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Abstract

Estimating the time since infection (TI) in newly diagnosed HIV-1 patients is
challenging, but important to understand the epidemiology of the infection. Here we
explore the utility of virus diversity estimated by next-generation sequencing (NGS) as
novel biomarker by using a recent genome-wide longitudinal dataset obtained from 11
untreated HIV-1-infected patients with known dates of infection. The results were
validated on a second dataset from 31 patients.

Virus diversity increased linearly with time, particularly at 3rd codon positions, with
little inter-patient variation. The precision of the TI estimate improved with increasing
sequencing depth, showing that diversity in NGS data yields superior estimates to the
number of ambiguous sites in Sanger sequences, which is one of the alternative
biomarkers. The full advantage of deep NGS was utilized with continuous diversity
measures such as average pairwise distance or site entropy, rather than the fraction of
polymorphic sites. The precision depended on the genomic region and codon position
and was highest when 3rd codon positions in the entire pol gene were used. For these
data, TI estimates had a mean absolute error of around 1 year. The error increased only
slightly from around 0.6 years at a TI of 6 months to around 1.1 years at 6 years.

Our results show that virus diversity determined by NGS can be used to estimate
time since HIV-1 infection many years after the infection, in contrast to most alternative
biomarkers. We provide the regression coefficients as well as web tool for TI estimation.

Author summary

HIV-1 establishes a chronic infection, which may last for many years before the infected
person is diagnosed. The resulting uncertainty in the date of infection leads to
difficulties in estimating the number of infected but undiagnosed persons as well as the
number of new infections, which is necessary for developing appropriate public health
policies and interventions. Such estimates would be much easier if the time since HIV-1
infection for newly diagnosed cases could be accurately estimated. Three types of
biomarkers have been shown to contain information about the time since HIV-1
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infection, but unfortunately, they only distinguish between recent and long-term
infections (concentration of HIV-1-specific antibodies) or are imprecise (immune status
as measured by levels of CD4+ T-lymphocytes and viral sequence diversity measured by
polymorphisms in Sanger sequences).

In this paper, we show that recent advances in sequencing technologies, i.e. the
development of next generation sequencing, enable significantly more precise
determination of the time since HIV-1 infection, even many years after the infection
event. This is a significant advance which could translate into more effective HIV-1
prevention.

Introduction 1

At diagnosis, most HIV-1 infected patients have an established HIV-1 infection of 2

unknown duration. This uncertainty complicates inference about the epidemiology of 3

HIV-1. Consequently, there is limited information about the true incidence of HIV-1, 4

the number of hidden, undiagnosed infected persons, the magnitude of the problem 5

referred to as “late presentation” and other important aspects of HIV-1 spread. 6

Several biomarkers that classify patients as recently or long-term infected have been 7

used to estimate HIV-1 incidence in populations [1–7]. These biomarkers can be divided 8

into three main categories: (i) serological incidence tests, (ii) CD4+ T-lymphocyte 9

(CD4)-based estimates and (iii) sequence-based estimates. Importantly, these biomarkers 10

usually do not determine the time since infection (TI), which limits their utility. 11

Serological incidence assays are based on knowledge about the development and 12

maturation of HIV-1 antibody responses (reviewed in [1, 4–6,8]). Among the serological 13

assays, the BED assay and the LAg avidity assay are the most widely used [4, 8–10]. 14

CD4 counts are determined as part of routine clinical care, a CD4 count below 350 15

cells/µL (or an AIDS-defining illness) at diagnosis is defined as late presentation [11,12]. 16

However, CD4 count is an imprecise measure of TI because its rate of decline is quite 17

variable [13–16]. 18

Sequence-based methods focus on the increase in intra-patient HIV-1 sequence 19

diversity following infection [17]. Kouyos et al [18] showed that time since infection 20

correlated with the fraction of polymorphic nucleotides in partial HIV-1 pol gene 21

sequences determined by Sanger sequencing. Others have later reported similar 22

findings [19–21]. This idea was expanded to other measures of sequence diversity, such 23

as mean Hamming distance [6, 7, 22] and high-resolution melting (HRM) [23]. These 24

studies (except HRM) used sequences generated by traditional Sanger population 25

sequencing often performed as part of routine HIV-1 resistance testing. 26

Here, we have investigated the utility of estimating time since HIV-1 infection using 27

genetic diversity in whole genome deep sequencing data generated by next-generation 28

sequencing (NGS) on the Illumina platform [24]. We show that sequence diversity is a 29

useful biomarker that grows approximately linearly with time during the first 8 years of 30

infection. We found that the pol gene was best suited to calculate TI because diversity, 31

mostly at third positions, accumulated more steadily in pol than in other genomic 32

regions. Inclusion of intra-patient single nucleotide variants (iSNVs, also referred to as 33

“polymorphisms”) down to the detection limit of NGS (i.e. 0.3%) improved the accuracy 34

of TI estimations as did exclusion of 1st and 2nd codon position sites. NGS provided 35

more accurate estimates of TI than Sanger sequencing, which at best detects iSNVs 36

down to 25% [25–27]. 37
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Materials and methods 38

