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Abstract

Quantitative resistance is likely to be more durable than major gene resistance for con-
trolling Septoria tritici blotch (STB) on wheat. Earlier studies hypothesized that resis-
tance affecting the degree of host damage, as measured by the percentage of leaf area
covered by STB lesions, is distinct from resistance that affects pathogen reproduction, as
measured by the density of pycnidia produced within lesions. We tested this hypothesis
using a collection of 335 elite European winter wheat cultivars that was naturally in-
fected by a diverse population of Zymoseptoria tritici in a replicated eld experiment. We
used automated analysis of 21214 scanned wheat leaves to obtain quantitative measures
of STB conditional severity that were precise, objective, and reproducible. These mea-
sures allowed us to explicitly separate resistance affecting host damage from resistance
affecting pathogen reproduction, enabling us to confirm that these resistance traits are
largely independent. The cultivar rankings based on host damage were different from
the rankings based on pathogen reproduction, indicating that the two forms of resistance
should be considered separately in breeding programs aiming to increase STB resistance.
We hypothesize that these different forms of resistance are under separate genetic con-
trol, enabling them to be recombined to form new cultivars that are highly resistant to
STB. We found a significant correlation between rankings based on automated image
analysis and rankings based on traditional visual scoring, suggesting that image analysis
can complement conventional measurements of STB resistance, based largely on host
damage, while enabling a much more precise measure of pathogen reproduction. We
showed that measures of pathogen reproduction early in the growing season were the
best predictors of host damage late in the growing season, illustrating the importance
of breeding for resistance that reduces pathogen reproduction in order to minimize yield
losses caused by STB. These data can already be used by breeding programs aiming to
increase STB resistance to choose wheat cultivars that are broadly resistant to naturally
diverse Z. tritici populations according to the different classes of resistance.
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Zymoseptoria tritici (Desm.) Quaedvlieg & Crous (formerly Mycosphaerella gramini-
cola (Fuckel) J. Schröt. in Cohn) is a fungal pathogen that poses a major threat to
wheat production globally (Jorgensen et al., 2014; Dean et al., 2012). It infects wheat
leaves, causing the disease Septoria tritici blotch (STB). The yield loss posed by STB
can be 5-10%, even when resistant cultivars and fungicides are used in combination, and
around 1.2 billion dollars are spent annually on fungicides targeted mainly towards STB
control in Europe alone (Torriani et al., 2015). Z. tritici has a highly diverse and dy-
namic population that carries a high degree of fungicide resistance in Europe (reviewed
in Fones and Gurr, 2015; Torriani et al., 2015). In several cases, fungicides repeatedly
lost their efficacy only a few years after their introduction due to rapid emergence of
fungicide-resistant strains of Z. tritici (Griffin and Fisher, 1985; Fraaije et al., 2005; Tor-
riani et al., 2009). Resistance to azoles, an important class of fungicides that is widely
used to control STB, has been growing steadily over the last twenty years (Cools and
Fraaije, 2013; Zhan et al., 2006) and appeared recently in North America (Estep et al.,
2015). Therefore, STB-resistant wheat cultivars have become an important breeding
objective to enable more effective management of the disease (McDonald and Mundt,
2016). Major resistance genes such as STB6 (Brading et al., 2002) provide nearly com-
plete resistance against a subset of Z. tritici strains carrying the wild type AvrStb6
allele (Zhong et al., 2017), but as found for fungicides, major resistance often breaks
down a few years after it is introduced. Quantitative resistance may be conferred by a
large number of quantitative trait loci (QTLs) with small and additive effects that can
be combined to provide high levels of disease resistance (Poland et al., 2009; St. Clair,
2010; Kou and Wang, 2010; McDonald and Linde, 2002; Mundt, 2014). Quantitative re-
sistance is thought to be more durable and hence deserves more attention from breeders
(McDonald and Linde, 2002; St. Clair, 2010; Mundt, 2014).

To enable breeding for quantitative resistance to STB, we need to comprehensively
analyze the quantitative distribution of its associated phenotypes, which is much more
difficult than phenotyping major gene resistance that typically shows a binomial distri-
bution. This challenge was recognized more than forty years ago and a number of studies
were conducted to evaluate quantitative resistance to STB under field conditions using
artificial inoculation (Rosielle, 1972; Shaner and Finney, 1982; Eyal, 1992; Brown et al.,
2001; Miedaner et al., 2013) and natural infection (Rosielle, 1972; Shaner et al., 1975;
Miedaner et al., 2013; Kollers et al., 2013b). Resistance to STB was also investigated
on detached leaves with artificial inoculations [e. g., by Chartrain et al. (2004)]. Several
studies performed visual scoring of quantitative resistance only once during the growing
season (Rosielle, 1972; Shaner and Finney, 1982; Eyal, 1992; Miedaner et al., 2013),
while other studies included two or more time points (Shaner et al., 1975; Brown et al.,
2001; Kollers et al., 2013b). One of the most comprehensive early studies screened 7500
wheat varieties including 2000 durum wheat cultivars to select the 460 most resistant
varieties for more detailed visual scoring (Rosielle, 1972).

Understanding the infection cycle of STB helps to distinguish and measure most im-
portant aspects of quantitative resistance to the disease. Z. tritici spores germinate
on wheat leaves and penetrate the leaves through stomata (Kema et al., 1996). After
penetration, fungus grows for several days latently within leaves producing no visible
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symptoms. During the latent phase, Z. tritici grows in apoplast and invades host mes-
ophyll around the position of initial penetration (Duncan and Howard, 2000). After
some ten days growth of fungus becomes necrotrophic, necrotic lesions appear in the
invaded host tissue and asexual fruiting bodies, pycnidia, begin to form (Kema et al.,
1996; Duncan and Howard, 2000). In dead host tissue the fungus grows saprotrophically
and produces sexual fruiting bodies, pseudotechia, 25-30 days after infection (Sánchez-
Vallet et al., 2015). Whether Z. tritici is best referred to as a hemibiotroph or a latent
necrotroph is ambiguous (Sánchez-Vallet et al., 2015). Asexual pycnidiospores are usu-
ally spread by rain splash and sexual ascospores are spread by wind. The pathogen
typically undergoes up to 5-6 rounds of asexual and 1-2 rounds of sexual reproduction
per growing season.

Incidence of STB depends on the number of spores that attempt to infect healthy
leaves and the infection efficiency. Overall severity of infection depends on both of these
factors and additionally on the ability of the pathogen to damage the host tissue once
infected. Studies of Zhan et al. (1998) and Zhan et al. (2000) indicate that ≈66% of
infections on flag leaves came from asexual spores, while ≈24% came from ascospores
originating from within the infected field and 10% of infections were immigrants from
surrounding fields. Pathogen asexual reproduction is thus the most important factor
explaining infection on flag leaves. The amount of necrosis induced by STB on upper-
most leaves determines yield losses (Brokenshire, 1976).

Earlier studies of STB resitance (reviewed above) combined disease severity and inci-
dence using visual assessments based on categorical scales. In studies of Rosielle (1972),
Shaner et al. (1975) and Eyal (1992) these scales included both the degree of lesion
coverage and the density of pycnidia in lesions, but in studies of Brown et al. (2001) and
Chartrain et al. (2004) the disease scores were based on leaf coverage by lesions bearing
pycnidia (i. e. using a presence/absence measurement of pycnidia). The accuracy of
this method is limited by an inherent subjective bias and a small number of qualitative
categories, which may impair success of breeding.

In several studies the importance of the resistance component that suppresses pathogen
reproduction (production of pycnidia) was recognized based on qualitative observations
of pycnidial coverage [e. g., (Rosielle, 1972; Shaner et al., 1975; Shaner and Finney,
1982)]. Manual counting of pycnidia is extremely labor-intensive, though, so it was only
feasible to count pycnidia on a small scale [e. g., (Shaner et al., 1975)] because there
was no technology available to automate this process.

Automated image analysis (AIA) has been used in the past for example for analysis
of liver tissue (e. g. O’Gorman et al., 1985) and breast tissue (e. g. Phukpattaranont and
Boonyaphiphat, 2007) and for analysis of land use (e. g. Drăguţ and Blaschke, 2006).
AIA provides a promising tool for measuring quantitative disease resistance in the field
(Mahlein, 2016; Simko et al., 2017). Mutka and Bart (2015) and Mahlein (2016) high-
light importance of standardized imaging methods for reproducibility. We used a novel
phenotyping method based on automated analysis of scanned leaf images (Stewart and
McDonald, 2014; Stewart et al., 2016) in a wheat panel planted to 335 European cultivars
in a replicated field experiment (Kirchgessner et al., 2017). The method benefits from
well defined procedure of detaching leaves and scanning them in standardized conditions,
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thus leading to objective and reproducible results. Additionally, it enables generation
of large amounts of reliable data at a relatively low cost.

