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Abstract 

Identifying loci under selection can provide insight into the mechanisms underlying local 

adaptation and inform management decisions for agricultural, natural resources, and 20 

conservation applications. Genotype-environment association (GEA) methods, which identify 

adaptive loci based on associations between genetic data and environmental variables, are 

particularly promising for distinguishing these loci. Univariate statistical methods have 

dominated GEA, despite the high dimensional nature of genomic data sets. Multivariate and 

machine learning methods, which can analyze many loci simultaneously, may be better suited to 25 

these large data sets since they consider how groups of markers covary in response to 

environmental predictors. These methods may also be more effective at detecting important 

adaptive processes, such as selection on standing genetic variation, that result in weak, 

multilocus signatures. Here we evaluate four of these methods, as well as a popular univariate 

approach, using published simulations of multilocus selection. We found that the machine 30 

learning method, Random Forest, performed poorly as a GEA. The univariate approach 

performed better, but had low detection rates for loci under weak selection. Constrained 

ordinations showed a superior combination of low false positive and high true positive rates 

across all levels of selection. These results were robust across demographic history, sampling 

designs, and sample sizes. Although further testing is needed on more complex genetic 35 

architectures, this study indicates that constrained ordinations are an effective means of detecting 

adaptive processes that result in weak, multilocus molecular signatures, providing a powerful 

tool for investigating the genetic basis of local adaptation and improving management actions. 
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Introduction 40 

 Analyzing genome scan data for loci underlying local adaptation has become common 

practice in evolutionary and ecological studies (Hoban et al. 2016). These analyses can provide 

insight into the mechanisms of local adaptation and inform management decisions for 

agricultural, natural resources, and conservation applications. Genotype-environment association 

(GEA) approaches are particularly promising for detecting these loci (Rellstab et al. 2015). 45 

Unlike differentiation outlier methods, which identify loci with strong allele frequency 

differences among populations, GEA approaches identify adaptive loci based on associations 

between genetic data and a set of environmental variables hypothesized to drive selection. 

Benefits of GEA include the option of using individual-based (as opposed to population-based) 

sampling and the ability to make explicit links to the ecology of organisms by including relevant 50 

predictors. The inclusion of predictors can also improve power and allows for the detection of 

selective events that do not produce high genetic differentiation among populations (De Mita et 

al. 2013; de Villemereuil et al. 2014; Rellstab et al. 2015). 

 Univariate statistical methods have dominated GEA since their first appearance (Mitton 

et al. 1977). These methods test one locus and one predictor variable at a time, and include 55 

generalized linear models (e.g. Joost et al. 2007; Stucki et al. 2016), variations on linear mixed 

effects models (e.g. Coop et al. 2010; Frichot et al. 2013; Yoder et al. 2014; Lasky et al. 2014), 

and non-parametric approaches (e.g. partial Mantel, Hancock et al. 2011). While these methods 

perform well, they can produce elevated false positive rates in the absence of correction for 

multiple comparisons. Corrections such as Bonferroni can be overly conservative (potentially 60 

removing true positive detections), while alternative correction methods, such as false discovery 

rate (FDR, Benjamini & Hochberg 1995), rely on an assumption of a null distribution of p-

values, which may often be violated for empirical data sets. While none of these issues should 

discourage the use of univariate methods (though corrections should be chosen carefully, see 

François et al. (2016) for an excellent overview), other analytical approaches may be better 65 

suited to the high dimensionality of modern genomic data sets. 

 In particular, multivariate and machine learning approaches, which analyze many loci 

simultaneously, are well suited to data sets comprising hundreds of individuals sampled at many 

thousands of genetic markers. Compared to univariate methods, these approaches are thought to 

more effectively detect multilocus selection since they consider how groups of markers covary in 70 

response to environmental predictors (Rellstab et al. 2015). This is important because many 

adaptive processes are expected to result in weak, multilocus molecular signatures. These 

processes include selection on standing genetic variation, recent/contemporary selection that has 

not yet led to allele fixation, conditional neutrality, and the quantitative basis of many adaptive 

traits (Yeaman & Whitlock 2011; Le Corre & Kremer 2012; Savolainen et al. 2013; Tiffin & 75 

Ross-Ibarra 2014). Identifying the relevant patterns (e.g. coordinated shifts in allele frequencies 

across many loci) that underlie these adaptive processes is essential to both improving our 

understanding of the genetic basis of local adaptation, and conserving the evolutionary potential 

of species threatened by anthropogenic effects such as habitat fragmentation and climate change 

(Savolainen et al. 2013; Harrisson et al. 2014). While multivariate and machine learning 80 

methods may, in theory, be better suited to detecting these shared patterns of response, they have 
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not yet been tested on common data sets simulating multilocus adaptation, limiting confidence in 

their effectiveness on empirical data.  

Here we evaluate a set of these methods, as well as a popular univariate approach, using 

published simulations of multilocus selection (Lotterhos & Whitlock 2014, 2015). We assess 85 

detection rates across methods using a common rank-based metric, and also present results based 

on cutoffs used in empirical studies. We then evaluate whether explicit correction for population 

structure improves performance. We follow up with a test of two of these methods on their 

ability to detect weak multilocus selection, as well as an assessment of two approaches to 

combining detections across different tests. We find that constrained ordinations maintain the 90 

best balance of true and false positive rates across a range of demographies, sampling designs, 

sample sizes, and selection levels. 

