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Full title

A mechanistic model of the spatial interaction between blue cones and blue cone

bipolar cells in macaque retina.

Abstract

The spatial positions of blue cones (BC) and blue cone bipolars (BCBP) are positively

correlated in macaque retina (Kouyama & Marshak, 1997): BCs, located in the outer

nuclear layer (ONL), and BCBPs, located in the inner nuclear layer (INL), tend to be

located close to each other in the lateral dimension. They also form separate

homotypic mosaics and, finally, most BCBPs contact only a single BC pedicle. We

present a mechanistic model of the BC-BCBP interaction to account for the

development of these two mosaics and their connections. It assumes that BCs are

immobile and that BCBPs can migrate within the INL due to a compromise between a

dendritic string force and an intrinsic INL friction force. Model parameters were

selected to optimise the fit with observed fields (Kouyama & Marshak, 1997).

Simulated density recovery profiles (DRPs) closely mimic the observed DRPs. In

particular, for each of the five retinal fields studied, the simulated DRP for the

interaction between BCs and BCBPs has a peak at distances less than around 20 µm

and a small dip at distances up to the maximal lateral dendritic length (⇠ 44 µm),

matching the profiles of the real data. We conclude that our mechanistic model is a

candidate for the unknown mechanism that drives the observed interaction between

BCs and BCBPs in macaque retina.

Keywords

Retinal mosaics, Blue cone, Blue cone bipolar, Mechanistic model, Dendritic force.
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Abbreviations

BC Blue Cone

BCBP Blue Cone Bipolar

DRP Density Recovery Profile

INL Inner Nuclear Layer

ONL Outer Nuclear Layer

SD Standard Deviation
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Introduction

Many types of retinal neurons are organised in regularly distributed patterns, called

retinal mosaics. Pioneering quantitative work on retinal mosaics was initiated by

Wässle & Riemann (1978), who found that a selection of retinal cell types (including

cone photoreceptors, horizontal cells and ganglion cells) were organised in mosaic

patterns. To generate such patterns, it is thought that neurons must interact with each

other locally, since a global blueprint of the mosaic would require more information

than could be stored in the progenitor cells. Since Wässle and Riemann reported their

pioneering results, a large number of other empirical studies have identified and

quantified mosaics for various cell types and in various species, reviewed e.g. by

Cook & Chalupa (2000).

In general, the types of developmental interactions between arrays of cells can

be grouped into three categories (Kouyama & Marshak, 1997): (i) interactions

between cells of the same type, (ii) between cells of different type but in the same

layer and (iii) between cells of different type in different layers. The first type of

interaction is called homotypic and the latter two are called heterotypic.

Most studies have focused on homotypic interactions but several studies have

searched for heterotypic interactions between different cell types within the same

layer (Wikler & Rakic, 1991; Curcio et al., 1991; Bumsted et al., 1997; Zhan & Troy,

2000; Eglen et al., 2005; Eglen & Wong, 2008) and between cell types in different layers

(Kouyama & Marshak, 1997; Luo et al., 1999; Ahnelt et al., 2000; Rockhill et al., 2000;

Eglen et al., 2003; Mack, 2007). The general conclusion is that heterotypic interactions

are much less prominent than homotypic interactions. There are, however, notable

exceptions (Kouyama & Marshak, 1997; Ahnelt et al., 2000).

In the macaque retina, BCs in the ONL and BCBPs (a subclass of bipolar cells

which connect exclusively to BCs) in the INL are spatially positively correlated

(Kouyama & Marshak, 1997). So far, this interaction has not been explained

satisfactorily. Our study seeks to fill this gap through the development of a

mechanistic model for the interaction between BCs and BCBPs.
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When developing a model, one needs to decide on the presumptive

mechanism(s) that drive pattern formation. Over the years, various competing

explanations of retinal mosaics have been suggested; for reviews see Cook & Chalupa

(2000); Eglen & Galli-Resta (2006). In brief, the suggested mechanisms are (i) lateral

inhibition of cell fate (ii) cell death (iii) lateral migration and (iv) dendritic

interactions. The present study argues in favour of the latter two by showing that in

the case of the macaque retina, BCBP migration induced by dendritic interactions

between BCs and BCBPs is sufficient to reproduce the observed positive spatial

correlation.