Importantly, our method allowed us to separate quantitative resistance traits affecting
host damage caused by the pathogen from resistance traits related to pathogen repro-
duction on a large scale and with a high accuracy. Pathogen reproduction was quantified
by automatic counting of asexual fruiting bodies of the pathogen (pycnidia) on wheat
leaves (Stewart and McDonald, 2014; Stewart et al., 2016).

In this large-scale field experiment, leaves were infected naturally by a genetically
diverse local Z. tritici population and the epidemic was allowed to develop naturally.
Despite three fungicide treatments including five active ingredients that eliminated vir-
tually all other diseases, the level of STB infection was widespread across the field
experiment. This pervasive natural infection by a fungicide-resistant population allowed
us to investigate quantitative resistance in a nearly pure culture of Z. tritici under field
conditions. The combination of wet and cool weather conditions favoring development
of STB, a large number of wheat cultivars planted in a single location, and utilization
of a novel automated digital image analysis method enabled a multi-dimensional and
comprehensive characterization of quantitative resistance that led to a clear ranking of
STB resistance in a broad collection of European winter wheat cultivars.

We report separate rankings of wheat cultivars based on two different resistance com-
ponents, one acting against host damage and the other acting against pathogen repro-
duction. We found that the two rankings are considerably different. We identified a
phenotypic quantity that combines these two components and found that it correlates
with the ranking based on traditional visual assesments. In this way, we identified new,
broadly active sources of resistance to STB in existing European wheat cultivars. Our
outcomes open several possibilities for further genetic studies of quantitative resistance
to STB.

Materials and Methods

Plant materials and experimental design. A total of 335 elite European winter wheat
(Triticum aestivum) varieties from the GABI-wheat panel (Kollers et al., 2013a,b) were
evaluated in this experiment. Two replicates of the wheat panel were grown during the
2015–2016 growing season in two complete blocks separated by 100 meters at the Field
Phenotyping Platform site of the Eschikon Field Station of the ETH Zurich, Switzerland
(coordinates 47.449683, 8.682461) (Kirchgessner et al., 2017). The complete blocks
represented two different lots in the FIP. Within each lot the genotypes were arranged
in incomplete blocks in row and range direction and a check variety (CH Claro) was
repeated at least once within each row and range. Cultivars were planted in a single
1.2m×1.7m plot within each lot except for cultivar CH Claro having 21 replicates within
each lot. All cultivars were sown on 13 October 2015.

Standard agricultural practices were used including applications of fertilizers and pes-
ticides. Fertilizers were applied five times during spring 2016, including boron with
ammonium nitrate (nitrogen 52 kg/ha) on 4 March; P2O5 at 92 kg/ha on 7 March; K2O
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at 120 kg/ha on 10 March; magnesium with ammonium nitrate on 12 April (magnesium
15 kg/ha, nitrogen 72 kg/ha) and 20 May (magnesium 4 kg/ha, nitrogen 19 kg/ha). The
pre-emergence herbicide Herold SC (Bayer) was applied on 29 October 2015 (dose 0.6
l/ha); stem shortener Moddus (Syngenta) was applied on 6 April 2016 [dose 0.4 l/ha,
GS (growth stage) 31 (Zadoks et al., 1974)]. Insecticide Biscaya (Bayer) was applied
on 25 May, 2016 (dose 0.3 l/ha, GS 51). Fungicides were applied three times: (i) 6
April, 2016, Input, Bayer (a mixture of the active ingredients spiroxamin at 300 g/l and
prothioconazole at 150 g/l, dose 1.25 l/ha, GS 31); (ii) 25 May, Aviator Xpro, Bayer
(a mixture of bixafen at 75 g/l and prothiconazole at 150 g/l, dose 1.25 l/ha, GS 51)
and 6 June, Osiris, BASF (a mixture of epoxiconazole at 56.25 g/l and metconazole at
41.25g/l, dose 2.5 l/ha, GS 65). In total, the three fungicide applications included five
active ingredients representing three modes of action.

STB inoculum and calculation of number of cycles of infection. All STB infection
was natural, with the majority of primary inoculum likely originating from airborne
ascospores coming from nearby wheat fields that surround the Eschikon field site. We
estimated the number of asexual cycles of pathogen reproduction by using the data
from Shaw (1990) showing the effect of temperature on latent period and local weather
data coming from the nearby Lindau weather station (see Appendix A.1 for details of
estimation).

Disease assessment based on automated image analysis. Leaves exhibiting obvious
STB lesions were collected two times during the growing season. The first collection was
made on 20 May 2016 (t1, approximately GS 41) and the second collection was made
on 4 July 2016 (t2, approximate GS are in the range 75-85). For both collections, 16
infected leaves were collected at random from each plot. At t1, leaves were collected from
the highest infected leaf layer, which was typically the third or fourth fully extended,
but non-senescent leaf still visible when counting from the ground. At t2, the leaf layer
below the flag leaf (F-1) was sampled in each plot. The sampled leaves were placed in
paper envelopes, kept on ice in the field, and stored at 4◦ C for two days before mounting
on A4 paper with printed reference marks and sample names, as described in (Stewart
et al., 2016). Absorbent paper was placed between each sheet of eight mounted leaves
and sheets were pressed with approximately 5 kg at 4◦ C for two-three days prior to
scanning at 1200 dpi with a Canon CanoScan LiDE 220 flatbed scanner. The resulting
scans were saved as “jpeg” images.

Scanned images were analyzed with the software ImageJ (Schindelin et al., 2015) us-
ing a specialized macro described in Stewart and McDonald (2014) and Stewart et al.
(2016)(source code of the macro and a user manual are given in (Stewart et al., 2016)).
The parameters used for the macro are given in supplemental Table S1 and an expla-
nation of their meaning is provided in the macro instructions in (Stewart et al., 2016).
Figure 1 illustrates the workflow associated with the macro. The maximum length of
the scanned area for each leaf was 17 cm. When leaves were longer than 17 cm, bases
of the leaves were placed within the scanned area, while the leaf tips extended outside
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Cv Rubens (42 leaves mean)
• Leaf area: 17.1 cm2

• Necrotic area: 3.1 cm2

• PLACL: 18.5%
• # Pycnidia: 253
• ρlesion: 80.4 / cm2  

Cv Vanilnoir (48 leaves mean)
• Leaf area: 14.0 cm2

• Necrotic area: 8.4 cm2

• PLACL: 63.7%
• # Pycnidia: 176
• ρlesion: 22.4 / cm2  

Rubens

Vanilnoir

Figure 1: Illustration of the phenotyping procedure with the ImageJ macro (Stewart
et al., 2016). Leaves are mounted on paper sheets; the ImageJ macro distin-
guishes leaves from white background; within each leaf, the macro identifies
necrotic lesions and their areas; within each lesion, the macro identifies pycni-
dia (black dots) and measures their areas and gray values (degree of melaniza-
tion).

Table 1: Important STB disease properties determined using automated image analysis.

Quantity Description Dimension
PLACL percentage of leaf area covered by lesions percent
ρlesion density of pycnidia per unit lesion area # pycnidia/cm2 lesion
ρleaf density of pycnidia per unit total leaf area # pycnidia/cm2 leaf

the scanned area. For each leaf, the following quantities were automatically recorded
from the scanned image: total leaf area, necrotic leaf area, number of pycnidia and their
positions, size and gray value of each pycnidium. From these measurements, the per-
centage of leaf area covered by lesions (PLACL), the density of pycnidia per unit lesion
area (ρlesion), the density of pycnidia per unit leaf area (ρleaf), the mean pycnidia gray
value and the mean pycnidia sizes were calculated.

The three quantities PLACL, ρlesion, and ρleaf quantify different aspects of STB condi-
tional severity in each plot, but did not provide overall measurements of STB incidence
because only 16 leaves were measured. Although we aimed to collect only infected
leaves, there were a few cases in plots with very little STB when the collected leaves
did not have necrotic lesions or did not have pycnidia. These leaves were not considered
when calculating the mean or median values used for ranking cultivars or assessing the
magnitude of effects.

To confirm the outcomes of the automated image analysis, we visually examined about
1440 leaves (about 5 % of all sampled leaves) to compare scanned leaf images with overlay
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images in which detected lesions and pycnidia are marked by the macro (examples of
overlays are shown in Fig. 1). We included in this analysis about 1100 leaves from the
20 cultivars that exhibited the largest difference in their overall rankings with respect
to PLACL and ρlesion as well as about 140 leaves with outlier values for ρlesion and mean
pycnidial area.