Patients 39

The study included two sets of HIV-1 whole-genome sequence data; a training dataset 40

and a validation dataset. 41

The training dataset consisted of sequence data from 11 patients who were diagnosed 42

in Sweden between 1990 and 2003 (Table 1 and S6 Table). Details about the patients 43

and the samples have been published [24] and are also available online at 44

hiv.biozentrum.unibas.ch. The patients were selected based on the following 45

criteria: 1) A relatively well-defined time of infection based on a laboratory-confirmed 46

primary HIV-1 infection (PHI) or a negative HIV antibody test less than two years 47

before the first positive test; 2) No antiretroviral therapy (ART) during a minimum of 48

approximately five years following diagnosis; and 3) Availability of biobank plasma 49

samples covering this time period. As previously described 6 - 12 plasma samples per 50

patient were retrieved from biobanks and used for full-genome HIV-1 RNA deep 51

sequencing [24]. 52

The validation dataset consisted of data from 31 patients who were diagnosed in 53

Sweden between 2003 and 2010 (S7 Table). The patients were selected using similar 54

criteria as the 11 patients in the training dataset, but the follow-up time without ART 55

was shorter (median 2.9 years, range 1.4-6.2 years). For each patient, one plasma 56

sample collected early during follow-up and one plasma sample collected late during 57

follow-up was deep sequenced using the same method as for the 11 patients. 58

Ethics statement 59

The study was conducted according to the Declaration of Helsinki. Ethical approval was 60

granted by the Regional Ethical Review Board in Stockholm, Sweden (registration no. 61

2012-505 and 2014-646 for the validation dataset and 2002-367, 2004-797, 2007-1533 and 62

2011-1854 for the training dataset). Patients participating in the study gave written and 63

oral informed consent to participate. 64

Determination of the “true” time of infection (TI) 65

For each patient in the training and validation datasets the “true” time of infection (TI) 66

was estimated using a hierarchical scheme based on clinical and laboratory findings as 67

previously described [24,28]: 68

1. Laboratory-confirmed PHI. Infection was considered to have occurred 17 days 69

prior to date of first hospital visit based on an average incubation time from 70

infection to development of PHI of 14 days [29] and an estimated patient delay of 71

3 days. 72

2. Fiebig staging [28] was used if the necessary laboratory results were available and 73

the patient found to be in Fiebig stage I–V, which were considered to correspond 74

to 13, 18, 22, 27 and 65 days since infection based on Cohen et al. [30]. 75

3. BED assay results (i.e. normalized optical density, ODn) analyzed with a 76

published time-continuous model of development of BED-reactive antibodies [31] 77

if the ODn level corresponded to <1 year since infection after which ODn levels 78

start to saturate. 79

4. Midpoint between the last negative and the first positive HIV test. 80
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If possible information from several methods to determine TI were combined. The 81

true TIs were considered to be without measurement error. Comprehensive information 82

is provided in the S6 Table and the S7 Table. 83

CD4 counts, virus levels and BED tests 84

Plasma HIV-1 RNA levels were measured using the Cobas AmpliPrep sample 85

preparation system followed by analysis using the Cobas Amplicor HIV-1 monitor 86

version 1.5 or the Cobas TaqMan HIV-1 v1.0 or v2.0 (Roche Molecular Systems, Basel, 87

Switzerland). CD4+ T-lymphocyte (CD4) cells were enumerated using flow cytometry. 88

As part of determination of the true TIs, BED testing was performed on the first 89

plasma sample from each study subject using the Aware BED EIA HIV-1 Incidence 90

Test (Calypte Biomedical Corporation, Portland, OR, USA) according to the 91

manufacturer’s instructions. 92

HIV-1 RNA sequences 93

Whole-genome deep-sequencing of virus RNA populations in plasma samples obtained 94

before start of therapy was performed as previously described [24,32]. In short, total 95

RNA in plasma was extracted using RNeasy Lipid Tissue Mini Kit (Qiagen Cat No. 96

74804) and amplified using a one-step RT-PCR with outer primers for six overlapping 97

regions and Superscript III One-Step RT-PCR with Platinum Taq High Fidelity High 98

Enzyme Mix (Invitrogen, Carlsbad, California, US). An optimized Illumina Nextera XT 99

library preparation protocol was used together with a kit from the same supplier to 100

build DNA libraries, which were sequenced on the Illumina MiSeq instrument with 101

2x250bp or 2x300bp sequencing kits (MS-102-2003/MS-10-3003). 102

Sequencing reads are available in the European Nucleotide Archive under accession 103

number PRJEB9618 and processed data are available at hiv.biozentrum.unibas.ch. 104