 

Methods 

Statistical approaches to GEA: 95 

Multivariate statistical techniques, including ordinations such as principal components analysis 

(PCA), have been used to analyze genetic data for over fifty years (Cavalli-Sforza 1966). Indirect 

ordinations like PCA (which do not use predictors) use patterns of association within genetic 

data to find orthogonal axes that fully decompose the genetic variance. Constrained ordinations 

extend this analysis by restricting these axes to combinations of supplied predictors (Jombart et 100 

al. 2009; Legendre & Legendre 2012). When used as a GEA, a constrained ordination is 

essentially finding sets of loci that covary with multivariate environmental patterns. By contrast, 

a univariate GEA is testing for single locus relationships with single environmental predictors. 

The use of constrained ordinations in GEA goes back as far as Mulley et al. (1979), with more 

recent applications to genomic data sets in Lasky et al. (2012) and Forester et al. (2016). In this 105 

analysis, we test two promising constrained ordinations, redundancy analysis (RDA) and 

distance-based redundancy analysis (dbRDA). We also test an extension of RDA that uses a 

preliminary step of summarizing the genetic data into sets of covarying markers (Bourret et al. 

2014). We do not include canonical correspondence analysis, a constrained ordination that is best 

suited to modeling unimodal responses, although this method has been used to analyze 110 

microsatellite data sets (e.g. Angers et al. 1999; Grivet et al. 2008). 

 Random Forest (RF) is a machine learning algorithm that is designed to identify structure 

in complex data and generate accurate predictive models. It is based on classification and 

regression trees (CART), which recursively partition data into response groups based on splits in 

predictors variables. CART models can capture interactions, contingencies, and nonlinear 115 

relationships among variables, differentiating them from linear models (De’ath & Fabricius 

2000). RF reduces some of the problems associated with CART models (e.g. overfitting and 

instability) by building a “forest” of classification or regression trees with two layers of 

stochasticity: random bootstrap sampling of the data, and random subsetting of predictors at each 

node (Breiman 2001). This provides a built-in assessment of predictive accuracy (based on data 120 

left out of the bootstrap sample) and variable importance (based on the change in accuracy when 

variables are permuted). For GEA, variable importance is the focal statistic, where the predictor 

variables used at each split in the tree are molecular markers, and the goal is to sort individuals 
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into groups based on an environmental category (classification) or to predict an environmental 

response (regression). Markers with high variable importance are best able to sort individuals or 125 

predict responses. RF has been used in a number of recent GEA and GWAS studies (e.g. 

Holliday et al. 2012; Brieuc et al. 2015; Pavey et al. 2015; Laporte et al. 2016), but has not yet 

been tested in a GEA simulation framework. Finally, we compare these multivariate and 

machine-learning methods to a popular univariate method, latent factor mixed models (LFMM, 

Frichot et al. 2013). 130 

 

Constrained ordinations: 

We tested RDA and dbRDA as implemented by Forester et al. (2016). RDA is a two-step process 

in which genetic and environmental data are analyzed using multivariate linear regression, 

producing a matrix of fitted values. Then PCA of the fitted values is used to produce canonical 135 

axes, which are linear combinations of the predictors. We scaled genotypes for RDA. Distance-

based redundancy analysis is similar to RDA but allows for the use of non-Euclidian 

dissimilarity indices. Whereas RDA can be loosely considered as a PCA constrained by 

predictors, dbRDA is analogous to a constrained principal coordinate analysis (PCoA, or a PCA 

on a non-Euclidean dissimilarity matrix). For dbRDA, we calculated the distance matrix using 140 

Bray-Curtis dissimilarity (Bray & Curtis 1957), which quantifies the dissimilarity among 

individuals based on their multilocus genotypes. For both methods, SNPs are modeled as a 

function of predictor variables, producing as many constrained axes as predictors. We identified 

outlier loci on each constrained ordination axis based on their “locus score”, which represent the 

coordinates/loading of each locus in the ordination space. We use rda for RDA and capscale for 145 

dbRDA in the vegan, v. 2.3-5 package (Oksanen et al. 2013) in R v. 3.2.3 (R Development Core 

Team 2015) for this and all subsequent analyses. 

 

Redundancy analysis of components: 

This method, described by Bourret et al. (2014), differs from the approach described above in 150 

using a preliminary step that summarizes the genotypes into sets of covarying markers, which are 

then used as the response in RDA. The idea is to identify from these sets of covarying loci only 

the groups that are most strongly correlated with environmental predictors. We began by 

ordinating SNPs into principal components (PCs) using prcomp in R on the scaled data, 

producing as many axes as individuals. Following Bourret et al. (2014), we used parallel analysis 155 