For each leaf subjected to visual inspection, we determined whether the macro cor-
rectly detected lesions and pycnidia. In cases with errors, we determined the cause of the
error. Errors that led to incorrect quantification of disease symptoms could be divided
into four categories: defects on leaves, collector bias, scanning errors and deficiencies in
the image analysis software (the macro). Leaf defects included insect damage, mechani-
cal damage, insect bodies and frass, other fungi, uneven leaf surfaces creating shadows,
and dust particles on leaves. We identified several cases of biased leaf collection at t1,
where leaves were sampled from lower leaf layers in which most of the leaf surface ex-
hibited natural senescence, leading to extensive chlorosis and some necrosis. (Data from
20 plots in collection t1 was removed due to strong collector bias during the initial qual-
ity control after collection). Scanning errors included shadows on leaf edges and folded
leaves. Deficiencies of the macro consisted of recognizing green parts of leaves as lesions,
dark spaces between light-colored leaf hairs and parts of dark borders around lesions as
pycnidia. In total, 336 leaves were deemed to exhibit scoring errors and removed from
the dataset as a result of this procedure.

We estimated the total proportion of scoring errors as ptot = 0.15 ± 0.05 by careful
visual examination n = 200 leaves which were chosen randomly with replacement from
the entire sample of 21551 leaves. The proportion of scoring errors due to collector bias
was estimated as pcb = 0.055 ± 0.003. Here, the uncertainties are reported in the form
of the 95 % confidence intervals calculated according to CI = 1.96

√
p(1 − p)/n, where

p is the sample proportion and n is the sample size.

Disease assessment based on visual scoring. Visual assessments of STB were per-
formed at three time points: 20 May (approximately GS 41), 21 June (approximately GS
75) and 29 June (approximately GS 80). STB level in each plot was scored on the three
uppermost leaf layers on a 1-9 scale (1 means no disease, 9 means complete infection)
based on both STB incidence and severity. The presence of pycnidia was used as an
indicator of STB infection. The absence of pycnidia was interpreted as an absence of
STB, even if necrotic lesions were visible. During visual scoring, the presence of other
diseases (such as stripe rust, septoria nodorum bloth and fusarium head blight) was
assessed qualitatively. All plots were scored with approximately equal time spent on
each plot.

Statistical analysis. We compared differences in STB resistance among cultivars for
each dataset by pooling together the data points from individual leaves belonging to
different replicates and sampling dates. The data from the automated image analysis
consisted of ≈60 data points per cultivar representing the two time points and two
biological replicates. The visual scoring data was based on three time points and two
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biological replicates generating ≈6 data points per cultivar. Cultivar CH Claro was an
exception because it was replicated 42 times and thus had ≈1300 data points from leaf
image analysis and 120 data points from visual scoring. The relative STB resistance
of all wheat cultivars was ranked based on means of PLACL, ρlesion and ρleaf over ≈60
individual leaf data points. We also calculated medians and standard errors of means
for each cultivar.

For each cultivar the area under disease progress curve (AUDPC) was calculated by
taking averages of visual scores over the two replicates. It was assumed that infection
started from zero at 14 days before the first assessment. To analyze differences between
cultivars these scores were weighted with coefficients that depend on times of assessments
such that each weighted score gives a proportional contribution to the total AUDPC
and the average over scores from different replicates and time points gives the total
AUDPC (see Appendix A.2 for details on calculation of AUDPC and weighting of scores).
AUDPC was used to rank cultivars according to visual scoring (Fig. 3D).

The significance of differences in resistance between cultivars was tested with the
global Kruskal-Wallis test (Sokal and Rohlf, 2012) using kruskal.test function in R (R
Core Team, 2016) on each data set. For resistance measures showing global differences
between cultivars, we determined significantly different groups of cultivars based on pair-
wise comparisons, so that any two cultivars in the same group are not significantly differ-
ent from each other and any two cultivars from different groups are different. Pairwise
differences were tested with multiple pairwise Kruskal-Wallis tests using the function
kruskal in the package agricolae in R (de Mendiburu, 2016) using the false discovery
rate (FDR) 0.05 for significance level correction (Benjamini and Hochberg, 1995) for
multiple comparisons.

We determined correlations between cultivar rankings based on AUDPC and both
means and medians of PLACL, ρlesion and ρleaf for each cultivar. We also computed
correlations with respect to means of PLACL, ρlesion and ρleaf between t1 and t2 to
determine the predictive power of these quantities. In this case, means were taken over
about 16 leaves originating from the same plot. All correlations were calculated with
the help of Spearman’s correlation test (Sokal and Rohlf, 2012) using the open-source
scipy package (http://www.scipy.org) written for the Python programming language
(http://www.python.org).

We analyzed differences between t1 and t2 in terms of PLACL, ρlesion and ρleaf to
identify cultivars whose resistance increased over time. For this purpose, we used the
Wilcoxon rank sum test with the FDR correction for multiple comparisons (p < 0.01).

Results

Overall description of the STB epidemic. Despite three fungicide applications with
five active ingredients and three modes of action, we observed widespread STB in nearly
all of the experimental plots. There were obvious differences in overall levels of STB
infection on different cultivars. Comparison of overall levels of STB disease with nearby
untreated plots showed that the fungicides significantly suppressed STB development.
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STB was the dominating disease in the fungicide-treated plots; other leaf diseases were
present at very low levels as a result of the fungicide treatments. Hence this experiment
provided an unusual opportunity to assess quantitative STB resistance to a natural
infection and under field conditions in the absence of competing wheat diseases.

According to weather data collected from the Lindau weather station located about
200 m away from the field site, the weather in spring-summer 2016 was cool and rainy,
highly conducive to development of STB (see Fig. A2 in Appendix A.1). Average daily
temperature between 1 March and 27 July was 12.5o C and the total amount of rainfall
was 1245 mm. Based on daily temperature and rainfall data, we estimated the number of
Z. tritici asexual generations over the growing season as six. Between the two sampling
dates t1 and t2, we estimated two asexual generations (see Appendix A.1 for details of
estimation).

An overview of the dataset. A total of 21214 leaves were included in the automated
analysis pipeline, with an average of 30 leaves per plot. The total leaf area analyzed was
36.9 m2 of which 11.2 m2 was recognized as damaged by STB. The mean analyzed area
of an individual leaf was 17 cm2. In total 5.1 million pycnidia were counted and analyzed
for size and gray value. The mean number of pycnidia within a leaf was 243. A more
detailed description of the overall dataset is given in Table 2. The full dataset can be
accessed from xxx. Correlations between the two biological replicates ranged from 0.3
to 0.7 (Fig. A3, see Appendix A.3 for more details).

The distributions of the raw data points corresponding to individual leaves with re-
spect to PLACL, ρlesion and ρleaf are shown in Figs. 2 and 3 (the full range of ρlesion
and ρleaf is shown in Figs. E2.1 and E2.2). The distributions of PLACL, ρlesion and ρleaf
were non-normal and had outliers. All of these distributions were continuous, consistent
with previous studies that hypothesized that the majority of STB resistance in wheat is
quantitative (Stewart et al., 2016).

For the visual assessments conducted across two replicates and three time points, the
lowest score was 1 and the highest score was 4 (on a 1-9 scale). The lowest value of the
AUDPC was 81, the highest value was 154 and the average AUDPC across all cultivars
was 103.

The visual assessment found that yellow rust was present in about 1 % of plots on 20
May and in about 2 % of plots on 21 June, 2016; Septoria nodorum blotch was present
in only a single plot on 21 June, 2016 (about 0.1 % of plots); Fusarium head blight was
present in about 2 % of plots only on 21 June, 2016.

Host damage vs. pathogen reproduction. From the raw data obtained via automated
analysis of scanned leaves, we derived three quantitative resistance measures: PLACL,
ρlesion and ρleaf . PLACL is defined as the necrotic leaf area divided by the total leaf area,
ρlesion is the total number of pycnidia divided by the necrotic leaf area and ρleaf is the
total number of pycnidia divided by the total leaf area. ρleaf can also be calculated from
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Table 2: Summary of the leaf analysis

Total Mean Median Maximum Minimum
Measured quantities

Leaf area (mm2) 36 874 893 1738 1701 3626 103
Necrotic area (mm2) 11 162 727 526 415 2519 0
Number of pycnidia 5 148 640 243 147 4828 0
Pycnidia area (mm2) 77 681 3.66 2.35 56 0

Derived quantities
PLACL (%) 32 24 99.6 0
ρlesion 48 40 416 0
ρleaf 14 9 301 0

the first two factors as

PLACL · ρlesion =
Necrotic area

Leaf area
· Number of pycnidia

Necrotic area
=

Number of pycnidia

Leaf area
= ρleaf .