The samples of the validation dataset were sequenced and processed using the same 105

protocol and analysis pipeline [24,32]. Patient-specific consensus sequences were 106

constructed using an iterative mapping procedure. All reads were then remapped 107

against this reference to calculate iSNV frequencies (i.e. pile-ups or tables how often 108

each nucleotide was observed at every position of the genome). Sequencing and 109

mapping/assembly was successful for 56 of the 62 samples. Filtered short-reads were 110

submitted to ENA and are available under study accession number PRJEB21629. iSNV 111

frequency counts at each position of pol and gag are available as part of the analysis 112

code repository at github.com/neherlab/HIV_time_of_infection. 113

All analyses were done in Python using the libraries numpy, biopython, and 114

matplotlib [33–35]. These iSNV frequency tables were then used to calculate average 115

pairwise distances, average alignment entropies, or the number of sites with variation 116

above a cutoff xc. 117

Statistical procedures 118

We have used three different diversity measures: fraction of polymorphic sites, average 119

pairwise distance per length, and site entropy. All of these measures can be 120

straight-forwardly calculated from the frequencies of different nucleotides xiα at site 121

i = 1 . . . L and α ∈ {A, C, G, T} along the genome. Prior to calculation the nucleotide 122

frequencies for each site were normalized to sum to unity (i.e. ignoring gaps or positions 123

not called by the sequencer.) 124

For all methods, we introduce a cutoff xc. Sites at which the sum of all minor 125

variants is smaller than xc contribute zero to the diversity measure. This cutoff serves 126

to filter sequencing errors or rare variation that cannot be reproducibly measured across 127
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samples. When using the fraction of polymorphic sites as diversity measure, xc serves as 128

the value above which sites are considered “polymorphic”. Specifically, the fraction of 129

polymorphic sites is defined as 130

DA =
1

L

L∑
i=1

Θ(1− xmi − xc) (1)

where xmi is the frequency of the dominant nucleotide at position i, and Θ(x) is 1 when 131

x > 0 and 0 otherwise (i.e. Θ(1− xmi − xc) = 1 when 1− xmi > xc and 0 otherwise). DA 132

is thus the fraction of sites at which the dominant nucleotide is less frequent than 1− xc. 133

The average pairwise distance is the probability that two randomly drawn sequences 134

have different nucleotides at a specified position, averaged over all positions. It can be 135

calculated from the xiα as 136

DH =
1

L

L∑
i=1

Θ(1− xmi − xc)

[∑
α

xiα(1− xiα)

]
. (2)

The quantity defined by Eq. (2) is the conventional Nei-Li nucleotide diversity [36] 137

(
∑
α xiα(1− xiα)) averaged over the sites. We refer to it as “average pairwise distance” 138

whenever it is necessary to distinguish it from the other diversity measures introduced 139

here, but otherwise call it simply “diversity”. 140

This diversity measure is similar to the fraction of polymorphic sites with the 141

important difference that the contribution of each site is weighted by a frequency 142

dependent factor. 143

The average site entropy is defined by 144

DE = − 1

L

L∑
i=1

Θ(1− xmi − xc)

[∑
α

xiα log(xiα)

]
(3)

and differs from the average pairwise distance by the weighing function used. The 145

entropy puts more weight on sites with rare variation. This can increase the information 146

of the measure about TI, but can also be detrimental if too much weight is put on 147

frequencies dominated by sequencing error. We evaluate and discuss the merits of the 148

different measures below. We use the average pairwise distance as default diversity 149

measure. 150

Given a diversity measure D, we model TI by 151

T̂I = s×D + t0, (4)

where s is the conversion factor between diversity and time, and t0 is the intercept value 152

intended to accommodate possible non-linearity of diversity at small times. 153

To estimate values of s, t0 we minimized the average prediction error for the 154

available data points in respect to these two parameters (see S1 Appendix for more 155

details) The error in estimating s, t0 was calculated by randomly sampling the patients 156

(bootstrapping over the patients). 157

Cross-validation 158

To test the accuracy of the TI inference we used ten of the eleven patients as training 159

data (to determine the slope and the intercept) treating the eleventh patient as test 160

data. This procedure was repeated for every patient. Leaving out one patient at a time, 161

rather than one sample at a time, gives more accurate confidence intervals as different 162

samples from the same patients are correlated. We included in statistical analysis only 163
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samples where more than 50% of the sites in the averaging window were successfully 164

sequenced to minimal coverage of 100. 165

Additional validation was provided by applying the slopes and intercepts obtained 166

by analyzing the data from the training set of 11 patients to the validation dataset of 31 167

other patients with known times of infection. 168

Results 169

Patients characteristics 170

The training dataset consisted of recently published longitudinal full-genome deep 171

sequencing data from 11 HIV-1 infected patients who were diagnosed in Sweden 172

between 1990 and 2003 (6-12 samples per patient) and had a relatively well-defined time 173

of infection (TI) [24]. The patient characteristics are summarized in Table 1 and fully 174

described in the S6 Table. Nine of the eleven patients were MSM infected with HIV-1 of 175

genetic subtype B. TI was hierarchically estimated using clinical and laboratory data 176