(Horn 1965) to determine how many PCs to retain. Parallel analysis is a Monte Carlo approach 

in which the eigenvalues of the observed components are compared to eigenvalues from 

simulated data sets that have the same size as the original data. We used 1,000 random data sets 

and retained components with eigenvalues greater than the 99th percentile of the eigenvalues of 

the simulated data, using the hornpa package, v. 1.0 (Huang 2015).  160 

Next, we applied a varimax rotation to the PC axes, which maximizes the correlation 

between the axes and the original variables (in this case, the SNPs). Note that once a rotation is 

applied to the PC axes, they are no longer “principal” components (i.e. axes associated with an 

eigenvalue/variance), but simply components. We then used the retained components as 

dependent variables in RDA, with environmental variables used as predictors. Next, components 165 

that were significantly correlated with at least one of the two constrained axes were retained. 
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Significance was based on a cutoff (alpha = 0.05) corrected for sample sizes using a Fisher 

transformation as in Bourret et al. (2014). Finally, SNPs were correlated with these retained 

components to determine outliers. We call this approach redundancy analysis of components 

(cRDA). 170 

 

Random Forest: 

The Random Forest approach implemented here builds off of work by Goldstein et al. (2010), 

Holliday et al. (2012), and Brieuc et al. (2015). This three-step approach is implemented 

separately for each predictor variable. The variables used in this study were continuous, so RF 175 

models were built as regression trees. For categorical predictors (e.g. soil type) classification 

trees would be used, which require a different parameterization (important recommendations for 

this case are provided in Goldstein et al. 2010). 

First, we tuned the two main RF parameters, the number of trees (ntrees) and the number 

of predictors sampled per node (mtry). We tested a range of values for ntrees in a subset of the 180 

simulations, and found that 10,000 trees were sufficient to stabilize variable importance (note 

that variable importance requires a larger number of trees for convergence than error rates, 

Goldstein et al. 2010). We used the default value of mtry for regression (number of predictors/3, 

equivalent to ~3,330 SNPs in this case) after checking that increasing mtry did not substantially 

change variable importance or the percent variance explained. In a GEA/GWAS context, larger 185 

values of mtry reduce error rates, improve variable importance estimates, and lead to greater 

model stability (Goldstein et al. 2010). 

Because RF is a stochastic algorithm, it is best to use multiple runs, particularly when 

variable importance is the parameter of interest (Goldstein et al. 2010). We begin by building 

three full RF models using all SNPs as predictors, saving variable importance as mean decrease 190 

in accuracy for each model. Next, we sampled variable importance from each run with a range of 

cutoffs, pulling the most important 0.5%, 1.0%, 1.5%, and 2.0% of loci. These values correspond 

to approximately 50/100/150/200 loci that have the highest variable importance. For each cutoff, 

we then created three additional RF models, using the average percent variance explained across 

runs to determine the best starting number of important loci for step 3. This step removes clearly 195 

unimportant loci from further consideration (i.e. “sparsity pruning”, Goldstein et al. 2010). 

Third, we doubled the best starting number of loci from step 2; this is meant to 

accommodate loci that may have low marginal effects (Goldstein et al. 2010). We then built 

three RF models with these loci, and recorded the mean variance explained. We removed the 

least important locus in each model, and recalculated the RF models and mean variance 200 

explained. This procedure continues until two loci remain. The set of loci that explain the most 

variance are the final candidates. Candidates are then combined across runs to identify outliers. 

Locus rankings used average variable importance for each locus across the three runs.  

 

Latent factor mixed models: 205 

Latent factor mixed models are hierarchical Bayesian mixed models that account for population 

structure using latent factors (K), which are similar to principal components (Frichot et al. 2013). 

We tested values of K ranging from one to 25 using a sparse nonnegative matrix factorization 
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algorithm (Frichot et al. 2014), implemented as function snmf in the package LEA, v. 1.2.0 

(Frichot & François 2015). We plotted the cross-entropy values and selected K based on the 210 

inflection point in these plots; when the inflection point was not clear, we used the value where 

additional cross-entropy loss was minimal. 

We parameterized LFMM models with this best estimate of K, and ran each model ten 

times with 5,000 iterations and a burnin of 2,500. We used the median of the squared z-scores to 

rank loci and calculate a genomic inflation factor (GIF) to assess model fit (Frichot & François 215 

2015; François et al. 2016). The GIF is used to correct for inflation of z-scores at each locus, 

which can occur when population structure or other confounding factors are not sufficiently 

accounted for in the model (François et al. 2016). The GIF is calculated by dividing the median 

of the squared z-scores by the median of the chi-squared distribution. We used the LEA and 

qvalue, v. 2.2.2 (Storey et al. 2015) packages in R. Full K and GIF results are presented in Table 220 

S1. 

 

Correction for population structure: 

To determine if explicit modeling of population structure improved the performance of 

ordinations and RF, we repeated those analyses after accounting for population structure using 225 

spatial eigenvectors (for RDA, dbRDA, and cRDA) and regression with ancestry coefficients 

(for RF). The spatial eigenvector procedure uses Moran eigenvector maps (MEM) as spatial 

predictors in partial RDA and dbRDA analysis. MEMs provide a decomposition of the spatial 

relationships among sampled locations based on a spatial weighting matrix (Dray et al. 2006). 