(1)
PLACL characterizes host damage due to pathogen while ρlesion characterizes pathogen

reproduction on the necrotic leaf tissue. ρleaf is the product of these two quantities,
combining both host damage and pathogen reproduction. Independent identification of
these three quantities from the raw leaf data allowed us to differentiate between host
damage and pathogen reproduction, and also to combine these two factors into the most
integrative measure of disease severity. In this way, we gained a comprehensive insight
into different components of disease severity. Next, we rank wheat cultivars with respect
to each of these three quantities.

Ranking of cultivars. Resistance ranking of the cultivars was based on the three mea-
sures obtained from automated image analysis (PLACL, ρlesion and ρleaf) and the AUDPC
calculated from visual scoring. For PLACL, ρlesion and ρleaf , the distributions differed
significantly between cultivars. For each of these three measures, the null hypothesis
of identical distributions for all cultivars was rejected by a Kruskal-Wallis global com-
parison with p < 2.2 · 10−16. However, the global Kruskal-Wallis test did not reveal
differences between distributions of the weighted visual scores (p = 1). Kruskal-Wallis
multiple pairwise comparisons identified three significantly different groups of cultivars
for both PLACL and ρlesion and four significantly different groups of cultivars for ρleaf
(Figs. 2 and 3). Supplemental File S3 shows that mean ranks are highly correlated with
the means and medians, indicating that in the majority of cases significantly different
cultivars also have different means and medians.

There were notable changes between resistance rankings based on PLACL and ρlesion
(black lines in Fig. 2D). Several of the thirty least resistant cultivars based on host dam-
age were ranked among the most resistant cultivars based on pathogen reproduction.
Similarly, some of the most resistant cultivars based on host damage were among the
least resistant cultivars based on pathogen reproduction. For example cultivar Vanil-
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noir showed high PLACL and low ρlesion whereas cultivar Rubens exhibited the opposite
pattern. Visual examination of leaves belonging to cultivars that exhibited the largest
difference in their ranking between PLACL and ρlesion confirmed qualitatively the pres-
ence of the effect. We observed high degree of necrosis and low numbers of pycnidia
in cultivars that ranked high in terms of PLACL and low in terms of ρlesion. We also
confirmed that cultivars that ranked high in terms of ρlesion and low in terms of PLACL
had on average a low degree of necrosis and high numbers of pycnidia. These quali-
tative observations represent a general quantitative pattern, as indicated by relatively
low correlations between PLACL and ρlesion with respect to means (rs = 0.1, p = 0.059,
Fig. 2G) and medians (rs = 0.18, p = 0.0007, Fig. 2F) taken over leaves belonging to the
same cultivar. On the contrary, the correlation between PLACL and ρlesion was negative
and highly significant when calculated based on individual leaf data pooled together
(rs = −0.1, p = 1.9 · 10−53, Fig. 2H). Supplemental Tables S2–5 supporting Fig. 2 show
means, standard errors of means, medians and Kruskall-Wallis test statistics based on
PLACL and ρlesion for all cultivars. Supplemental File S1 gives brief description of all
supplemental files and tables.

Automated measures of quantitative STB resistance correlate strongly with the tra-
ditional measurement based on AUDPC of visual scores. Medians of PLACL and ρlesion
correlated significantly (p < 10−10) with the AUDPC (rs = 0.37 and rs = 0.49 re-
spectively). Correlations between AUDPC and means were somewhat weaker but also
significant. The strongest correlation was between the combined measure ρleaf and the
AUDPC (cf. Fig. 3, means: rs = 0.6, medians: rs = 0.54). More figures of cultivar
ranking that support Figs. 2 and 3 with different measure combinations are shown in
Supplemental File S2. Supplemental Tables 6–7 supporting Fig. 3 show means, stan-
dard errors of means, medians and Kruskall-Wallis test statistics based on ρleaf for all
cultivars.

Predictors of epidemic development. So far we analyzed data for each cultivar based
on pooling both sampling dates t1 and t2. Next we consider data from the sampling
dates t1 and t2 separately. An important question is: To what extent can we predict a
measure of disease at t2 from measurements made at t1? We address this question by
investigating correlations between t1 and t2 with respect to each of the three measures:
PLACL, ρlesion, and ρleaf (Fig. 4). A higher degree of correlation corresponds to a higher
predictive power.

Consider the first column in Fig. 4 that illustrates how PLACL in t1 correlates with
PLACL, ρlesion and ρleaf in t2. PLACL in t1 correlates somewhat better with ρlesion in
t2 than with ρleaf or PLACL in t2. But PLACL in t1 is a poorer predictor for the
three quantities in t2 than the quantities that include pycnidia counts, ρlesion and ρleaf
(compare first column with second and third columns in Fig. 4). The highest correlations
emerge between ρlesion in t1 and ρleaf in t2 (rs = 0.36); between ρleaf in t1 and ρleaf in t2
(rs = 0.37); and between ρleaf in t1 and ρlesion in t2 (rs = 0.39). As we see from the first
row in Fig. 4, the best predictor for PLACL (the measure of host damage that is most
likely to reflect decreased yield) in t2 is ρlesion (the most inclusive measure of pathogen
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Figure 2: Ranking of wheat cultivars according to resistance against host damage (panel
C) and pathogen reproduction (panel E). Wheat cultivars are ranked in order of
increasing susceptibility to STB based on mean values of PLACL (percentage
of leaf area covered by lesions, panel C) and ρlesion (panel E). Colored mark-
ers depict means over two replicates and two time points, error bars indicate
standard errors of means. Different colors of markers (blue, red, green) repre-
sent significantly different groups of cultivars based on Kruskal-Wallis multiple
comparison FDR correction, gray dots correspond to cultivars that could be
assigned to any group. Light blue dots represent average values for individual
leaves. Cultivar CH Claro appears as a horizontal blue line due to its 21-fold
higher number of replicates. Black dots show medians for each cultivar. Lines
in panel D represent changes in ranking between PLACL and ρlesion among
the 30 most susceptible and the 30 most resistant cultivars. Panels A and B
show frequency histograms of PLACL and ρlesion based on individual leaf data
from two replicates and two time points. Three insets in panel E illustrate the
relationship between PLACL and ρlesion based on individual leaf data (panel
H), means (G) and medians (panel F). Panels B and E extend only up to 200
along the x-axis, missing 82 data points with values between 200 and 416.
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Figure 3: Ranking of wheat cultivars according to the resistance measure, ρleaf , that
combines host damage and pathogen reproduction (panel B) and according to
AUDPC (area under the disease progress curve) based on conventional visual
assessments (panel D). In panels B and D cultivars are ranked in order of
increasing susceptibility based on mean values of leaf pycnidia density, ρleaf
(panel B), and AUDPC (panel D). Colored markers show means over two
replicates and two time points, error bars indicate standard errors of means.
Different colours of markers (blue, red, black, green) represent significantly
different groups of cultivars based on a Kruskal-Wallis multiple comparison
with FDR correction, gray dots correspond to cultivars that could not be
assigned to any group. Light blue dots represent average values for individual
leaves. Cultivar CH Claro appears as a horizontal blue line due to its 21-fold
higher number of replicates. Black dots show medians for each cultivar. Lines
in panel C represent changes in ranking between ρleaf and AUDPC among
the 30 most susceptible and the 30 most resistant cultivars. Panel A shows
a frequency histogram of ρleaf based on individual leaves from two replicates
and two time points. Two insets illustrate the relationship between ρleaf and
AUDPC with respect to means (panel F) and medians (panel E). Panels A
and B extend only up to 80 along the x-axis, missing 223 data points with
values between 80 and 301.
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Figure 4: Correlations of measures of quantitative STB resistance between the first time
point (t1) and the second time point (t2). The degree of correlation was quan-
tified using Spearman’s correlation coefficient, rs. Each data point represents
an average over about 16 leaves within an individual plot.

reproduction) in t1.
Figure 4 gives a general account of the correlations/predictive power among the mea-

sured quantities in t1 and t2. We investigate more subtle patterns of this comparison
in supplemental File S4, where we separate the effect of cultivar differences from the
overall effect.

Increase of resistance to STB between t1 and t2. Next we investigate the difference
between t1 and t2 to identify cultivars that exhibit an increase in resistance over time.
We will refer to this as ”late-onset” resistance. Each of the quantities, PLACL, ρlesion
and ρleaf , increased on average between the two time points (Fig. 5). The difference was
somewhat larger for ρleaf than for PLACL and ρleason. The overall mean differences are
smaller than the variance of differences in individual cultivars. This is because positive
changes in some cultivars were compensated by negative changes in other cultivars (as
seen in Fig. 5).