Another characteristic of the model developed here is that it is in accordance

with the following biological facts about BCs and BCBPs. First, BCs are packed

densely in the ONL (Bumsted et al., 1997) and their axons and pedicles have been

shown to be immobile (Ahnelt & Kolb, 2000). Hence, BCs have been assumed to be

fixed. Second, BCBPs tend to contact fewer cones than diffuse bipolars and a large

proportion of them make only one connection (Kouyama & Marshak, 1992; Herr et al.,

2003).

Assuming that the dendrites exert a string-like force on the BC pedicles and the

BCBPs, we speculated that the observed positive correlation could primarily be

caused by migration of those BCBPs with only one dendritic connection to BC

pedicles. The mechanism is remarkably simple: if there is a force between two bodies

and the two bodies are confined to parallel but separate layers, then this force will

tend to reposition the bodies such that the lateral distance between the bodies is

reduced. By lateral distance we mean the distance as measured when cells are

projected onto a plane parallel with the retinal layers. Lateral distance therefore

disregards the radial displacement of cells.

In the retina, the BCBPs cannot migrate freely, so the model should not imply

perfect radial alignment of BCs and single dendrite BCBPs. The constraints on BCBP

migration are assumed to be equivalent to a friction force in the INL, and we have

therefore incorporated friction in the model.
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According to the ideas sketched out above, we have developed a mechanistic

string and friction force model for the interaction between BCs and BCBPs in

macaque retina. Using this model, patterns of BCs and BCBPs were generated using

dimensions and cell numbers identical to the observations by Kouyama & Marshak

(1997). The results show that the devised model is capable of reproducing the

empirically observed spatial correlation pattern between BCs and BCBPs.

Methods

Data sets

Real data fields were provided by Kouyama & Marshak (1997). The data consist of the

spatial positions of BCs and BCBPs in five midperipheral retinal fields (named here

F1–F5) from the same monkey. The data were obtained using a double labelling

procedure as described by Kouyama & Marshak (1992). The fields vary in BC density

(274–470 mm�2) and BCBP density (544–940 mm�2), with F4 having the highest BC

density and F1 having the highest BCBP density. Details of the fields are provided in

Table 1, see also Table 1 in Kouyama & Marshak (1997). When it comes to testing the

mechanistic model, it is a clear advantage that there is variation among the five fields,

since this implies that the model will be applied to five different scenarios.

Modelling blue cones and blue cone bipolars

The model developed in this paper is divided into five steps, which correspond to five

postulated phases in the development of the BC and BCBP arrays. (i) Generation of

undifferentiated cones, (ii) differentiation of BCs, (iii) generation of BCBPs, (iv)

formation of synaptic connections between BCBP dendrites and BC pedicles and (v)

lateral migration of BCBPs due to a compromise between the dendritic string force

and the INL friction force. Note that nothing will be assumed about the relative

timing of phase (i)/(ii) and (iii), although it is likely that cones differentiate before

bipolar cells (Rapaport, 2006).
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The description below of the five steps corresponds to the simulation of one

generic version of these fields. The size of the simulated fields and the number of BCs

and BCBPs in each of these mimic the real data. This implies that the simulated field

densities are almost identical to the real densities. The minor differences are caused

by a slightly different definition of field size compared with Kouyama & Marshak

(1997). Finally, steps 2–5 of the model were repeated N = 99 times in order to reduce

the uncertainty in the results caused by random sampling. We have divided the

parameters of the model into two; those that are fixed by the observed data (Table 1),

and those that are free (Table 2).

Step 1, generation of cones

A set of nBC/a undifferentiated cones were generated by drawing points from a

bivariate uniform distribution on the area of the field. Cones were subjected to a

dcone = 12 µm exclusion zone. This avoids physical overlap between BCs, which have

a diameter of around 10 µm (Kouyama & Marshak, 1992) and the pedicles of which lie

approximately in the same plane (Kolb et al., 1997). Since cones are relatively densely

packed (Bumsted et al., 1997) there is only moderate scope for randomness, so the

bias introduced by reusing the same set of cones in each of the N = 99 simulations is

likely to be negligible. Thus, for simplicity, the same set of undifferentiated cones was

used in all N = 99 simulations. From this point onwards the cones do not move. This

assumption is supported by the observation that the rods and cones in the

photoreceptor layer are densely packed (Bumsted et al., 1997) and also by a study

which shows that the axons and pedicles of BCs do not move (Ahnelt et al., 2000).

