus assume either a positive or a negative valence. In neurocontroller E, visuo-

attentional connections were constrained to be excitatory, similar to neurocontroller  

C. 

 

3.3. Results 

3.3.1. Behavioral Results 

Figure 3 shows the ability of the five populations of neurobots to correctly solve the 

task. The mean percentages of correct cancellations are reported for each 

population.  

Figure 3.  Mean percentage of correct cancellations computed across 30 trials for each 

population of 40 neurorobots provided with neurocontrollers A-E. The middle bar of the 

boxplot indicates the median of the tested population. The top and the bottom of the box 

indicate respectively the first (q1) and the third (q3) quartiles. Whisker length extends until 

the last data point that is not considered as an outlier, I.e. a point that is greater than q3 + 

1.5 × (q3 – q1) or less than q1 – 1.5 × (q3 – q1). There were no outliers in the current 

dataset.  

Figure 4 reports the performance of the three populations equipped with 

neurocontrollers A-E on correct cancellations. Each boxplot contains data collected 

for 40 neurorobots tested on 30 cancellation trials. 
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Figure 4.  Average x values of the first cancelled target, computed across 30 trials for each 

population of 40 neurorobots provided with neurocontrollers A, B, C, D and E.  

 

There were significant differences in the mean percentage of correct cancellations 

across the five three populations [Kruskal-Wallis test, χ2
(4, n = 200) = 38.96, p = 7.10e-

08]. Neurocontrollers with inter-hemispheric inhibition (A-C) performed better than 

neurocontrollers without inter-hemispheric inhibition (D-E; Post-hoc pairwise 

comparisons using Dunn's-test, all ps < 0.05).   

 Importantly, the spatial position of the first canceled target (X coordinate 

value for each trial, Fig. 4) did differ across the tested populations, χ2
(4, n = 200) = 

34.198, p =4.65e-07. The position of the first canceled target was not different from 

0 (central position) in neurorobots equipped with neurocontroller A  (Wilcoxon-

Mann-Whitney, p=0.1, two-tailed) and neurocontroller D (p=0.5). Neurorobots E, 

with bilateral competence in the right hemisphere and excitatory visual-attentional 

connections, showed a rightward bias, opposite to human pseudoneglect 

(Md=58.81, z=-2.8802, p=0.004). Neurorobots B and C tended instead to start their 

exploration from a left-sided target (neurocontroller B, Md = -33.27, z = -2.057, p = 

0.02; neurocontroller C, Md = 63.29, z = -5.35, p < .001), thus showing a leftward 

bias reminiscent of human pseudoneglect. The control populations with complete 
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SLF II symmetry (C0), or extreme rightward SLF II asymmetry (C1) showed the 

predicted patterns of performance: no pseudoneglect for C0 (Md=20.435, z=-

0.823, p=0.411), and large pseudoneglect for C1 (Md=-96.526, z=-7.406, 

p=1.299e-13) (Fig. 5). 

 

 

 

Figure 5. Average x values of the first cancelled targets, for all the neurorobots provided 

with neurocontrollers C, C0, and C1. Average x values of neurorobots C0 is not 

significantly different from 0, while average x values of neurocontrollers C and C1 

significantly differ from 0. 

 

 

 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 14, 2017. ; https://doi.org/10.1101/129171doi: bioRxiv preprint 

https://doi.org/10.1101/129171
http://creativecommons.org/licenses/by/4.0/


20  

 

 

Figure 6. Average position on the X axis of the first cancelled targets for human 

participants (H) and artificial neurorobots equipped with neural networks A, B, C, C0, C1, D 

and E. 

 

3.3.2. Neural results 

 

To better understand the neural dynamics leading to the exploratory bias, we 

examined the average activations of the DANs across all the individuals for each 

population, equipped with neurocontrollers C (biologically-inspired asymmetry) and 

C0 (symmetrical attention networks). We then computed a laterality index of DAN 

average activations between the two hemispheres: (Mean Right DAN activation - 

Mean Left DAN activation)/(Mean Right DAN activation + Mean Left DAN 

activation), with a possible range from -1 (prevalent left DAN activity) to +1 

(prevalent right DAN activity). Figure 7 reports the course of the laterality index 

across time steps. As expected, left and right DAN activations were balanced with 

neurocontroller C0. On the other hand, in neurocontroller C activations were 
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unbalanced toward the right hemisphere DAN. A crucial aspect for pseudoneglect 

concerns the initial time steps in which the exploratory bias occurs. A higher 

imbalance toward the right hemisphere DAN is present at the outset of the 

cancellation task for neurorobots C, as a consequence of asymmetries in their 

network architecture, while it is obviously absent for neurorobots C0, with 

symmetrical networks. The initial imbalance favoring the right hemisphere DAN is 

the likely basis of the spatial bias towards the initial cancellation of a left-sided item 

in neurorobots C.  