We used spatial filtering to determine which MEMs to include in the partial analyses (Dray et al. 230 

2012). Briefly, this procedure begins by applying a principal coordinate analysis (PCoA) to the 

genetic distance matrix, which we calculated using Bray-Curtis dissimilarity. We used the 

broken-stick criterion (Legendre & Legendre 2012) to determine how many genetic PCoA axes 

to retain. Retained axes were used as the response in a full RDA, where the predictors included 

all MEMs. Forward selection (Blanchet et al. 2008) was used to reduce the number of MEMs, 235 

using the full RDA adjusted R2 statistic as the threshold. Finally, retained MEMs that were 

significantly correlated with environmental predictors were removed (alpha = 0.05/number of 

MEMs). The final set of significant MEMs were used as conditioning variables in RDA and 

dbRDA. We used the spdep, v. 0.6-9 (Bivand et al. 2013) and adespatial, v. 0.0-7 (Dray et al. 

2016) packages to calculate MEMs. 240 

For RF, we followed Brieuc et al. (2015) and used individual ancestry coefficients to 

correct both allele counts and environmental variables. We used function snmf to estimate 

individual ancestry coefficients, running five replicates using the best estimate of K, and 

extracting individual ancestry coefficients from the replicate with the lowest cross-entropy. For 

genotypes, we used the residuals from logistic regression of SNP counts against ancestry 245 

coefficients. For environmental variables, we used the residuals from linear models of the 

variables against ancestry coefficients. These residuals were used as inputs into the RF 

framework described above. 

 

 250 
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Simulations: 

We used a subset of simulations published by Lotterhos & Whitlock (2014, 2015). Briefly, four 

demographic histories are represented in these data, each with three replicated environmental 

surfaces (Fig. S1): an equilibrium island model (IM), equilibrium isolation by distance (IBD), 

and nonequilibrium isolation by distance with expansion from one (1R) or two (2R) refugia. In 255 

all cases, demography was independent of selection strength, which is analogous to simulating 

soft selection (Lotterhos & Whitlock 2014). Haploid, biallelic SNPs were simulated 

independently, with 9,900 neutral loci and 100 under selection. The mean of the 

environmental/habitat parameter had a selection coefficient equal to zero and represented the 

background across which selective habitat was patchily distributed (Fig. S1). Selection 260 

coefficients represent a proportional increase in fitness of alleles in response to habitat, where 

selection is increasingly positive as the environmental value increases from the mean, and 

increasingly negative as the value decreases from the mean (Lotterhos & Whitlock 2014, Fig. 

S1). This landscape emulates a weak cline, with a north-south trend in the selection surface. Of 

the 100 adaptive loci, most were under weak selection. For the IBD scenarios, selection 265 

coefficients were 0.001 for 40 loci, 0.005 for 30 loci, 0.01 for 20 loci, and 0.1 for 10 loci. For the 

1R, 2R, and IM scenario, selection coefficients were 0.005 for 50 loci, 0.01 for 33 loci, and 0.1 

for 17 loci. Note that realized selection varied across demographies, so results across 

demographic histories are not directly comparable (Lotterhos & Whitlock 2015). 

 We used the following sampling strategies and sample sizes from Lotterhos & Whitlock 270 

(2015): random, paired, and transect strategies, with 90 demes sampled, and 6 or 20 individuals 

sampled per deme. Overall, 72 simulations were used for testing. We assessed trend in neutral 

loci using linear models of allele frequencies within demes as a function of coordinates. We 

evaluated the strength of local adaptation using linear models of allele frequencies within demes 

as a function of environment. 275 

The original simulation data assigned individual genotypes in a non-random fashion 

within populations. Because we were conducting individual-based analyses, we randomized 

allele counts for SNPs among individuals, within populations (K. Lotterhos, pers. comm.). We 

prepared two environmental predictors: habitat, which imposed a continuous selective gradient 

on the non-neutral loci, and the value for the x-coordinate of each population. We included the x-280 

coordinate as a spurious predictor, analogous to an environmental variable hypothesized to drive 

selection that covaries with longitude. We scaled both variables prior to use. We did not use the 

y-coordinate as a second spurious predictor because it was highly correlated with habitat (r > 0.7) 

in the majority of simulations (Table S2). 

 285 

Evaluation statistics: 

In order to equitably compare the output from these methods, we used locus rankings to calculate 

the number of correct detections out of the number of selected loci in each simulation (i.e. a 

common cutoff for all methods). We ranked loci based on the relevant (scaled) test statistics 

across both predictors, i.e. loadings and correlations for ordinations, variable importance for RF, 290 

and z-scores for LFMM. For example, in a simulation with 100 loci under selection and 90 true 
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positive detections in the top 100 ranked loci, the true positive rate (TPR) would be 90/100, 

while the false positive rate (FPR) would be 10/100.  

Since cutoffs (e.g. thresholds for statistical significance) are frequently used in empirical 

analyses for null hypothesis testing, we also provide detection results for commonly used cutoffs. 295 

We calculated a cutoff TPR as the number of correct positive detections out of the number 

possible. The cutoff FPR was the number of incorrect positive detections out of 9900 possible. 

For the main text, we present results from the “best” cutoff for each method; full results for all 

cutoffs tested are presented in the Supplemental Information. For constrained ordinations (RDA 

and dbRDA) we identified outliers as SNPs with a locus score +/- 2.5 and 3 SD from the mean 300 

score of each constrained axis. For cRDA, we used cutoffs for SNP-component correlations of 

alpha = 0.05, 0.01, and 0.001, corrected for sample sizes using a Fisher transformation as in 

Bourret et al. (2014). For LFMM, we compared two Bonferroni-corrected cutoffs (0.05 and 0.01) 

and a FDR cutoff of 0.1. 