We investigated the negative changes in more detail. We identified 65 cultivars in total
that exhibited significant negative changes with respect to at least one of the quantities:
PLACL, ρlesion or ρleaf (marked in red in Fig. 5). We see from the Venn diagram in
Fig. 5D that the number of cultivars showing significant negative change in PLACL (27
cultivars) is about the same as in ρlesion (26 cultivars). None of the cultivars showed
significant negative change with respect to ρleaf . The number of cultivars exhibiting
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significant negative change in terms of only one quantity were: 24 for ρlesion, 29 for
PLACL. Interestingly, none of the cultivars exhibited significant negative change for
both PLACL and ρlesion. PLACL decreased most in cultivars Achat and Mewa (by 54
and 41 units, correspondingly). ρlesion decreased most in cultivars Bogatka and Lindos
(by about 45 units in both cases). ρleaf decreased most in cultivars Cetus and Zyta (by
19 and 15 units, correspondingly). Lists of cultivars with the corresponding magnitudes
of changes are given in supplemental Tables S8–10.
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Figure 5: Indications for late-onset resistance. x-axes of plots show differences between
mean values at time point t2 and time point t1 for the three quantities (yellow
markers): PLACL (panel A), ρlesion (panel B) and ρleaf (panel C). y-axes rep-
resent cultivar indices; cultivars are sorted in order of increasing differences.
Solid vertical lines show differences averaged over all cultivars; dashed vertical
lines show zero differences. Cultivars exhibiting significant negative differences
(according to Wilcoxon rank sum test with the FDR correction, p < 0.01) are
shown in red. Panel D depicts a Venn diagram of cultivars with significant
negative differences with respect to the three measures of resistance.

Discussion

Novel aspects of the experimental design Although fungicides suppressed STB de-
velopment as compared to untreated plots, the most important benefit of the fungicide
applications in the context of this experiment was to eliminate competing diseases (rusts,
powdery mildews, tan spot) that usually co-exist with STB in naturally infected fields.
This resulted in a nearly pure culture of STB across both replications. Virtually every
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disease lesion found on a leaf was shown to be the result of an infection by Z. tritici. The
widespread STB infection found in this experiment could be explained by the weather
during the 2015-2016 growing season that was highly conducive to development of STB
(cool and wet) coupled with a significant amount of resistance to azoles in European
populations of Z. tritici (Brunner et al., 2008).

This experimental design provided an unusual opportunity to directly compare levels
and development of STB infection and STB resistance across a broad cross-section of elite
European winter wheat cultivars. Combined with the novel automated image analysis
method, this allowed us to collect a large amount of high-quality data with a relatively
low workload.

The measures of resistance that we characterized here, on average, represent ”general”
or ”field” resistance because the experiment was conducted using natural infection in a
year that was highly conducive to STB. Cultivars that were highly resistant under these
conditions are likely to be broadly resistant to the typically genetically diverse Z. tritici
populations (Linde et al., 2002; Zhan et al., 2003).

Comparison between datasets obtained from automated image analysis and visual
scoring. Conventional visual assessment typically quantifies leaf necrosis (host damage)
caused by the pathogen by integrating disease severity (as PLACL) and incidence (as the
proportion of leaves having necrotic lesions) into a single index. Pycnidia (an indicator
of pathogen reproduction) are typically considered as a presence/absence qualitative
trait that helps to separate STB from other leaf diseases. The conventional visual
assessment is fast: only about nine hours in total were needed to assess more than 700
small plots three times during the season by a single person (i. e., about three hours at
each measurement date).

Visual scoring benefits from a large sample size, as almost all leaves in a plot are con-
sidered compared to only 16 leaves used for image analysis. However, due to a subjective
nature of the conventional scoring process, the sample size used is not clearly defined and
we could not obtain statistically significant differences between cultivars based on visual
scoring. Moreover, assessment of changes in traits between two timepoints is almost
impossible. Uncertainty in detection of pycnidia in the conventional measurement may
even lead to misestimation of resistance. Overestimation may result on cultivars that
are susceptible to host damage (have high PLACL) but suppress pathogen reproduction
(have low ρlesion), because failure to detect pycnidia may be interpreted as absence of the
pathogen. On the other hand, if visual assessment finds pycnidia (scored as present or
absent), the resistance of a cultivar may be underestimated if the degree of suppression
of pycnidia production is not considered.

In contrast, automated analysis of individual leaves enables independent measurement
of different forms of disease conditional severity, i.e. the degree to which infected leaves
are affected by disease. The advantage of the automated method based on leaf images
is that it accounts for both host damage and pathogen reproduction in a reproducible,
quantitative way with a well-defined sample size. This alleviates the uncertainty in
detecting pycnidia and also allowed us to find statistically significant differences be-
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tween cultivars. But this method does not consider disease incidence and is more labor-
intensive than visual scoring. About 360 person-hours were needed to collect and process
21551 leaves and obtain raw data. Although this is an automated method, one needs
to carefully determine its error rate at every use (as for example we described above in
the “Materials and Methods” section), because errors may be cultivar-specific and also
depend on environmental conditions.

Manual generation of this large dataset that included more than five million pycnidia
would not be practical. However, we demonstrated that combining cheap scanners with
public domain software to conduct automatic image analysis makes it feasible to separate
different components of quantitative host resistance.

Host damage vs. pathogen reproduction. Biologically, PLACL reflects the pathogen’s
ability to invade and damage (necrotize) the host leaf tissue, while ρlesion reflects the
pathogen’s ability to convert the damaged host tissue into reproductive structures and
eventually into offspring. From the host’s perspective, PLACL can be interpreted as the
degree of susceptibility to damage caused by the pathogen itself (e. g., through secretion
of phytotoxins) or by host defense reactions (e. g., the hypersensitive response) activated
after detecting the pathogen. ρlesion can be interpreted as measuring the host’s abil-
ity to suppress pathogen reproduction, a more susceptible host enables more pathogen
reproduction per unit of infected leaf area. Automated image analysis enabled us to
differentiate between host damage and pathogen reproduction and hence to measure
these as separate components of STB resistance.

The phenotypic differences observed in our experiment may reflect different sets of re-
sistance genes underlying these two traits. We hypothesize that PLACL reflects additive
actions of toxin sensitivity genes carried by different wheat cultivars that interact with
host-specific toxins produced by the pathogen, as shown for Parastagonospora nodorum
on wheat (e. g. Friesen et al., 2008; Oliver et al., 2012). We hypothesize that pycnidia
density reflects additive actions of quantitative resistance genes that recognize pathogen
effectors (e.g. AvrStb6 recognized by Stb6; Zhong et al. (2017, in press)) and activate
plant defenses in a quantitative way (Krattinger et al., 2009). We anticipate testing
these hypotheses by combining the phenotypic data reported here with wheat genome
data (Marcussen et al., 2014) to conduct a genome-wide association study (GWAS) aim-
ing to identify chromosomal regions and candidate genes underlying both components
of quantitative resistance.

The density of pycnidia per unit leaf area, ρleaf , is a measure of infection that incor-
porates both host damage and pathogen reproduction, reflecting the pathogen’s overall
ability to convert healthy host tissue into reproductive units that can drive a new cycle
of infection. The complex nature of quantitative host-pathogen interactions may lead
to high PLACL combined with low ρlesion or low PLACL combined with high ρlesion.
In both of these cases, the infection is less severe than when an interaction leads to a
high ρleaf . Therefore, we believe that ρleaf better characterizes overall host resistance,
pathogen fitness and STB severity than PLACL or ρlesion.

18

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 29, 2017. ; https://doi.org/10.1101/129353doi: bioRxiv preprint 

https://doi.org/10.1101/129353
http://creativecommons.org/licenses/by/4.0/


Ranking of cultivars. The overall differences among cultivars were relatively small,
except for a small number of cultivars at each extreme. These small differences are
reflected in the limited number of significantly different groups of cultivars. However,
our analyses showed that ranking of cultivars differs considerably with respect to the
two components of quantitative resistance: resistance to host damage and resistance to
pathogen reproduction (Fig. 2D). More specifically, we identified cultivars that strongly
exhibit one component, while the other component is virtually absent (points in upper-
left and lower-right corners of Fig. 2F). We expect that resistance that lowers pycnidia
production will have greater overall impact on reducing damaging STB epidemics be-
cause it will reduce the rate of epidemic increase more than resistance to host damage.
Conventional phenotyping technology based on visual assessment does not enable sepa-
ration of these different components of resistance.

We expected that conventional visual assessment (based on AUDPC) would corre-
late best with the measurement of host damage (PLACL), as conventional assessment
consists mainly of quantifying leaf necrosis, but uses pycnidia mainly qualitatively to
confirm the presence of STB. Surprisingly, the measure that combines host damage and
pathogen reproduction (ρleaf) gave the best correlation with the conventional assessment
(cf. Figs. 3, E2.3 and E2.4). A possible explanation for this high correlation is that the
conventional assessment may actually quantify pycnidia, but in a subjective way. An
alternative explanation is that because conventional assessment includes both disease
severity and incidence, it captures the overall pathogen population size that depends on
both host damage and pathogen reproduction.