 

Figure 7. Laterality indexes of DAN activation computed for individuals equipped with 

neurocontroller C and C0. A value of 0 means that activation in left and right hemisphere 

DANs is balanced; positive values denote prevalence of right hemisphere DAN, negative 

values indicate prevalence of left hemisphere DAN. 
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Figure 8. Average activation of hidden neurons in right hemisphere DAN (RDAN) and in left 

hemisphere DAN (LDAN), for the first 30 steps of individuals equipped with 

neurocontrollers C and C0. The activity scale goes from 0 (black) to 1 (white). Note the 

early, large left-right asymmetry in neurobiologically inspired C agents (arrows), which 

subsequently decreases. The symmetrical C0 agents do not show any asymmetry of 

performance. 

 

Figure 8 shows the average activation of the hidden DAN neurons in the left and in 

the right hemisphere during the first 30 time steps of the cancellation task, for 

agents equipped with the biologically inspired neurocontroller C, and for those 

equipped with the symmetrical neurocontroller C0. The initial activation is 

symmetrical for the C0 agents, but it is higher in the right hemisphere than in the 

left hemisphere for the C agents. Thus, an asymmetry of VAN connections results 

in a corresponding activation asymmetry in the anatomically symmetrical DANs. 

The DAN asymmetry in the initial phases of the task is the simulated neural 

correlate of behavioral pseudoneglect. After the initial phase, the left-right 
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differences are absorbed by the increased activity of the hidden units; when left 

and right activities reach saturation, the behavioral asymmetry decreases (see Fig. 

7, where asymmetry of performance decreases around time step 150 for 

neurocontroller C).  

 

3.3.3. Comparison between human and robotic performance 

Human participants and robotic populations as a whole did not show the same 

distribution of the position of the first cancelled targets (Kruskal-Wallis test, χ2(5, n 

= 301) = 67.88, p < .001) (see Fig. 6). Post-hoc tests (Dunn's test with Bonferroni 

correction) demonstrated a difference in distribution between humans and 

neurocontrollers A (p <.001), B (p=0.0394), C0 (p < .001), C1 (p = 0.0153). 

However, the position distribution derived from human performance and 

neurocontroller C’s performance showed a similar degree of leftward asymmetry 

(Fig. 9; Dunn's test, p = 1.0; Levene test of homogeneity, p = 0.39). Thus, all 

robotics agents performed differently from humans, with the notable exception of 

the neurorobot population C, whose performance provided a good approximation 

to human performance. 
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Figure 9. Relative frequencies of the distribution of the position of the first cancelled target 

for 101 human participants (see Experiment 1) and for the populations of neurorobots C 

(equipped with the biologically inspired neurocontroller), C0 (presenting symmetrical DAN) 

and C1 (with VAN-DAN connections only present in the right hemisphere). 
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 We then compared the performance over time of human participants and model C 

neurorobots not only for the first canceled target (see Fig. 9), but across all the presented 

targets. We performed a Bayesian repeated measures ANOVA (JASP software, version 

0.8.2), with agents (human, neurorobots C) as between-group factor, and the spatial 

position (X coordinate) of the sequence of all the five canceled targets as within-group 

factors. The Inclusion Bayes Factor, which compares ANOVA models that contain a given 

effect to equivalent models stripped of the effect, showed decisive evidence (BFInclusion= 

2.137e +42) for the cancellation order main effect. Thus, the order of cancellation of all the 

five targets depended on their spatial position (Fig. 10). Importantly, this effect was 

statistically equivalent for the human and the neurorobot C populations. In particular, 

there was substantial evidence against the existence of a group main effect (BFInclusion 

= 0.144), and strong evidence against the existence of a group X cancellation-order 

interaction (BFInclusion = 0.046). These results show that the neurorobots from 

population C and human subjects behave similarly over time when canceling all the five 

targets. 
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Fig. 10. Coordinates of canceled targets as a function of the temporal sequence of cancellation in 

human participants and in neurorobot population C. Error bars represent credible interval of 95% 
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4. General Discussion 