For both ranked and cutoff evaluation statistics, we calculated TPRs separately for 305 

different selection coefficients. In all cases, detection rates were averaged across the three 

replicate environments. Note that the number of selected loci ranged from 89-100, since some 

loci were removed by the original simulation authors due to low heterozygosity (Lotterhos & 

Whitlock 2015). 

 310 

Weak selection: 

We compared RDA and cRDA for their ability to detect signals of weak selection (s = 0.005 and 

s = 0.001). All tests were performed as described above, with no additional corrections for 

population structure, after removing loci under strong (s = 0.1) and moderate (s = 0.01) selection 

from the simulation data sets. The number of loci under selection in these cases varied from 43 to 315 

76.  

 

Results 

Population corrections: 

We found that explicitly accounting for population structure did not improve the performance of 320 

ordinations and was detrimental to the performance of RF. Spatial filtering had very little to no 

impact on TPRs and FPRs of ordination methods (Table S3 and S4). No corrections were applied 

to IM scenarios for ordination methods, due to low spatial structure (i.e. no PCoA axes were 

retained based on the broken-stick criterion). Regression of ancestry coefficients on RF inputs 

dramatically reduced TPRs (Table S3 and S4). All results presented here do not use population 325 

corrections; full results for runs with correction are presented in Table S3 and S4. 

 

Ranked results: 

The three ordinations performed comparably in terms of locus rankings, and tended to 

outperform RF and LFMM (Fig. 1). Ordinations performed best in IBD, 1R, and 2R 330 

demographies. Ordination results were relatively insensitive to sample size and sampling design 
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(with the IM random sample being the exception, with lower TPRs). Within ordination 

techniques, RDA and cRDA had slightly higher detection rates compared to dbRDA. RF had 

very low TPRs across all simulations. LFMM was more sensitive than ordinations to 

demography, sampling design, and sample size. Detection rates for LFMM were better with 335 

smaller sample sizes (6 individuals/deme), and generally higher for the paired sampling design. 

 All methods performed well on loci under strong selection, with all methods but RF 

detecting 100% of these loci (Figs. 2 and S2). Detection rates for loci under moderate and weak 

selection were comparable across ordination methods, with RDA and cRDA having the overall 

highest detection. RF had very low detection rates for moderate and weakly selected loci, while 340 

LFMM had lower detection rates than ordinations in non-equilibrium demographies. For 

ordinations, selection level detection rates were mostly comparable across sample sizes, except 

IM, where detection was better with the larger sample size. RF and LFMM had better detection 

with smaller sample sizes. 

 345 

Cutoff results: 

The best performing cutoffs were: RDA/dbRDA, +/- 3 SD; cRDA, alpha = 0.001; and LFMM, 

FDR = 0.1. Full cutoff results are presented in the Supplementary Information (Fig. S5, S6, and 

S7). Cutoff TPRs (Fig. 3) generally reflected ranked TPRs (Fig. 1), with ordinations performing 

best in most cases, RF having low detection rates overall, and LFMM performing well depending 350 

on the scenario. FPRs were low for all methods except cRDA (IBD, 1R, and 2R demographies). 

Selection level detection rates using cutoffs were generally higher than ranked results for cRDA, 

RF, and LFMM (Fig. S3 and S4). 

 

Weak selection: 355 

We compared RDA and cRDA for their ability to detect only weak loci in the simulations (Fig. 

4). Using locus rankings, RDA had more consistent performance across scenarios, and had 

overall higher TPRs and lower FPRs compared with cRDA. cRDA had low detection rates in the 

1R demography with the larger sample size, and in the IM demography, regardless of sample 

size (no detections at all with 6 individuals/deme). Using cutoffs, RDA had more consistent 360 

performance across all scenarios. Detection was better using cRDA in the 1R demography when 

sampling 6 individuals per deme, but was much worse when sampling 20 individuals per deme. 

Overall, cRDA had the same detection problems noted with the ranked results, in addition to 

high FPRs under 1R, 2R, and IBD demographies. 

 365 

Combining detections: 

We compared the univariate LFMM and multivariate RDA cutoff results for overlap and 

differences in their detections (Fig. 5). The methods had greater commonality in the loci they 

correctly identified as TPs than in the loci they incorrectly identified (FPs), indicating that 

mutual detections could be an effective way of reducing FPRs. In some cases, however, RDA 370 

detected a large number of selected loci that were not identified by LFMM (Fig. 5, second 

column), indicating that power would be lost when using only overlapping results. Significant 
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TP contributions from LFMM were found only in the IM demography. Overall, LFMM had 

greater numbers of unique FPs compared to RDA. Few unique TP detections and many unique 

FP detections limit the utility of combining LFMM and RDA. 375 

 

Discussion 

Multivariate and machine learning genotype-environment association (GEA) methods 

have been noted for their ability to detect multilocus selection (Rellstab et al. 2015; Hoban et al. 