(see Methods). Here, we take this estimate as the true time of infection and investigate 177

how accurately TI can be estimated from sequence diversity in one sample. We will 178

refer to this estimate as the estimated time since infection (ETI). 179

To validate the findings we used a second dataset consisting of similar sequence data 180

from 31 additional patients (two samples per patient). The patient characteristics in 181

validation dataset was more diverse than for the 11 patients training dataset. Thus, 16 182

of the 31 patients were infected with non-B-subtypes of HIV-1 and 11 patients belonged 183

to other transmission groups than MSM. See methods and (S7 Table). 184

Sequence diversity as a biomarker 185

All three diversity measures described in Materials and Methods grew linearly with time 186

in the eleven patients. Fig. 1 shows average pairwise distance in the pol separately for 187

each codon position. Most diversity in pol is synonymous and accumulates at 3rd codon 188

positions, while diversity at 1st and 2nd codon positions remained low throughout. This 189

pattern was less pronounced in other genes [24, 37] (see also S1 Fig and S2 Fig). In env, 190

in particular, frequent selective sweeps result in a saturation of diversity later in 191

infection [17,24]. 192

We quantified the fraction of variation in diversity measures that could be explained 193

by a linear regression of sample date vs. diversity using the coefficient of determination 194

(r2), see the S3 Fig and the S4 Fig. In all patients for whom early samples were 195

available, a linear regression explained between 70% and 90% of variation if rare iSNVs 196

below 20% population frequency were included, that is the cutoff xc was below 0.2. The 197

coefficient of determination was much smaller when only iSNVs between 20% and 80% 198

were included, that is the xc cutoff is larger than 0.2. This decrease is due to increased 199

noise as fewer and fewer sites contribute to the diversity measures. 200

Furthermore, as seen from S4 Fig, the diversity at 3rd codon positions (at which 201

mutations are mostly synonymous) exhibited higher r2, whereas the trajectories at the 202

1st and 2nd codon positions saturated quickly after the infection, Fig. 1. Thus, in the 203

following we limit the analysis mainly to sites in 3rd codon positions (whenever we are 204

dealing with a whole gene, i.e. when the reading frame is known.) However, the results 205

reported below show that inclusion of 1st and 2nd codon positions only has a small 206

deleterious effect on the accuracy of the TI estimates. 207
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Fig 1. Diversity in pol as a function of the time since infection (TI) and
1st, 2nd and 3rd codon positions. (Genetic region: pol, diversity measure: average
pairwise distance, xc = 0.003.)
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Diversity in pol yielded the most accurate TI estimates 208

Accurate estimation of TI requires averaging diversity across many sites. To investigate 209

which regions of the genome yields the most accurate estimates and how many sites 210

should be averaged, we calculated the average prediction error for averaging windows of 211

different length and in different regions of the genome. In Fig. 2 the mean absolute 212

error (MAE) for the estimated TIs is shown as a function of the genome window 213

position for different window sizes. We found that the most precise TI estimates were 214

obtained for windows with a length of 2000-3000bp. The precision was highest if the 215

window covered the pol gene and significantly lower if the window included env. Smaller 216

windows contain fewer sites and therefore gave less precise estimates. Larger windows 217

also gave less precise TI estimates because they necessarily include regions in which 218

diversity saturates (such as env, S2 Fig) as well as regions that often were sequenced 219

less deeply in our dataset (again env, see [24]). 220

The precision of the TI estimates obtained for windows corresponding to particular 221

genes are shown in Fig. 2 by lines indicating the position of the gene and the 222

corresponding average absolute error of the TI estimate. The dashed lines correspond to 223

estimates using only 3rd codon positions of the corresponding gene. 224

Accuracy increased with higher sequencing resolution 225

Genetic diversity in NGS data can be quantified by different measures and we 226

investigated the performance of three related measures – average pairwise distance, site 227

entropy, and fraction of polymorphic sites. As discussed above, these measures put 228

different emphasis on iSNVs at different frequency. Even though the average pairwise 229

distance and site entropy formally do not require a cutoff on minority iSNVs, in practice 230
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Fig 2. Mean absolute prediction error of TI as a function of position in
genome and different sizes of the genome window (ws). Straight solid lines
correspond to the error when estimation is based on diversity in the genes gag, pol or
env. The dashed lines are analogous estimates using diversity only at 3rd codon position.
Diversity measure: average pairwise distance, xc = 0.003.
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a cutoff is necessary to remove low-level experimental errors. We therefore introduced 231

an iSNV cutoff in calculating the diversity based on average pairwise distance and site 232

entropy, xc, taking into account only the data with iSNVs above xc. For diversity 233

measures based on polymorphic sites, the cutoff value corresponds to the iSNV level 234

from which the site is considered polymorphic. This emulates ambiguous base calls by 235

Sanger sequencers, which (at best) can identify minority iSNVs above a threshold of 236

around 25% [25–27]. 237

Given the high ability of NGS to detect low level iSNVs one can consider the 238

dependence of the TI estimation on the cutoff value, as shown for all three diversity 239

measures in Fig. 3. All three diversity measures performed equally well and increasingly 240

better at cutoff values xc down to around 10%. This indicates that diversity in NGS 241

data allows more accurate estimates of TI than ambiguous base calls in Sanger 242

sequences and that this primarily is due to better sensitivity and accuracy in detection 243

of low level iSNVs. For cutoffs below 10% the error of TI estimates based on counting 244

polymorphic sites was greater than those based on the other two measures since rare 245

iSNVs which are sensitive to sequencing errors and amplification biases contribute as 246

much as common iSNVs. Indeed, at xc → 0 this measure includes all sites and becomes 247

completely insensitive to differences in iSNV levels. The other two measures do not 248

suffer from this problem, because they put different weights on sites with different iSNV 249

levels. Therefore the prediction errors for estimates based 3rd codon positions and 250

average pairwise distance or site entropy continued to decrease all the way down to 251

xc = 0.003, which represents the cutoff for sequencing errors for our NGS method [24]. 252