In this study, we established specific connectivity constraints leading to a lateral 

spatial bias (pseudoneglect) in artificial organisms trained to perform a visual 

search task by using genetic algorithms. A form of pseudoneglect that was 

qualitatively and quantitatively similar to that shown by normal participants did 

emerge in artificial neurorobots, but only in those harboring hemispheric 

asymmetries of connectivity that simulated those typically occurring in the human 

brain. As a further condition, a general excitatory influence of VAN on the 

ipsilateral DAN was necessary for pseudoneglect to occur in neurorobots. This 

novel result suggests that hemispheric asymmetry alone is not sufficient to 

generate a leftward bias, and thus further specifies the likely connectional 

constraints of pseudoneglect.  

We first consider our results in the light of neurophysiological studies of 

pseudoneglect, and then in relation to existing modeling studies of the human 

attentional system. A particular instance of pseudoneglect occurs with the 

landmark task: When judging lines pre-bisected to the left of their true center, 

normal participants consider the left segment as being longer than the right one 

(Milner, Brechmann, & Pagliarini, 1992). Spatial attention has been shown to be a 

major determinant of this phenomenon (Toba et al., 2011). Szczepanski et al. 

(2013; 2010) tested normal participants’ spatial bias on convert attention tasks and 

on the landmark task by using a multimodal approach, combining psychophysics, 

fMRI and TMS. They tested only frontal and parietal ROIs in the DAN, and did not 

explore the VAN. Their subjects’ sample showed a mixed spatial bias: some 

subjects had a leftward bias (pseudoneglect), but most subjects showed a 

rightward bias (Szczepanski & Kastner, 2013). On average, the bias was 

rightward, unlike most of the literature results. The lateralization of the bias 

correlated with the lateralization index of the fMRI activation in the ensemble of the 

DAN ROIs during a covert spatial attention task. Specifically, subjects that had 
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more left hemisphere activation also had a contralateral, i.e. rightward, bias in the 

landmark task; conversely, subjects with more right hemisphere activation tended 

to have a leftward behavioral bias. TMS-induced interference on the left- or right-

hemisphere parietal nodes during the landmark task caused an ipsilateral shift of 

the bias: right parietal TMS caused a rightward shift compared to the initial bias, 

and left parietal stimulation caused a leftward shift. Stimulating both right and left 

parietal ROIs did not cause a shift. Szczepanski and Kastner (2013) suggested 

that there is an inter-hemispheric competition between the DAN nodes, and the 

lateralization of the sum of the weights in the DAN activation shifts the attentional 

focus contralaterally. Thus, these results are broadly consistent with the 

functioning of the present neurorobot population C. In agreement with Szczepanski 

and Kastner’s (2013) conclusions, the DAN in the current model is conceptualized 

as a whole, and not as separated nodes. Additionally, Szczepanski and Kastner’s 

data showed that there is large variability between participants in the direction and 

degree of lateralization of DAN activation, that on average did not significantly 

differ between the hemispheres. Here we aimed to explore the typical functional 

architecture in the human population. Therefore, we chose to model the DAN as 

laterally symmetrical and the VAN as right-lateralized. However, there are several 

differences between the current models and the Szczepanski et al’s studies. First, 

they used a landmark task while here we used a search task. Second, the overall 

behavioral pattern here was of a leftward classical pseudoneglect bias and not the 

rightward bias found by Szczepanski et al. This might result from substantial 

differences in the studied samples or in the tasks used. Third, and more 

importantly, the VAN, which has a major contribution in the current model, was not 

tested in their studies.  

The architecture of neurorobot C is partly inspired by the results of Koch et 

al (2011), which might oversimplify the nature of interhemispheric interactions. 

Several fMRI studies of human attention areas found evidence of bilateral 
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activation of attention areas, with a contralateral bias (see, e.g., Patel et al., 2015). 

In neurorobots D and E, we introduced bilateral competence in the right 

hemisphere networks (Heilman & Van Den Abell, 1980; Mesulam, 1981). However, 

performance this model showed no consistent spatial bias. This suggests that right 

hemisphere bilateral competence by itself might not be crucial to the emergence of 

pseudoneglect. On the other hand, it is true that evidence from neglect patients 

(Bartolomeo & Chokron, 1999) challenges models of attention exclusively based 

on inter-hemispheric rivalry (Kinsbourne, 1970, 1977, 1993), and that bilateral 

competence in attentional areas might be important in long-term compensation of 

neglect (Bartolomeo & Thiebaut de Schotten, 2016; Lunven et al., 2015). Our 

results stressing the importance of both right-hemisphere bilateral competence and 

inter-hemispheric competition for pseudoneglect may thus pave the way for an 

integrated interpretation of different lines of research on normal or dysfunctional 

human attention networks. 