Correlation between our combined measure (ρleaf) and the conventional measure (AU-
DPC) in Fig. 3 indicates that breeding may have selected for cultivars that combine
resistance to host damage and resistance to pathogen reproduction. This hypothesis is
supported by the small but significant positive correlations between PLACL and ρlesion
in terms of both means and medians over individual cultivars (Fig. 2F).

Interestingly, the same two quantities, PLACL and ρlesion show a negative correlation
when analyzed at the level of individual leaves (Fig. 2G). Comparisons of means/medians
based on many leaves from the same cultivar shows the effect of the cultivar on the
relationship between PLACL and ρlesion. (See Appendix A.4 for discussion on the use
of means vs. medians in the analysis). Comparisons based on individual leaves take
into account both the cultivar effect and the pathogen effect on each leaf. The negative
correlation in the individual leaf data may indicate a pathogen-level tradeoff between
PLACL and ρlesion. This tradeoff may have a genetic basis as an epistatic interaction
between the two components of quantitative resistance described above. It may also
reflect a resource allocation tradeoff between invasion of host tissue and production of
pycnidia. Z. tritici isolates sampled from the two extremes of the hypothetical tradeoff
could be used for phenotypic confirmation of strain specific PLACL-ρleaf -relationship
as well as for identification of the genetic basis of these traits. To detect strain-specific
differences in PLACL between different pathogen strains in a greenhouse experiment,
concentration of spores in the inoculum will need to be lower than typically used (to
insure that PLACL is lower than 100 %).
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Predictors of epidemic development. PLACL on upper leaves is a key determinant of
disease-induced yield loss (e.g., Brokenshire, 1976). Hence, the ability to predict PLACL
on the upper leaves late in the growing season based on an early season measurement may
improve disease control. Our results suggest this possibility: the measure that quantifies
pathogen reproduction, ρlesion, evaluated early in the season (at t1, approximately GS
41) predicts the late-season host damage (PLACL at t2, approximately GS 75-85) better
than early-season PLACL or ρleaf (see Fig. 4, compare panel B with panels A and C).
We postulate that this finding could improve decision-making for fungicide application:
one may decide to apply fungicides only if ρlesion exceeds a certain threshold early in the
season.

Increase of resistance to STB between t1 and t2. Negative changes with respect
to quantities characterizing host susceptibility (PLACL, ρlesion, and ρleaf) suggest an
increase in host resistance over time. We found that none of the cultivars exhibited this
property in terms of both PLACL, ρlesion. Accordingly, none of them showed a significant
decrease only in the combined measure, ρleaf , and not in any other measure. This may
indicate that the genetic basis of the late-onset resistance differs between host damage
and pathogen reproduction. These outcomes may help to reveal the genetic basis of
“late-onset” resistance to STB (e.g. using GWAS or QTL mapping).

The degree of resistance or the intensity of a development can only be assessed from
multiple, quantitative measurements at subsequent points in time. Such dynamically de-
veloping traits require an objective evaluation and cannot be assessed by visual grading.
This is one of the most important advantages of imaging-based phenotyping methods
compared to classical grading-based phenotyping (Walter et al., 2015; Kirchgessner et al.,
2017)

Conclusions. We utilized a novel phenotyping technology based on automated analysis
of digital leaf images to compare quantitative resistance to STB in 335 European wheat
cultivars naturally infected by a highly variable local population of Z. tritici. This
method allowed us to distinguish between resistance components affecting host damage
(PLACL) and resistance components affecting pathogen reproduction (lesion pycnidia
density and pycnidia size). Measurements of pycnidia density cannot be accomplished
on such a large scale with traditional assessment methods and may provide a new and
powerful tool for measuring quantitative resistance to STB.

To our knowledge this is the most comprehensive characterisation of the two compo-
nents of resistance separately. As suggested by Simko et al. (2017), digital phenotyping
reduces subjectivity in trait quantification. Thus the present method may reveal small
differences that wouldn’t be observed without. Development of the method could involve
adjustment of the analysis parameters to be suitable for each cultivar separately, ma-
chine learning for more precise detection of symptoms and combining it with incidence
data gathered for example by image analysis of high-quality canopy images such as pro-
duced by the phenomobile (Deery et al., 2014) or the ETH field phenotyping platform
(Kirchgessner et al., 2017).
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Outlook. Our approach can be readily applied to classical phenotype-based selection
and breeding. Cultivars that show high resistance to both host damage and pathogen
reproduction will be most likely to strongly suppress the pathogen population at the field
level and result in less overall damage due to STB. Importantly, cultivars that show the
highest resistance based on either host damage or pathogen reproduction can be used
in breeding programs as independent sources of these two components of resistance. An
important novelty of our approach is provide a powerful method to specifically breed
wheat cultivars carrying resistance that suppresses pathogen reproduction.

While the ability to separate phenotypes associated with two different aspects of
resistance provides new avenues for resistance breeding, our hypothesis that the two
components of resistance are under separate genetic control remains to be confirmed by
further research. We anticipate that future genetic studies (e.g. using GWAS) based
on these phenotypic data will enable us to identify genetic markers that are linked to
the different types of resistance. These markers could then enable joint selection of
the different forms of resistance via marker-assisted breeding or in a genomic selection
pipeline. If we can validate our hypothesis that toxin sensitivity genes underlie dif-
ferences in PLACL among cultivars, the breeding objective would be to remove these
sensitivity genes (Friesen et al., 2008; Oliver et al., 2012).
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A. Appendix

A.1. Estimation of the number of pathogen generations

We estimated the number of asexual cycles of pathogen reproduction (number of gener-
ations) using data on the dependency of the latent period of Z. tritici on temperature
[Fig. 5 in (Shaw, 1990)]. We are interested in the overall relationship between the latent
period and the temperature and would like to use the largest amount of data available.
For this reason, we pooled together the data available for two cultivars, Avalon and
Longbow, recorded by Shaw (1990). Next, we fitted the polynomial function

1/∆tl = aθ − bθ4 (A.1)
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to the resulting data. Here, ∆tl is the latent period, θ is the temperature, a and b are
fitting parameters. The outcome is shown in Fig. A1. Best-fit values of parameters are:

a = (4.5 ± 0.6) × 10−3, b = (3.9 ± 1.0) × 10−7. (A.2)

Uncertainties in Eq. A.2 represent the 95 % confidence intervals calculated from standard
errors. Goodness of fit: R2 = 0.7; standard error of regression s = 5.5 × 10−3.

We then used average daily temperatures and amount of rainfall measured at the
Lindau weather station located close to our experimental site to estimate the number
of pathogen generations, ng. We performed estimation of ng per growing season (from
March 1 until July 27) and between two sampling dates (from May 1 until July 4). First,
we determined the average latent period from the daily temperature averaged over the
growing season using Eq. A.1 with the parameter values Eq. A.2. This resulted in the
value ∆tl = 21 days. After that we introduced a constraint on the number of pathogen
generations using the rainfall data. According to our current understanding, rainfall
is the most efficient way to release and disperse the asexual pycnidiospores. For this
reason, we assumed that a cycle of asexual reproduction could only be completed after a
day with at least 5 mm rainfall [similar to (Zhan et al., 2002)]. In this way we estimated
an average of about six cycles of asexual reproduction during the growing season and
about two cycles between the two sampling dates t1 and t2 (Fig. A2).
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Figure A1: Inverse of latent period of Z. tritici as a function of the temperature, data
from Fig. 5 (Shaw, 1990). Data from controlled-environment experiments for
cultivars Longbow (circles) and Avalon (squares). Dashed curve is the best
fit using the function in Eq. A.1 (see text for details).
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Figure A2: Temperature and rainfall data recorded at the Lindau weather station (data
from http://www.agrometeo.ch/de/meteorology/datas) for the period be-
tween March 1 and July 27, 2016. Red vertical lines indicates the generation
times and black vertical times show the sampling dates t1 and t2.

A.2. Calculation of AUDPC based on visual assessments

We denote the values of visual scores recorded on the first, τ1, second, τ2 and third, τ3,
dates (20th of May, 21th of June and 29th of June, 2016) of visual assessments as A1,
A2 and A3. Area under the disease progress curve (AUDPC) was calculated for each
cultivar using the visual scores in the following manner:

AUDPC =
1

2
(τ2A1 + (τ3 − τ1)A2 + (τ3 − τ2)A3) , (A.3)

where τ1 = 14 days, τ2 = 44 days, τ3 = 52 days. Here, we assumed that disease started
from zero 14 days before the first scoring, values of A1, A2 and A3 are taken as average
scores over two replicate plots. Eq. A.3 uses a trapezoidal function to interpolate between
the time points in order to calculate the area under the curve. This assumes that score
values are connected by linear segments. Values of AUPDC are shown for each cultivar
in Fig. 3D of the main text.