The noticeably non-monotonic behavior of the predictions based on average pairwise 253
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Fig 3. Mean absolute error as a function of the low-frequency cutoff (xc).
Different diversity measures perform very similarly when the cutoff xc is greater than
approximately 10%. Average pairwise distance and entropy outperform fraction of
polymorphic sites for low xc. This graph is based on diversity in pol. Solid lines
correspond to using all sites, dashed lines to diversity at 3rd codon positions.
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distance and site entropy when all codon positions are taken into account is due to the 254

saturation of 1st and 2nd codon positions (i.e. non-synonymous) diversity. The 1st and 255

2nd codon positions tend to be conserved since they result in mostly non-synonymous 256

mutations. Depending on the fitness cost associated with the mutation, diversity at 257

these sites saturates at different levels [37]. As the threshold xc is lowered, sites with 258

higher and higher fitness costs contribute to the diversity measures and the effect of the 259

saturation behavior becomes more pronounced. Note that the non-monotonic 260

dependence is not consistently reproduced in other genes (see supplementary S5 Fig). 261

Similarly, the fact that diversity measures based on all codon positions perform 262

somewhat better at xc > 10% was not consistently reproduced in other genes. In gag, 263

diversity at 3rd positions was better at estimating TI for most xc values (S5 Fig). 264

In the following analyses we opted for using the average pairwise distance measure, 265

taking into account only the diversity at the 3rd codon positions, with low (xc = 0.003) 266

iSNV cutoff. Average pairwise distance was chosen because the results were virtually 267

indistinguishable from those produced using site entropy, but easier to calculate and 268

interpret. Since 1st and 2nd codon positions contribute very little time-dependent 269

diversity and are affected by purifying selection and selective sweeps, we recommend to 270

restrict the diversity measures to 3rd codon positions. 271

Distribution of prediction errors 272

The results above indicated that more than 50% of the estimated TIs fell within a 273

window of about one year centered at the actual TI. Fig. 4 (Left) shows a more direct 274

analysis of the distribution of TI prediction errors. The distribution is tightly peaked 275

around zero, but has a left tail corresponding to samples estimated to have been 276

obtained shorter after infection than they actually were drawn, i.e. diversity being lower 277

than expected. Most of these samples were from p6, who throughout infection had lower 278

diversity than other patients. In addition to biological reasons for low diversity, 279

amplification problems and low RNA template numbers (i.e. low virus levels) can 280

explain underestimation of diversity. 281
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Fig 4. (Left) Distribution of the estimation error. (Right) Estimated time
of infection (ETI) versus actual time of infection (TI). (Genetic region: 3rd
codon positions in pol, diversity measure: average pairwise distance. The encircled
outliers are discussed in the text.)

−4 −2 0 2

ETI ­ TI [years]

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9

TI [years]

0

2

4

6

8

10

E
T
I [
ye

ar
s]

p1
p2
p3
p4
p5
p6

p7
p8
p9
p10
p11

Some samples were estimated to have been drawn later after infection than the true 282

duration of infection. In particular early samples from p10 and p3 had markedly higher 283

diversity than expected. For both patients, we have evidence that their infections were 284

established by more than one virion resulting in carry-over of diversity from the donor. 285

This excess diversity gradually decreased in p10 and, somewhat slower, in p3. 286

Next, we investigated how the prediction error depended on the time since infection. 287

Fig. 5 shows the average absolute error of the estimated TI versus the true TI, averaged 288

over n = 25 consecutive data points. This average error (see for details S2 Appendix) 289

was surprisingly stable over TIs, and only increased slightly from around 0.6 years to 290

around 1.1 years as the age of infection increased from 6 months to 6 years. This 291

increase can be attributed to bigger statistical fluctuations of diversity later after 292

infection due to factors such as variations in the rate of diversification or differences in 293

number and strength of selective sweeps that reduce diversity. 294

Recommended regression coefficients 295

In Table 2 we list the values of slope and intercept that can be used to estimate the 296

infection date from the known diversity calculated as average pairwise distances for 3rd 297

codon positions in pol gene. The supplementary materials contain similar tables for the 298

two other diversity measures (S1 Table and S2 Table), as well as for the case when all 299

codon positions are taken into account (S3 Table, S4 Table and S5 Table). As the iSNV 300

resolution may vary between different sequencing methods and facilities, we list the 301

values of the parameters for different cutoffs, implying that all the frequencies below the 302

cutoff value are set to zero and the corresponding sites do not contribute to the 303

diversity measure. Note that the slope (and intercept) increases with increasing iSNV 304

cutoffs because fewer and fewer sites contribute to diversity. In addition to the two 305

parameter model, we also investigated the performance of a model with the slope as the 306

single parameter, i.e. no intercept (t0 = 0). This model has a slightly higher absolute 307

prediction error. However, for low values of the cutoff xc ≈ 5% these models agree and 308

for cutoffs below 20% the two models perform equally well. 309
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Fig 5. Estimation error dependence on time of infection (TI): TI and
|ETI−TI| averaged over n = 25 adjacent points. (Genetic region: 3rd codon
positions in pol, diversity measure: average pairwise distance.)
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In order to make our data and the method of TI inference more accessible for 310

practical use, we added a web application to the web site containing the processed 311

patient data, accessible at hiv.biozentrum.unibas.ch/ETI/. Given a diversity value 312