In their recent review, Borji and Itti (2013) provided a taxonomy of nearly 65 

computational models of visual attention. Many of these models focused on 

reproducing eye movements [e.g., the saliency-based models reported in Borji and 

Itti (2013)], following a bottom up approach. Typically, these models extract a set 

of features, represented as maps, from an incoming image. Then, feature maps 

are combined in a saliency map where a winner-take-all mechanism will designate 

the spatial region to be attended. Saliency-based attention models in general do 

not account for exploration biases, with the exception of a recent model (Ali Borji & 

Tanner, 2016), where an object center bias (the tendency to focus on the center of 

objects) is reproduced by adding an ad-hoc bias map to the saliency map. While 

important for building predictive models, this result seems little relevant to lateral 

biases such as pseudoneglect. Other models (Deco & Rolls, 2004; Deco & Zihl, 

2004) simulate attention as emerging from the competition of several brain areas 

subjected to bottom-up and top-down biases. These models do not drive eye 
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movements; the scan path is simulated as a sequence of activations of the 

simulated posterior parietal cortex. Lanyon and Denham (2004, 2010) added to 

these models simulated eye movements and an adjustable attention window 

scaled according to stimuli density. Despite being successful at reproducing scan 

paths in healthy individuals and neglect patients, these models do not address the 

issue of pseudoneglect. Other models of attention did not consider pseudoneglect 

because of their training procedure or design constraints (Di Ferdinando et al., 

2007; Monaghan & Shillcock, 2004; Mozer, 2002; Pouget & Sejnowski, 2001). Di 

Ferdinando et al. (2005) explored line bisection and target cancellation 

performance in four biologically inspired neural networks. The networks’ patterns 

of connectivity varied along different degrees of asymmetry, inspired by specific 

theories. Pseudoneglect occurred in line bisection but not in visual search. In these 

models, motor outputs were only used for target selection; there was no active 

exploration of the environment, whereas when our neurorobots explored their 

environment the corresponding input information changed as a function of eye 

movements. Nonetheless, the present study shares with Di Ferdinando et al. 

(2005) and other work from the Zorzi group (Casarotti, Lisi, Umiltà, & Zorzi, 2012) 

the stress on accounts of attentional phenomena relying on sensory-motor 

transformations, as stated by the premotor theory of attention (Rizzolatti, Riggio, 

Dascola, & Umilta, 1987). Specifically, our results support the hypothesis that the 

way in which the movements of the actuators are controlled affects the 

performance on a cancellation task (Gigliotta, Bartolomeo, & Miglino, 2015).   

Thus, contrary to most available models of attention, our artificial robots are 

trained to correctly cancel target stimuli, and are free to self-organize in order to 

find a proper solution, within the sole limits of the imposed connectivity constraints. 

These constraints were inspired by available data concerning the anatomical and 

functional organization of the attentional networks in the human brain. To the best 

of our knowledge, this is the first attempt to simulate the dorsal and ventral 
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attention networks in the two hemispheres of the human brain. Another original 

feature of the present models is the embodiment factor, consisting of the explicit 

modeling of eye and hand movements (see also Bartolomeo, Pagliarini, & Parisi, 

2002; Di Ferdinando et al., 2007; Gigliotta et al., 2015; Lanyon & Denham, 2004; 

Miglino, Ponticorvo, & Bartolomeo, 2009). In particular, the present models 

extended the models devised by Di Ferdinando et al. (2007), by increasing the 

complexity of the organisms’ retina, the biological plausibility of the motor system 

and that of the neural controllers. Conti et al. (2016) also adopted an embodied 

perspective, based on a humanoid robot platform. In their study, an iCub robot was 

trained to remove objects from a table, a task reminiscent of a cancellation task. 

Intra-hemispheric disconnections were able to produce neglect-like behavior. 

However, the embodiment of the model was limited by the facts that selection of a 

visual target was carried out independently of the motor behavior, and that robot’s 

eyes were kept fixed during the cancellation task. Moreover, although hemisphere 

asymmetry was modeled by increasing the number of right hemisphere processing 

units, no bias in normal performance is reported.  