To analyze differences between cultivars, we weighted scores A1, A2 and A3 in the
following manner: a1 = 3τ2A1/2, a2 = 3(τ3 − τ1)A2/2, a3 = 3(τ3 − τ2)A3/2. The
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coefficients were chosen such that weighted scores a1, a2 and a3 give proportionate
contribution to the AUDPC and the arithmetic average over them gives the AUDPC.
The weighted scores from each replicate and each time point were given as a set of
points corresponding to each cultivars (total of six measurement points per cultivar).
One score was missing for one of the replicates in several cultivars. For these cultivars,
we used only five measurement points for statistical analysis. We also calculated grand
means over raw (not weighted) visual scores for each cultivar by taking arithmetic means
over measurements in two replicates and three time points (six measurement points).
Similarly to the case of weighted scores, when scores were missing in one of replicates
at one of time points, we calculated arithmetic means over the five values that were
present.

Statistical differences between cultivars based on visual scoring could, in principle, be
tested with a similar manner as based on image analysis data. We tested differences
between distributions based on weighted visual scores of cultivars. The global Kruskal-
Wallis test (R Core Team, 2016) revealed no differences (Kruskal-Wallis chi-squared
= 194.39, df = 335, p = 1). Surprisingly, when using unweighted visual scores there
were differences between cultivars (Kruskal-Wallis chi-squared = 642.4, df = 335, p <
2.2 · 10−16). Pairwise multiple comparison with a false discovery rate p-value correction
(Benjamini and Hochberg, 1995) found out that the 23 most susceptible cultivars were
different from the most resistant and the 155 most resistant cultivars were different
from the most susceptible. However, there were 158 cultivars that were not significantly
different from either extreme. The slight but significant difference between unweighted
and weighted data may arise from the short time interval between τ2 and τ3. Thus
cultivars cannot be distinguished by weighted scores, as the last scoring time, resulting
likely in the greatest differences between visual scorings of cultivars, had the smallest
effect on AUDPC and consequently differences arising from latest scores are suppressed.

Despite differences between statistical properties of unweighted and weighted data,
the ranking based on them is pretty similar: Spearman’s correlation between mean
ranks of unweighted and weighted scores of cultivars is high (rs = 0.97, p < 2.2 · 10−16).
Also Spearman’s correlations between AUDPC, mean rank of unweighted scores and
arithmetic mean of unweighted scores are high (AUDPC vs. mean ranks: rs = 0.97;
AUDPC vs. means: rs = 0.97; mean ranks vs means rs = 0.998; p < 2.2 · 10−16 for
each).

A.3. Correlation between replicates

Correlations between the biological replicates ranged from 0.3 to 0.7 (Fig. A3). The
highest correlation between the two replicates was found in pycnidia grey value at t1.
The lowest correlation was in PLACL at t1. PLACL showed the largest difference in
correlation coefficients between replicates. The exceptionally low correlation between
replicates at t1 for PLACL and necrotic area may have arisen from making the collection
at a critical point in the epidemic: if the last infection cycle had been just entering the
necrotic phase (as suggested in Fig. A2), there could have been huge variation between
replicates by chance due to the highly variable length of the latent period for STB
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infection.
Spearman’s correlation describes linear relationship between rankings based on the

two replicates. Moderate but highly significant correlations between replicates for each
measure imply that resistance rankings based on these measures may differ considerably
between replicates. We expect this to result from the shape of the quantitative resistance
distributions (Fig. 2 and 3 of the main text). For all three main measures of resistance,
PLACL, ρlesion and ρleaf , means of the measure are quite similar for all cultivars except
a small number of cultivars at the phenotype extremes. Thus even a little variation in
these measures between replicates may result in a large change in ranking of the cultivar
for one replicate to other. This is also implied by the small statistical differences between
cultivars in the middle of the distributions (Fig. 2 and 3 of the main text).
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Figure A3: Spearman’s correlation coefficient between the mean values (taken over leaves
belonging to the same cultivar) in two replicates for eight different quantities.
All results are highly significant (p < 10−7).

A.4. The use of means vs. medians in the analysis of STB
resistance

As our data was clearly non-normal, the central tendency of the data may be better
described by medians than means. Comparing medians is also biologically reasonable:
total yield is more likely determined by a large number of moderately damaged wheat
plants, than by the few fully diseased or dead plants. We also found stronger correla-
tion between AUDPC and medians of PLACL and ρlesion than AUDPC and means of
PLACL and ρlesion. Nevertheless, when comparing AUDPC and ρleaf we found stronger
correlation between AUDPC and means of ρleaf than medians. This may indicate that
mean values better describe the way breeders traditionally assessed diseases caused by
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necrotrophs. If this insight proves true, it may help us understand and counteract the
subjective nature of visual assessment with its tendency to overweight fully diseased
plants and overestimate the overall severity.

E. eXtra

E1. Description of eXtra tables and figures

Supplemental File S1 presents the list Supplemental File S1 describes content of each
supplemental file and table. Supplemental File S2 shows full range versions of ranking
figures (Figs. 2 and 3 of the main text) and also additional comparisons between PLACL
and ρleaf , PLACL and AUDPC, and ρlesion and AUDPC. Supplemental File S3 shows
comparison between means, medians and mean ranks of PLACL, ρlesion, and ρleaf . Sup-
plemental File S4 shows detailed analysis af predictive power of PLACL, ρlesion, and ρleaf
at t1 on those variables at t2 and considers separately ”cultivar effect” and ”pathogen
effect”.

Supplemental Table S1 provides the parameter values used in the ImageJ macro and
can be used directly as the input to the macro.

Supplemental tables supporting Fig. 2 and Fig. 3 of the main text display information
on ranking of cultivars in tab-delimited text files. Supplemental Tables S2, S3 and S4
show cultivar names in first column; genetic identification number in second column;
mean of observable (PLACL, ρlesion, ρleaf ; respectively) over all the leaves of a cultivar in
the third colum; standard error of the mean in the fourth column and median in the fifth
column. The tables are sorted according to descending mean. In Supplemental Tables
S5–S7 cultivars are ranked according to mean rank of leaves of a cultivar according
to corresponding measurement. First column shows cultivar names; second genetic id;
third mean rank of the data and fourth grouping code, regarding statistical differences
between cultivars according to multiple pairwise Kruskal-Wallis comparison with false
discovery rate p-value correction (cultivars having same letter in the grouping code are
not significantly different). The tables are sorted according to descending mean rank.
All tables contain a header row naming the columns.

Supplemental Tables S8–S10 supporting Fig. 5 of the main text display information
on cultivars that exhibit significant negative change between t1 and t2 in mean values
of PLACL, ρlesion and ρleaf , respectively. Cultivars are sorted according to the difference
between the mean values in t1 and t2. First column shows cultivar names; second column
shows mean values in t1; third column shows mean values t2; fourth columns shows the
difference between means in t1 and t2; fifth col: W statistic of the Wilcoxon rank sum
test; 6th col: p-value of the Wilcoxon rank sum test with FDR correction.

E2. Ranking of cultivars

In Fig. E2.1 cultivars are ranked as in Fig. 2 of the main taxt and the full range of
raw data is shown for ρlesion. Significantly differing groups of cultivars are labeled with
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different colors (excluding gray). Fig. E2.2 has the same organizing principle except that
Fig. E2.2E shows ranking according to ρleaf . Details of correlations are shown in insets
(F, G, H) as in Fig. 2 of the main text.

In Figs. E2.3 and E2.4 the connection between traditional resistance measurement
(AUDPC) and either PLACL or ρlesion, respectively, are given similarly to what was
shown in Fig. 3 of the main text. Spearman’s correlation coefficients are higher between
medians of PLACL or ρlesion and AUDPC than between means of those and AUDPC.
Details of correlations are given in the insets (E, F).
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Figure E2.1: This figure is the same as Fig. 2 of the main text except that panel E shows
the full range of data points of ρlesion.
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Figure E2.2: The organzation of the figure is the same as in Fig. 2 of the main text, but
here panel E shows data of ρleaf and correspondingly insets F, G and H
show correlations between PLACL and ρleaf .