(determined according to Eq. (2)), the web application allows to determine the time 313

since infection for an user-selected iSNV cutoff value (xc) and genetic region, along with 314

the appropriate error estimates. The results are presented in accessible graphical form, 315

but also as a slope and intercept pair, equivalent to Table. 2. The user can specify 316

whether the diversity was calculated using all codon positions or only the 1st, 2nd, or 317

3rd. Specifying a codon position is only supported when the region used to evaluate 318

diversity is fully contained in one gene. 319

Validation of the regression coefficients 320

We validated the regression coefficients on a dataset from 31 patients with known 321

infection dates and NGS data available at two time points. The distribution of the 322

diversity values for these patients closely resembles that for our training dataset of 11 323

patients (see S8 Fig and S9 Fig). 324

We inferred the time since infection for the 31 validation patients using the 325

regression coefficients obtained for the eleven patients of the training set; the results are 326

summarized in Fig. 6, which also shows (in gray) the data points of the training set 327

(same as in Fig. 4). The new data exhibit the same behavior as the training set: the TI 328

estimates are centered around the true TI and the accuracy of the estimate is about one 329

year, as can be seen from the histogram in the left panel of Fig. 6. In order to make the 330

histograms for the training and validation data comparable, we included for the former 331

only the points of the infection time less than 5 years. 332

Some outliers are present also in validation data, particularly data points with 333

overestimated TIs, i.e. having higher diversity than expected. As mentioned above, 334

these data points probably often represent infections established by more than one 335

founder virus. One patient had substantial overestimation of time since infection, which 336

might be due to superinfection from different donors rather than multiple founders from 337

a single donor. However, it should be stressed that almost all outliers are still within 338

+/- 2 years from the true TI. Neither overestimation nor underestimation of TI was 339
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clearly related to genetic subtype of the virus, transmission route, virus levels or 340

template numbers (S11 Fig and S12 Fig).

Fig 6. (Left) Distribution of the estimation error. (Right) Estimated time
of infection (ETI) versus actual time of infection (TI). Displayed for the
training and the validation data sets. (Genetic region: 3rd codon positions in pol,
diversity measure: average pairwise distance, xc = 0.003. Connected data points belong
to the same patient.)
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341

Discussion 342

Many newly diagnosed HIV-1 patients have an infection of unknown duration. This is 343

problematic because accurate estimation of the time since infection (TI) is essential for 344

understanding important aspects of HIV-1 epidemiology such as incidence, proportion 345

of undiagnosed patients and late presentation. Most previous methods are suboptimal 346

because they only categorize patients as being recently or long-term infected and/or are 347

imprecise. Here, we show that genetic diversity calculated from NGS data enables fairly 348

accurate estimation of TI, even many years after infection. We also show that NGS is 349

superior to Sanger sequencing because inclusion of minority iSNVs below the Sanger 350

detection limit (around 25%) substantially improves the accuracy of the TI estimates. 351

We investigated how the TI estimates were influenced by sequence length, genome 352

region, codon position, iSNV cutoff and type of distance measure. We found that the 353

most precise estimates of TI were obtained using average pairwise distance or site 354

entropy based on 3rd codon positions in the pol gene. For these data viral diversity 355

increases approximately linearly during at least 8 years after infection, which allows 356

estimation of TI during this time period. The accuracy of the TI estimate was 357

approximately +/- 1 year in long-term infections, and slightly better during the first 358

year of infection. The env gene was less suitable than pol for estimating TI, especially if 359

longer time had elapsed since infection. This is because frequent selective sweeps in env 360

continuously remove diversity and this effect becomes increasingly evident with 361

increasing time since infection [17,24]. This explains why the most accurate results were 362

obtained using 2000-3000 base pair long sequences covering pol, while omitting env. We 363

found that most of temporal signal came from 3rd codon positions (at which most 364

mutations are synonymous) and that omission of 1st and 2nd codon positions slightly 365

PLOS 12/21

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 29, 2017. ; https://doi.org/10.1101/129387doi: bioRxiv preprint 

https://doi.org/10.1101/129387
http://creativecommons.org/licenses/by-nc/4.0/


improved TI estimates for iSNV cutoffs (xc) below 10%, i.e. when the full potential of 366

NGS was utilized. Diversity measures based on average pairwise distance and site 367

entropy outperformed the measure based on fraction of polymorphic sites at low iSNV 368

cutoffs. 369

Based on our results we make the following recommendations for TI estimation based 370

on HIV NGS data; average pairwise distance on 3rd codon positions in pol sequences 371

with the lowest possible cutoff for iSNVs (in our case 0.3%). Importantly, we have 372

validated our recommendations by applying them to a validation dataset consisting of 373