Step 2, differentiation of blue cones

In mammals, BC opsin is expressed prior to green and red cone opsin (macaque

(Bumsted et al., 1997), human (Xiao & Hendrickson, 2000), rabbit and rat (Szél et al.,

1994), gerbil and mouse (Szél et al., 1993)). Therefore, BC differentiation was

modelled as a process where a fraction of undifferentiated cones differentiate into
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BCs. According to Bumsted et al. (1997) a fraction a = 10 % of cones in the macaque

are BCs. In our model, this fraction of spatially fixed cones thus differentiates into nBC

BCs under the constraint that each BC has an individual exclusion zone drawn from a

truncated Gaussian with mean µBC, standard deviation (SD) sBC and truncated below

at dmin
BC . At this stage, a lattice of cones, some of which are BCs, has been generated.

An example lattice is shown in Figure 1.

[Figure 1 about here.]

Step 3, generation of blue cone bipolars

The nBCBP bipolar cells were given an initial (x, y) location in the same way as the

undifferentiated cones (step 1), with the only exception being that each BCBP was

assigned an individual exclusion zone drawn from a truncated Gaussian with mean

µBCBP, SD sBCBP and truncated below at dmin
BCBP. As the INL is much deeper than the

diameter of a single BCBP, BCBPs were also given a depth within the INL according

to observations in Kouyama & Marshak (1992). Specifically, depths were drawn from

a Gaussian distribution with mean 1
3 dINL, where dINL is the depth of the INL, and SD

sv = 0.11dINL. Values for dINL were estimated by using the information about dINL at

various distances from the fovea in Figure 2 of Kouyama & Marshak (1992) and

comparing with the distances from the fovea of the five fields (given in Table 1 of

Kouyama & Marshak, 1997). The distance between the INL-OPL interface and the BC

pedicles, dgap, is approximately 10 µm (estimated from Figure 2 of Kouyama &

Marshak, 1992); hence, the vertical distance dv,i between the plane of BC pedicles and

BCBPi was drawn from a Gaussian distribution with mean µv = dgap + 1
3 dINL and SD

sv = 0.11 dINL. See Figure 2 for a diagram indicating these depth variables. The space

between the INL-OPL interface and the BC pedicles is void of somata.
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Step 4, formation of synaptic contacts between blue cones and blue

cone bipolars

Information about BCBP dendrites was used in the modelling of the synaptic contacts

between BCs and BCBPs. Kouyama & Marshak (1992) reported that, on average, a

macaque BCBP makes 1.2 synaptic contacts with BCs (this number is called the

convergence), whereas BCs make 1.8 contacts with BCBPs (this number is called the

divergence). Also, almost 70 % of all BCBPs make synaptic connections to only one BC.

Less than 30 % make more than one connection. In our work, we assumed that no

BCBP can make more than one contact. Furthermore, following the observation in

Kouyama & Marshak (1992) that no dendrite is longer than 50 µm, we assumed that

BCBPs, with a lateral distance of more than lmax = 44 µm from the nearest BC, do not

form contacts. (This assumes that the mean depth of a BCBP cell is 23.3 µm from the

BC pedicles, see step 3, and thus l2
max = (50 µm)2 � (23.3 µm)2 ⇡ (44 µm)2.) Under

these assumptions, each BCBP was connected to the nearest BC. Finally, and also

following an observation in Kouyama & Marshak (1992), BCs were restricted to have

a maximum of four connections to BCBPs. (If during this stage a BC had more than

four connections, connections were removed randomly until it had four connections.)

Step 5, lateral migration of blue cone bipolars

At this stage, BCBPs have formed connections to BCs and now face two opposing

forces: (i) the dendritic string force and (ii) a friction force which resists migration in

the INL. BCBPs are assumed to migrate laterally as a compromise between these two

forces. The assumed physical situation is sketched in Figure 2.