2016), although there has been no controlled assessment of the effectiveness of these methods in 380 

detecting multilocus selection to date. Since these approaches are increasingly being used in 

empirical analyses (e.g. Bourret et al. 2014; Brieuc et al. 2015; Pavey et al. 2015; Hecht et al. 

2015; Laporte et al. 2016; Brauer et al. 2016), it is important that these claims are evaluated to 

ensure that the most effective GEA methods are being used, and that their results are being 

appropriately interpreted. 385 

Here we compare a suite of GEA approaches in a simulation framework to assess their 

ability to correctly detect multilocus selection under different demographic and sampling 

scenarios. We found that constrained ordinations had the best overall performance across the 

demographies, sampling designs, sample sizes, and selection levels tested here. The univariate 

LFMM method also performed well, though power was scenario-dependent. Random Forest, by 390 

contrast, had very low detection rates overall. In the following sections we address these methods 

by category and discuss reasons for method performance and provide suggestions for their use on 

empirical data sets. 

 

Constrained ordinations: 395 

The three constrained ordination methods all performed well (Fig. 1 and 2). They were relatively 

insensitive to sample size (6 vs 20 individuals sampled per deme), in agreement with Xuereb et 

al. (In review) who found that reducing sampling from 500 to 100 individuals had only moderate 

effects on TPRs for RDA and dbRDA and no effect on FPRs. The one exception was the IM 

demography, where larger sample sizes consistently improved TPRs, as previously noted by De 400 

Mita et al. (2013) and Lotterhos & Whitlock (2015) for univariate GEAs. Power was lowest in 

the IM demography, which is typified by a lack of spatial autocorrelation in allele frequencies 

and a reduced signal of local adaptation (Table S2), making detection more difficult. Detection 

rates were highest for IBD, followed by the 2R and 1R demographies. All three methods were 

relatively insensitive to sampling design, with transects performing slightly better in 1R and 405 

random sampling performing worst in IM. Otherwise results were consistent across designs, in 

contrast to the univariate GEAs tested by Lotterhos and Whitlock (2015), most of which had 

higher power with the paired sampling strategy. Ordinations are likely less sensitive to sampling 

design since they take advantage of covarying signals of selection, making them more robust to 

sampling that does not maximize environmental differentiation (e.g. random or transect designs). 410 

All methods performed similarly in terms of detection rates across selection strengths. As 

expected, weak selection was more difficult to detect than moderate or strong selection, except 

for IBD, where detection levels were high regardless of selection (Fig. 2, and S2-S4). 
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High TPRs were maintained when using cutoffs for all three ordination methods. False 

positives were universally low for RDA and dbRDA. By contrast, cRDA showed high FPRs for 415 

all demographies except IM, tempering its slightly higher TPRs. These higher FPRs are a 

consequence of using component axes as predictors. Across all scenarios and sample sizes, 

cRDA detected component 1, 2, or both as significantly associated with the constrained RDA 

axes (Table S5). Most selected loci load on these components (keeping TPRs high), but neutral 

markers also load on these axes, especially in cases where there are strong trends in neutral loci 420 

(i.e. maximum trends in neutral markers reflect FPRs for cRDA, Table S2, Fig. 3). Given these 

results, we hypothesized that it might be challenging for cRDA to detect weak selection in the 

absence of a covarying signal from loci with stronger selection coefficients. If the selection 

signature is weak, it may load on a lower-level component axis (i.e. an axis that explains less of 

the genetic variance), or it may load on higher-level axes, but fail to be significantly associated 425 

with the constrained axes. Note that although cRDA contains a step to reduce the number of 

components, parallel analysis resulted in retention of all axes in every simulation tested here 

(Table S5). This meant that cRDA could search for the signal of selection across all possible 

components. 

When tested on simulations with loci under weak selection only, RDA, which uses the 430 

genotype matrix directly, maintained similar detection patterns as in the full data set, indicating 

that selection signals can be detected with this method in the absence of loci under strong 

selection (Fig. 4). Using a cutoff, RDA maintained very low FPRs across all simulation scenarios 

and sample sizes. By contrast, cRDA detection was more variable, ranging from comparable 

detection rates with the full data set, to no/poor detections under certain demographies and 435 

sample sizes (Fig. 4). In these latter cases, poor performance is reflected in the component axes 

detected as significant (Table S5); instead of identifying the signal in the first few axes, a 

variable set of lower-variance axes are detected (or none are detected at all). This indicates that 

the method is not able to “find” the selected signal in the component axes in cases where that 

signal is not driven by strong selection. This result, in addition to higher FPRs for cRDA, builds 440 

a case for using the genotype matrix directly with a constrained ordination such as RDA or 

dbRDA, as opposed to a preliminary step of data conversion with PCA. 

RDA plots illustrate how loci under selection can be distinguished from neutral loci using 

constrained ordinations (Fig. 6). RDA shows a negative relationship between habitat and the 

selected loci, and is clearly able to distinguish the signal of selection from the spurious x-445 

coordinate predictor. Depending on where the cutoff is placed (i.e. how many deviations from 

the mean score), false negatives can be seen in the IM, 1R, and 2R demographies as the pink 

selected loci that are not well-differentiated from the “cloud” of gray neutral loci. This is 

particularly noticeable in the IM demography, where many of the loci under weak selection do 

not differentiate from the neutral signal. Data from natural systems likely lie somewhere among 450 

these demographic extremes, and successful differentiation in the presence of IBD and non-

equilibrium conditions indicate that ordinations should work well across a range of natural 

systems. 