NGS data from 31 additional patients with known infection times. The accuracy of TI 374

estimation for the validation data was as accurate and precise as for the training data, 375

which confirms the applicability of our method for broader clinical and epidemiological 376

use. For convenience we provide a table that translates viral diversity into TI as well as 377

a web application that estimates TI for user-defined regions of the HIV-1 genome. 378

Even though we primarily have focused on estimation of TI in individual patients, 379

our method can be applied to estimation of incidence in populations. Many methods for 380

HIV-1 incidence estimation in populations have been based on biomarkers that classify 381

patients as recently or long-term infected (e.g. the BED and LAg assays). [1–7]. Such 382

binary classification can be done based on NGS data; if the diversity is less than a 383

specified cutoff value Dcr infection is classified as recent, and otherwise as long-term. 384

The cutoff between recent and long-term infections can be chosen by the investigator 385

using Table 2 or the website. For instance a diversity of 0.0021 for 3rd bases on pol 386

corresponds to 180 days since infection. However, we have not fully determined two test 387

properties that are required for most binary incidence estimators; the mean duration of 388

recent infection (MDRI) and the false-recent rate (FRR) [38]. The NGS data can also 389

be used to directly model HIV-1 incidence based on TIs [39,40]. 390

Our study has some limitations. Ideally we should have studied a larger and more 391

diverse set of training and validation patients. However, patients with known time of 392

infection, long followup without therapy and suitable biobank samples are rare. Today 393

it would be unethical to delay start of ART. Thus, our training dataset consisted of 394

patients who were diagnosed between 1990 and 2003 and retrospectively identified and 395

investigated using stored biobank samples [24]. The patients in the validation dataset 396

were diagnosed between 2003 and 2010, and as a consequence had shorter followup 397

without ART. In the training dataset 9 of 11 patients were MSM infected with 398

subtype-B virus. The validation patients had a more diverse distribution with 11 399

patients infected by other routes than MSM and 16 patients infected with 400

non-B-subtypes. The precision in the TI estimate was similar for patients with MSM 401

and non-MSM as well as subtype B and non-B infections, which again suggests that our 402

regression coefficients can be broadly applied (S11 Fig and S12 Fig). 403

Another limitation is that the true (i.e. “known”) TI was estimated from laboratory 404

and clinical data and therefore has an error that we have not considered because it is 405

difficult to estimate. However, such a measurement error, which surely exists, will 406

reduce the accuracy at which TI can be estimated and assuming zero measurement 407

error for the ”true” TI is therefore conservative. 408

A potential problem with NGS data is incomplete sampling of virus diversity in 409

samples with low virus levels. If the sequencing library is dominated by a few template 410

molecules the TI estimate might be erroneously short. A related problem is due to the 411

reduced ability of NGS to correctly estimate TI in infections that were founded by 412

multiple virions. Two of our 11 training patients showed evidence of such multiple 413

infections. Clear overestimation of TI was also observed in one of the 31 validation 414

patients. It has been reported that HIV-1 infection is founded by more than one virion 415

in around 40% of MSM and around 20% of heterosexuals, whereas superinfection (from 416

different donors) is more rare [41,42]. In view of the fact that most of our study 417
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patients were MSM, it is surprising that serious overestimation of TI was not observed 418

more often. There are two possible explanations for this. Firstly, TI will only be 419

overestimated if the multiple founders are sufficiently diverse. Secondly, the 420

overestimation of TI appeared to diminished over time in the two training patients, 421

which may happen if excess diversity is removed because favored iSNVs are selected for 422

over time [24]. Even though our method has limitations with multiple founders and 423

superinfection, a diversity value that exceeds the upper 95% confidence value of the 424

diversity that expected 10 years or more after infection should be treated with great 425

caution, because it may be due to multiple founders and/or superinfection. 426

Furthermore, we plan to investigate estimation of TI can be improved by combining 427

virus diversity determined NGS with other biomarkers, such as BED, LAg avidity, CD4 428

and virus levels, in a multiple assay algorithm. 429

Finally, NGS is not yet part of routine diagnostics for HIV resistance. However, in 430

the coming years NGS can be expected to replace Sanger sequencing for clinical HIV-1 431

resistance testing, which is recommended for all newly diagnosed patients (in developed 432

countries). Thus, while our method for estimating TI from NGS data currently requires 433

extra laboratory work, NGS data is likely to become increasingly available as part of 434

routine HIV-1 care, which will increase the utility of our method. 435

Conclusion 436

In conclusion, we show that sequence diversity determined by NGS can be used to 437

estimate time since HIV-1 infection with a precision that is better than most alternative 438

biomarkers. Importantly, TI can be estimated many years after infection, whereas most 439

alternative methods only categorize patients as being recently or long-term infected or 440

are less precise. We found that TI was most accurately estimated using 3rd codon 441

positions in pol sequences with a xc = 0.003 cutoff for iSNVs and that average pairwise 442

distances was the preferred distance measure. Samples with low virus levels and 443

infections established by multiple virions can give rise to misleading levels of virus 444

diversity. Algorithms based on NGS diversity in combinations with other biomarkers 445