29

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 29, 2017. ; https://doi.org/10.1101/129353doi: bioRxiv preprint 

https://doi.org/10.1101/129353
http://creativecommons.org/licenses/by/4.0/


0 20 40 60 80 100
PLACL

0

50

100

150

200

250

300

B

60 80 100 120 140 160 180 200
AUDPC

0

50

100

150

200

250

300

D

C

10 20 30 40 50 60

PLACL

80

90

100

110

120

130

140

150

AU
DP

C

F
Means: rs = 0.35, p = 5.3e-11

20 40 60

80

90

100

110

120

130

140

150

AU
DP

C

E
Medians: rs = 0.37, p = 1.9e-12

A

Figure E2.3: The organzation of the figure is the same as in Fig. 3 of the main text, but
here panel B shows data of PLACL and correspondingly insets E and F
show correlations between PLACL and AUDPC.
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Figure E2.4: The organzation of the figure is the same as in Fig. 3 of the main text, but
here panel B shows data of ρlesion and correspondingly insets E and F show
correlations between ρlesion and AUDPC.

E3. Correlation between means, medians and mean rank of PLACL,
ρlesion and ρleaf

Resistance ranking of cultivars according to means, medians and mean ranks (Kruskal-
Wallis test statistics) for PLACL, ρlesion and ρleaf are very strongly and statistically
significantly correlated (r ≥ 0.94) (Fig. E3.1). Thus differences between mean ranks
revealed by Kruskal-Wallis comparisons (cf. Fig. 2 and Fig. 3 of the main text) are
correlated to differences between ranking of cultivars according to means or medians of
PLACL, ρlesion and ρleaf .
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Figure E3.1: Pearson correlations between ranked means and medians and mean ranks
(Kruskal-Wallis test statistics) of PLACL, ρlesion and ρleaf .

E4. Predictors of epidemic development: separating effects of
cultivar and pathogen

In the section ”Predictors of epidemic development” of the main text, we presented
correlations between two time points for PLACL, ρlesion and ρleaf (Fig. 4 of the main text).
These correlations were based on means over leaves belonging to each individual plot
(with two plots per cultivar). Here, we disentangle two factors that may be responsible
for the observed correlations. First is the effect of the host. In this case, the correlation
is explained by differences between cultivars that remain constant over the two time
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points. For example, when cultivars that are susceptible early in the season (t1) remain
susceptible late in the season (t2). Second, is the effect of pathogen. In this case,
correlations may arise due to the highly local progression of epidemics characteristic of
splash-dispersed pathogens or other cultivar-independent factors. For example, plots
that had more disease early in the season would also have more disease late in the
season. In other words, when considering the effect of pathogen, we investigate how
well differences between plots (of the same cultivar, but located in separate lots) early
in the season correlate with differences late in the season. These differences between
plots may arise due to different amount of local inoculum or due to different local
microenvironmental conditions. We note that genotype-environment interactions may
contribute to both of these effects, but for simplicity we will refer to the two effects as
”host effect” and ”pathogen effect”. To separate the two effects, we performed a more
detailed analysis of the correlation.

To determine the effect of host, instead of using two values per cultivar that correspond
to two replicate plots (as we did in Fig. 4 of the main text), we used the average of these
two values for each cultivar (by averaging over about 32 leaves belonging to each cultivar
at each time point, with the exception of cultivar CH Claro that had about 670 leaves
per time point). We then determined correlations between these average values in t1
and in t2. The resulting correlations are shown in Fig. E4.1 and in columns ”cv” of the
Table E4.1. The highest correlation is observed between ρlesion at t1 and ρleaf at t2 The
best predictor for late-season PLACL is ρlesion .

To determine the effect of pathogen, we normalized means over each plot in the fol-
lowing way. At each time point, we subtracted from each mean over plot (averaged over
maximum 16 leaves) a grand mean over both plots (averaged over maximum 32 leaves)
that belong to the same cultivar and time point. To balance the dominating effect of
cultivar CH Claro, we used only two data points for it so that each point represents the
difference between the mean over all 21 plots of CH Claro in one lot and the grand mean
over 42 plots from both lots. The resulting correlations are shown in Fig. E4.2 and in
columns ”normed” in Table E4.1. The highest correlation is observed between PLACL
at t1 and ρlesion at t2 The best predictor for late-season PLACL is ρlesion .

Correlations corresponding to the effect of host with respect to the same measure
(PLACL, ρlesion, or ρleaf) reveal the degree to which cultivars keep their ranking according
to this particular measure between t1 and t2 (see diagonal panels in Fig. E4.1). In these
cases, correlation coefficients quantify the degree of consistency between t1 and t2 of host
resistance to PLACL (Fig. E4.1A), ρlesion (Fig. E4.1E) and ρleaf (Fig. E4.1H). As we see
from Fig. E4.1A, PLACL at t1 has no significant correlation to PLACL at t2. Hence,
we cannot predict differences in host damage between two cultivars late in the season
based on differences in host damage early in the season. Such prediction is more likely
to be achieved if we considered differences between one of the most susceptible and one
of the most resistant cultivars. However, when we take into account all cultivars, on
average there is no significant correlation. In contrast, the correlation between ρlesion at
t1 and ρlesion at t2 is moderately strong and highly significant (rs = 0.4). We conclude
that differences between cultivars according to ρlesion are more consistent than differences
according to PLACL.
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Correlations corresponding to the effect of pathogen reveal the degree to which plots
of the same cultivar keep their ranking between t1 and t2. In contrast to the ”host effect”
described above, PLACL at t1 has a significant slightly negative correlation to PLACL
at t2 with respect to ”pathogen effect” (Fig. E4.2A). ρleaf at t1 and ρleaf at t2 exhibit a
moderate correlation (Fig. E4.2I). Hence, differences between plots of the same cultivar
are more consistent between t1 and t2 with respect to ρleaf than with respect to PLACL.

To determine their relative contributions to the overall correlations shown in Fig. 4
of the main text, we compare contributions of ”host effect” (Fig. E4.1) and ”pathogen
effect” (Fig. E4.2). Correlation between PLACL at t1 and ρlesion at t2 due to ”pathogen
effect” is positive and significant (Fig. E4.2D), while the same correlation due to cultivar
effect is not significant (Fig. E4.1D). Hence, we conclude that the overall positive rela-
tionship between PLACL t1 and ρlesion t2 (Fig. 4D of the main text) is caused mainly by
”pathogen effect”. In contrast, there is no significant relationship between ρlesion at t1
and ρleaf at t2 due to pathogen effect (Fig. E4.2G), but there is a strong positive correla-
tion due to ”host effect” (Fig. E4.1G). This indicates that the overall positive correlation
arises due to ”host effect”. Interestingly, ρlesion exhibits a moderate positive correlation
between t1 and t2 due to ”cultivar effect” but a negative correlation due to ”pathogen
effect”. Reason for that phenomenon remains an open question.

Since cultivar CH Claro was replicated more than any other cultivar (a total of 42
plots), we analyzed it separately to see if the ”pathogen effect” discussed above is visible
in data from one cultivar. However, Spearman’s correlation test did not show any
significant correlation with respect to means over each of 42 plots between t1 and t2 for
any combination of the three quantities (PLACL, ρlesion and ρleaf).

Thus, separating the ”host effect” and ”pathogen effect” allowed us to gain insight into
the source of the correlations over time between different measures of host resistance and
to better assess their predictive power. Although this analysis did not reveal extremely
strong correlations, we expect, that disease forecasting models could benefit from having
pathogen reproduction, not only host damage, as an explanatory variable. Combine
with incidence measurements, the method presented allows for detailed quantification
of pathogen population and its reproductive potential.

PLACL(t1) ρlesion (t1) ρleaf (t1)
raw cv normed raw cv normed raw cv normed

PLACL(t2) (-0.03) (0.02) -0.11 0.34 0.36 0.25 0.20 0.27 (0.022)
ρlesion (t2) 0.23 (0.08) 0.39 0.21 0.40 -0.24 0.40 0.38 0.36
ρleaf (t2) 0.11 (0.04) 0.23 0.37 0.49 (-0.0071) 0.38 0.40 0.29

Table E4.1: Spearman’s correlations between measures of resistance in t1 and t2. Non-
significant correlations in parentheses (p > 0.01). Correlations in columns
”raw” are calculated using means of each plot for each time point, in columns
”cv” using mean over all plots of a cultivar for each timepoint and in columns
”normed” using difference of plot mean from cultivar mean for each time
point as explained in the text.
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Figure E4.1: Correlation of measures of resistance (means over plots of the same cultivar)
between the first time point (t1) and the second time point (t2). Each data
point represents an average over about 32 leaves of one cultivar belonging
to two replicates plots. Degree of correlation is quantified using Spearman’s
correlation coefficient, rs.
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Figure E4.2: Correlation of measures of resistance between t1 and t2 within cultivars.
Data from each cultivar is represented by two data points. For each point,
the x-value represents the difference between the mean over an individual
plot and the grand mean over two plots at t1 and the y-value is the same
difference taken at t2. Each data point represents an average over about 16
leaves of one cultivar belonging an individual plot. The degree of correlation
is quantified using Spearman’s correlation coefficient, rs.
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