Finally, our results suggest that additional correction for population structure is not 

needed for these methods, at least within the range of population structure present here (Table S3 455 

and S4). This indicates that constrained ordinations are effectively accounting for the joint action 
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of selection (modeled on the constrained axes) and demography (residual variance not explained 

by environment that is modeled on the unconstrained axes). Biplots of the first two 

unconstrained (PC) axes (Fig. S9) and screeplots of the variance explained by the first 15 

unconstrained axes (Fig. S10) reflect how demographies with different levels of population 460 

structure are modeled in the unconstrained axes by RDA. Testing these methods in simulation 

scenarios with more significant population structure would be a helpful follow-up to confirm the 

generality of these results. 

 

Random Forest: 465 

Random Forest performed very poorly in detecting loci under moderate and weak selection. 

These results indicate that RF is not a good GEA approach for large genomic data sets. Poor 

performance is caused by the sparsity of the genotype matrix (i.e. most SNPs are not under 

selection), which results in detection that is dominated by strongly selected loci (i.e. loci with 

strong marginal effects, Fig. 2). This issue has been documented in other simulation and 470 

empirical studies (Goldstein et al. 2010; Winham et al. 2012; Wright et al. 2016) and indicates 

that RF is not suited to identifying weak multilocus selection or interaction effects in these cases. 

Empirical studies that have used RF as a GEA have likely identified a subset of loci under strong 

selection, but are unlikely to have identified loci underlying more complex genetic architectures. 

Note that the amount of environmental variance explained by the RF model can be high (i.e. 475 

overall percent variance explained by the detected SNPs), while still failing to identify most of 

the loci under selection (Table S6). Removing strong associations from the genotypic matrix can 

potentially help with the detection of weaker effects (Goldstein et al. 2010), but this approach 

has not been tested on large matrices. Combined with the computational burden of this method 

(taking 10-14 days for the larger data sets), as well as the availability of fast and accurate 480 

alternatives such as RDA (which takes ~3 minutes on the same data), it is clear that RF is not a 

viable option for GEA analysis of genomic data. 

 Random Forest does hold promise for the detection of interaction effects in much smaller 

data sets (e.g. tens of loci, Holliday et al. 2012). However, this is an area of active research, and 

the capacity of RF models in their current form to both capture and identify SNP interactions has 485 

been disputed (Winham et al. 2012; Wright et al. 2016). New modifications of RF models are 

being developed to more effectively identify interaction effects (e.g. Li et al. 2016), but these 

models are computationally demanding and are not designed for large data sets. Overall, 

extensions of RF show potential for identifying more complex genetic architectures, but caution 

is warranted in using them on empirical data prior to rigorous testing on realistic simulation 490 

scenarios. 

 

Latent factor mixed models: 

The univariate LFMM method performed well, especially considering that it does not take 

advantage of covariation in allele frequencies to detect loci. Still, as expected, detection rates 495 

were lower overall for loci under moderate and weak selection when compared with ordinations. 

This is in agreement with LFMM results from de Villemereuil et al. (2014), who also found a 

reduction in power when detecting polygenic selection. Additionally, the performance of LFMM 
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was more dependent on sampling design, sample size, and demography than ordinations. Our 

results clearly demonstrated that Bonferroni corrections are too conservative for LFMM (Fig. 500 

S7), and that FDR-based approaches for multiple testing are much better suited to genomic data 

when the GIF indicates the test is well-calibrated (Table S1).  

 

Should results from different tests be combined? 

A common approach in local adaptation studies is to run multiple tests (GEA only, or a 505 

combination of GEA and differentiation methods) and look for duplicate detections across 

methods. This ad hoc approach is thought to increase confidence in TPRs, while minimizing 

FPRs. The problem with this approach is that it can bias detection toward strong selective sweeps 

to the exclusion of other adaptive mechanisms which may be equally important in shaping 

phenotypic variation (Le Corre & Kremer 2012; François et al. 2016). If the goal is to detect 510 

other forms of selection such as recent selection or selection on standing genetic variation, this 

approach will not be effective since most methods are unlikely to detect these weak signals. 

This issue is illustrated by using two different combinations of RDA and LFMM 

detections: keeping only mutual detections and keeping all detections. Agreement on TPs is high, 

while agreement on FPs is low (Fig. 5 first column). Keeping only loci detected by both RDA 515 

and LFMM may therefore seem to be an effective way to reduce FPRs while maintaining good 

TPRs. However, depending on the scenario, RDA has a large number of true positive detections 

that are unique to that method (Fig. 5, second column). These unique TPs, all of which are under 

moderate and weak selection (Fig. 2), would be discarded using a duplicates-only criterion, 

limiting our inference to those loci with the strongest adaptive signal. This effect was also noted 520 

by Lotterhos & Whitlock (2015) when looking at detection overlap in the methods tested in their 

analysis. Alternatively, keeping all detections from both methods would dramatically increase 

FPRs, while providing very little improvement in TPRs since multiple unique detections by 

LFMM are found only in the IM demography (Fig. 5, third column). 