[Figure 2 about here.]

As BCBPs are located at various depths within the INL, we assumed that if a

BCBP is located in a way such that another BCBP can potentially be positioned

radially towards the INL-OPL interface relative to this BCBP, then it cannot move.

Therefore, a BCBP cell can move laterally only if it is within a distance of
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3 · rBCBP = 12 µm from the the INL-OPL interface. (The radius of a BCBP soma is

estimated to be rBCBP = 4 µm (Kouyama & Marshak, 1992)). This implies that in the

case of dINL = 40 µm, 38 % of BCBPs have the potential to migrate (since

P(X < 12) = 0.38, where X ⇠ N
⇣

40
3 , 0.11 · 40

⌘
). By restricting the number of BCBPs

which can migrate, the output correlation between BCs and BCBPs is effectively

reduced.

Assuming that BCBPi can migrate laterally (i.e. dv,i < dgap + 3 · rBCBP), the

amount of movement is a trade-off between the dendritic string force Fs,i (which

depends on the vertical distance dv,i) and the friction force F f ,i. We assumed there is

no difference between static and dynamic friction forces, and that the friction force

F f ,i on BCBPi is velocity independent and directed against the direction of migration.

Finally, it was assumed that dendrites adapt during migration, such that the dendrites

are always taut.

The postmigrational equilibrium position of a BCBP can be derived by writing

the equation of motion for the system and finding the steady state (where acceleration

and velocity are zero). The derivation is given in the Supplementary material, section

1; the result is:

l⇤i =

2F( f /s),i

q
l2
0,i + (dv,i)2 �

✓⇣
F( f /s),i

⌘2
+ 1
◆

l0,i

1 �
⇣

F( f /s),i

⌘2 , (1)

where l⇤i denotes the postmigrational lateral position of BCBPi relative to the BC

pedicle, l0,i denotes the initial lateral distance between BCBPi and the BC pedicle it

connects to, dv,i denotes the vertical distance, and F( f /s),i ⌘ Ff ,i/Fs,i denotes the

relative friction-to-string force. The postmigrational position depends only on the

ratio between the friction and the string force F( f /s) and not on their absolute sizes.

Given that we have no a priori information about the values of these forces, it is an

advantage that we have to deal with only one free parameter since it makes the model

more parsimonious.

In the simulations, each BCBP was assigned a relative force F( f /s),i, drawn from
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a Gaussian distribution with mean µ f /s and SD sf /s = 0.1. Once l⇤i was calculated for

each BCBPi that could migrate, the cells were moved laterally to their new position.

This ignores the possibility that BCBPs might collide with each other during

migration. To alleviate this, once BCBPs were moved, any pair of BCBPs that were too

close to each other were found and the their migration was reversed in small steps

until the somata no longer overlapped. This approach to simulating migration was

chosen as it was more efficient than developing and running a time-resolved

simulation to track the dynamic movements of each cell during migration.

[Table 1 about here.]

Quantitative model output

To assess whether the model can generate the cross-correlations observed in real data,

we used density recovery profiles (Rodieck, 1991), as also used by Kouyama &

Marshak (1997). The DRP provides an estimate of the density of cells of type A as a

function of the distance from a cell of type B. To emphasise when we are correlating

two different populations, we call the result a ‘cross DRP’; when a population of cells

is correlated against itself, we call the result just ‘DRP’. Regularity of the individual

mosaics was also assessed using the nearest-neighbour regularity index (Wässle &

Riemann, 1978). We also calculated other properties of the resulting patterns, which

serve as predictions for future work. The adjustable parameters of the model were

manually selected to give the best fit. Computational modelling and analysis were

performed using the R programming environment (R Development Core Team, 2008).

Code and data are available upon request.
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Results

[Table 2 about here.]

[Figure 3 about here.]

Figure 3 shows a simulated field and the corresponding real data field, using the

parameters listed in Table 2. Figure 3 demonstrates the significant difference in BC

and BCBP densities (see also Table 1). Further, the mosaic structure of both BCs and

BCBPs is clearly visible in both the real data field and the simulated data field. Given

that only one simulated example is shown, we do not expect it to be optimal, and

although it looks comparable, quantitative methods are required to further compare

model and data.