may prove very useful. 446

Supporting information 447

S1 Fig. Diversity in gag as a function of the time since infection (TI). 448

(Diversity measure: average pairwise distance, xc = 0.003.) 449

S2 Fig. Diversity in env as a function of the time since infection (TI). 450

(Diversity measure: average pairwise distance, xc = 0.003.) 451

S3 Fig. Coefficient of determination for different diversity measures, 452

including all sites. (Genetic region: pol.) 453

S4 Fig. Coefficient of determination for average pairwise distance 454

(diversity), by codon position. (Genetic region: pol.) 455

S5 Fig. Mean absolute error as a function of the low-frequency cutoff (xc). 456

Different diversity measures perform very similarly when the cutoff xc is large. Average 457

pairwise distance and entropy outperform fraction of polymorphic sites for low xc. This 458

graph is based on diversity in gag (left) and env (Right). Solid lines correspond to using 459

all sites, dashed - only 3rd codon positions. 460
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S6 Fig. Distribution of slopes (s) and intercepts (t0) (bootstrapped over 461

the patients of the training dataset). (Genetic region: 3rd codon positions in pol, 462

diversity measure: average pairwise distance, xc = 0.003.) 463

S7 Fig. Dependence of the slope and intercept in the cutoff. (Genetic 464

region: 3rd codon positions in pol, diversity measure: average pairwise distance.) 465

S8 Fig. Diversity as a function of the time since infection (TI) and 1st, 466

2nd and 3rd codon positions. Displayed for the training and the validation 467

datasets. (Genetic region: gag, diversity measure: average pairwise distance, 468

xc = 0.003.) 469

S9 Fig. Diversity as a function of the time since infection (TI) and 1st, 470

2nd and 3rd codon positions. Displayed for the training and the validation 471

datasets. (Genetic region: gag, diversity measure: average pairwise distance, 472

xc = 0.003.) 473

S10 Fig. (Left) Distribution of the estimation error. (Right) Estimated 474

time of infection (ETI) versus actual time of infection (TI). Displayed for 475

the training and the validation data sets. (Genetic region: 3rd codon positions in 476

gag, diversity measure: average pairwise distance, xc = 0.003. The encircled outliers are 477

discussed in the text.) 478

S11 Fig. Estimated time of infection (ETI) versus actual time of infection 479

(TI). Displayed for the training and the validation data sets. Legend shows 480

the subtype (top) and transmission route (bottom) for the validation 481

dataset patients. (Genetic region: 3rd codon positions in pol, diversity measure: 482

average pairwise distance, xc = 0.003.) 483

S12 Fig. Estimated time of infection (ETI) versus actual time of infection 484

(TI). Displayed for the training and the validation data sets. Legend shows 485

the number of templates (top) and the dilutions (bottom) for the 486

validation dataset. (Genetic region: 3rd codon positions in pol, diversity measure: 487

average pairwise distance, xc = 0.003.) 488

S1 Appendix Linear fitting procedures 489

S2 Appendix Moving average 490

S1 Table Recommended slope and intercept values depending on the 491

cutoff (Genetic region: 3rd codon positions in pol, diversity measure: average number 492

of polymorphic sites. ain years/diversity; bin years.) 493

S2 Table Recommended slope and intercept values depending on the 494

cutoff. (Genetic region: 3rd codon positions in pol, diversity measure: average site 495

entropy ain years/diversity; bin years.) 496

S3 Table Recommended slope and intercept values depending on the 497

cutoff. (Genetic region: all sites in pol, diversity measure: average pairwise distance. 498

ain years/diversity; bin years.) 499
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S4 Table Recommended slope and intercept values depending on the 500

cutoff. (Genetic region: all sites in pol, diversity measure: average number of 501

polymorphic sites. ain years/diversity; bin years.) 502

S5 Table Recommended slope and intercept values depending on the 503

cutoff. (Genetic region: all sites in pol, diversity measure: average site entropy. ain 504

years/diversity; bin years.) 505

S6 Table Expanded summary of patient characteristics (training dataset). 506

See also S1 Text 507

S7 Table Expanded summary of patient characteristics (validation 508

dataset). 509

S1 Text Supporting text for S6 Table. 510
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Table 2. Recommended slope and intercept values depending on the cutoff.

slope and intercept slope only
cutoff (xc) slope (s)a intercept (t0)b MAEb slope (s)a MAEb

0.00 250.28 -0.08 0.88 247.59 0.86
0.05 297.17 0.27 0.96 321.96 0.99
0.10 350.52 0.50 1.03 386.22 1.05
0.15 407.65 0.75 1.14 490.79 1.18
0.20 484.39 0.79 1.23 556.58 1.29
0.25 551.75 1.02 1.35 701.51 1.44
0.30 692.19 1.20 1.46 850.78 1.61
0.35 780.52 1.56 1.60 1185.82 1.73
0.40 1218.07 1.54 1.69 1685.91 1.86
0.45 1394.26 2.53 1.87 2312.54 2.61

Table notes: Genetic region: 3rd codon positions in pol, diversity measure: average
pairwise distance. ain years/diversity; bin years.
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