The decision of whether and how to combine results from different tests will be specific 525 

to the study questions, the tolerance for false negative and false positive detections, and the 

capacity for follow-up analyses on detected markers. For example, if the goal is to detect loci 

with strong effects while keeping false positive rates as low as possible, running multiple GEA 

and/or differentiation-based methods and considering only duplicate detections could be a 

suitable strategy. However, if the goal is to detect selection on standing genetic variation or a 530 

recent selection event, combining detections from multiple tests would be too conservative. In 

this case, the best approach would be to use a single GEA method, such as RDA, that can 

effectively detect covarying signals arising from multilocus selection, while being robust to 

selection strength, sampling design, and sample size. 

 535 

Conclusions and recommendations: 

Random Forest performed very poorly as a GEA method on the simulations tested here. TPRs 

were limited due to strong marginal effects created by the subset of loci under strong selection. 

Still, RF may be useful for follow-up analyses of the genomic architecture of smaller sets of 

candidate loci. However, the effectiveness of RF for identifying interactions and other complex 540 
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genetic architectures is currently disputed, and practitioners should proceed cautiously until new 

extensions of RF are rigorously tested under realistic simulation scenarios. The univariate 

method we tested, LFMM, performed well, but was more sensitive to sampling designs and 

sample sizes than RDA and dbRDA. Additionally, since this method cannot detect covarying 

signals of selection, overall detection of loci under moderate and weak selection was reduced. 545 

We found that constrained ordinations, especially RDA, show a superior combination of 

low FPRs and high TPRs across weak, moderate, and strong multilocus selection. These results 

were robust across the demographic histories, sampling designs, and sample sizes tested here. 

Additionally, RDA outperformed an alternative ordination-based approach, cRDA, especially 

(and importantly) when the multilocus selection signature was completely derived from loci 550 

under weak selection. It is important to note that constrained ordinations require complete data 

sets (no missing values). Fortunately, recent work has indicated that RDA and dbRDA are robust 

to even high levels (50%) of randomly missing data when using simple imputation methods such 

as the mean value across individuals (Xuereb et al. In review). Additionally, RDA and dbRDA 

can be used on both individual and population-based samples. It will be important to continue 555 

testing these promising methods in simulation frameworks that include genetic architectures that 

are more complex than the multilocus selection response modeled here. This includes locus 

interaction effects (i.e. epistasis) and more complex polygenic architectures. However, this study 

indicates that constrained ordinations are an effective means of detecting adaptive processes that 

result in weak, multilocus molecular signatures, providing a powerful tool for investigating the 560 

genetic basis of local adaptation and informing management actions to conserve the evolutionary 

potential of species of agricultural, forestry, fisheries, and conservation concern. 

 

 

 565 
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Figure 1. Average true positive (blue) and false positive (red) rates from five methods (columns) 

using locus rankings (i.e. number of positive detections out of number of loci under selection). 730 

Each method shows results for different sampling strategies (R = random, P = pairs, T = 

transects), demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by 

distance, IM = equilibrium island model), and sample sizes (rows). 
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Figure 2. Average true positive rates for different levels of selection (rows) from five methods 

(columns) using locus rankings and a sample size of 20 individuals per deme. Each method 

shows results for different sampling strategies (R = random, P = pairs, T = transects) and 740 

demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = 

equilibrium island model). Only the IBD demography included very weak selection (s=0.001). 
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 745 

 

Figure 3. Average true positive (blue) and false positive (red) rates from five methods (columns) 

using the best cutoff for each method. Each method shows results for different sampling 

strategies (R = random, P = pairs, T = transects), demographies (1R and 2R = refugial expansion, 

IBD = equilibrium isolation by distance, IM = equilibrium island model), and sample sizes 750 

(rows).  
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 755 

Figure 4. Average true positive (blue) and false positive (red) rates for RDA and cRDA 

(columns) on simulations with weak selection only. The first two columns show results for locus 

rankings, while the third and fourth columns show results for the best cutoff for each method. 

Results are presented for different sampling strategies (R = random, P = pairs, T = transects), 

demographies (1R and 2R = refugial expansion, IBD = equilibrium isolation by distance, IM = 760 

equilibrium island model), and sample sizes (rows).  
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Figure 5. Average counts of true positive (blue) and false positive (red) detections for two 765 

methods, RDA and LFMM. The first column shows the average number of loci detected by both 

methods. The second and third columns show the average number of detections that are unique 

to RDA and LFMM, respectively. Results are presented for different sampling strategies (R = 

random, P = pairs, T = transects), demographies (1R and 2R = refugial expansion, IBD = 

equilibrium isolation by distance, IM = equilibrium island model), and sample sizes (rows). 770 
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Figure 6. Redundancy analysis plots showing loci with point size scaled by their correlation with 

the driving environmental variable (“Habitat”), and correlation of predictor variables with the 775 

constrained RDA axes (arrows). Plots are shown for an equilibrium island model (IM), 

equilibrium isolation by distance model (IBD), and non-equilibrium one- and two- refugial 

expansion models (1R and 2R) for paired sampling (6 individuals/deme) on environmental 

surface “453”. Scaling by correlation with “Xcoord” is provided for comparison in Fig. S8. 
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