Moreover, contrary to most published work, our model attempted to 

simulate the relationships between the visual pathways and the attentional 

networks by respecting important biological constraints. Visual pathways project 

mainly to the hemisphere contralateral to each visual field. However, theoretical 

models of visual attention posit that the left hemisphere mainly deals with the 

contralateral hemispace, whereas the right hemisphere has a more bilateral 

competence (Heilman & Van Den Abell, 1980; Mesulam, 1981). In previous 

computational models this asymmetry has not always been simulated in a 

biologically plausible way. In some cases, both simulated hemispheres received 

visual information from the whole visual field, with attention asymmetries being 

represented in inner layers (Di Ferdinando et al., 2007; Monaghan & Shillcock, 

2004). In the Conti et al.’s model (Conti et al., 2016), the right hemisphere received 
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information from both visual hemifields, whereas the left hemisphere processes 

only the contralateral visual hemifield. Our models D and E had similar 

architecture, but were unable to mimic human performance. Moreover, there is no 

anatomical evidence of such asymmetries in the visual pathways, and information 

exchange in the occipital visual areas is mainly limited to the vertical meridian 

(Berlucchi, 2014).  In our model, these important biological constraints of visual 

information processing were respected, because each artificial hemisphere 

received visual information from the contralateral hemifield; inter-hemispheric 

connections were only present at a later stage of processing, between the artificial 

DANs. 

It might be argued that in our model C a leftward bias was simply 

transferred or amplified from the input to the output layers. If so, however, we 

would have expected to observe a constant leftward bias, akin to right-sided 

neglect. What we found, instead, was just an initial leftward bias, at the onset of 

the exploration task, analogous to human physiological pseudoneglect. In order to 

observe this initial bias, the VAN-DAN connections had to have an excitatory 

valence. This occurrence does not result from existing empirical data and is thus a 

novel prediction of the model. Also, neurorobot populations D and E, which also 

had more right hemisphere than left hemisphere resources, and should then entail 

a similar input-to-output amplification, did not show pseudoneglect, presumably 

because of the lack of inter-hemispheric inhibition. 

The level of detail of the models is not a trivial matter, because it has to 

provide meaningful novel information while remaining tractable. A potential 

limitation of our study is the use of simplified versions of the fronto-parietal cortical 

networks, without taking into consideration the substructures of the DAN and VAN, 

which are both broad and partly heterogeneous networks (Colby & Goldberg, 

1999), nor subcortical structures such as striatum, thalamus and superior colliculus 
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(Krauzlis, Bogadhi, Herman, & Bollimunta, 2017). For example, the connectional 

anatomy of VAN components such as the temporo-parietal junction (e.g., with the 

ventral cortical visual stream) and of the ventro-lateral prefrontal cortex (e.g., with 

limbic structures) is likely to be crucial to the functioning of the VAN. Yet, our 

simplified model, with a VAN receiving visual input and sending excitatory 

connections to the ipsilateral DAN, was able to mimic human performance to an 

impressive level of accuracy. 

More generally, our modeling is consistent with evidence from healthy 

subjects and neglect patients, stressing the importance of entire fronto-parietal 

networks, or of their dysfunction, in behavioral patterns such as pseudoneglect 

(Szczepanski & Kastner, 2013), or visual neglect (Bartolomeo et al., 2012; 

Corbetta & Shulman, 2011), respectively. Also, integrated fronto-parietal activity, 

with subtle, task-dependent differences in network dynamics, occurs during 

attention orienting in monkeys (Buschman & Miller, 2007). Concerning visual 

neglect, evidence suggests that a major determinant of this condition is indeed a 

dysfunction of the right hemisphere VAN (Corbetta & Shulman, 2011; Urbanski et 

al., 2011), or of its connections with the ipsilateral DAN (Thiebaut de Schotten et 

al., 2005).  

Finally, we note that the present population-based model can be potentially 

used to explore in a natural manner the universal properties (the basic brain 

architecture) and individual differences in network efficiency, two aspects recently 

underlined by Michael Posner (2014) as appropriate features for future models of 

attention.  

In conclusion, we have demonstrated the emergence of pseudoneglect 

behavior in artificially evolving neurorobots searching for visual objects, under 

specific connectional constraints. These neurorobots provide a plausible model for 
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the dynamic interactions between fronto-parietal attention networks in the human 

brain. 
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