To allow for a thorough comparison of model with observed data, we ran the

model N = 99 times so that we could assess the average performance of the model,

which should be more representative than looking at any one simulation. In

particular, results from simulations are summarised, for a particular measure, as the

mean ± 1.96 SDs across simulations, to indicate the 95% confidence interval of that

measure (under normality assumptions).

As a first step to comparing real and simulated data, we computed the

traditional measure of mosaic regularity, the regularity index (Wässle & Riemann,

1978), individually for the BC mosaic and the BCBP mosaic (Figure 4). For all but one

mosaic, the observed regularity index falls within the error bars of the simulations.

This suggests that the model is capable of reproducing the statistics of individual

mosaics, which is a key prerequisite before we can investigate the key component of

the model, the nature of the cross-correlation.

[Figure 4 about here.]

[Figure 5 about here.]

Figure 5 gives an insight into the dynamics of the model, from which three

observations can be made. (i) Most BCBPs do not migrate, (ii) those that migrate do
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not tend to migrate very far and (iii) migration implies that BCBPs move closer to

BCs. These output characteristics are not surprising given the nature of the model, but

they constitute predictions which could potentially be tested against empirical

observations. Therefore it is useful to make them more quantitative.

The proportion of BCBPs that migrate is illustrated in Figure 6; only 10–20 % of

BCBPs migrate once BCBPs have potentially made contacts with BCs. This is a firm

prediction of the model. Field 2 stands out as having the highest migration rate. The

low BC density in this field implies that the dendrites tend to be longer, which in turn

implies that the projected string force will be stronger, thus increasing the likelihood

of migration.

[Figure 6 about here.]

Figure 7 shows the average dendritic length of all BCBPs before and after BCBP

migration. The average premigration values are around 20 µm, which compares with

a analytical prediction of 33 µm (see Supplementary material, section 2). The

analytical calculation ignores the issue that as the distance from the BC increases, the

chance that a BCBP will connect to another BC increases. Also, a few BCBPs do not

make any connections, probably because they are too far from BCs. Accounting for

both these factors would reduce the theoretical premigrational dendritic length, and

so the value of 33 µm should be regarded as an upper bound. In this context, the

average premigration distance of around 20 µm from the simulations seems

reasonable.

[Figure 7 about here.]

Furthermore, the premigrational lengths are largest for field 2. This is caused by

the lower density of BCs in this field. To understand this, note that if there were

infinitely many BCs, the dendritic lengths would be l0 = 0 for all BCBPs. Reducing

the number of BCs increases the distance of a BCBP to its nearest BC. Some BCBPs

become too distant from BCs and will not make a connection. This increase will stop

only when there are so few (and regularly distributed) BCs that each BCBP can
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maximally reach only one BC. This point is not reached in the fields studied here.

Hence, the lower the BC density, the larger the premigrational dendritic length.

It is tempting to reverse this argument and conclude that the fewer BCBPs the

smaller l0, but this is flawed since BCs and BCBPs are not symmetric. BCBPs can grow

only one dendrite which connects to a BC pedicle, whereas a BC pedicle can connect

to as many as four BCBP dendrites.

The difference between pre- and postmigrational dendritic lengths is around

2–3 µm, but this number does not reflect true migration distances since these values

are averages of all BCBPs, i.e. also including those which do not move. When

considering only the BCBPs that move, migration distances average around 15 µm

(Figure 8), although there is substantial variation in migration distances across

simulations.

[Figure 8 about here.]

Finally, the number of synapses in the simulated model can be compared with

the real number of synapses (Figure 9). The fit with real data is quite good, which is

surprising given that the number of synapses is an endogenous part of the model and

that we assumed that BCBPs either connect to zero or one BC, yet in reality BCBPs can

connect to two BCs (Kouyama & Marshak, 1992). Hence, we would expect that the

simulations generate fewer synapses than there are in the real data. Figure 9 shows

that this is true only for fields 4 and 5. In the case of fields 1–3, the simulated number

of synapses is larger than the observed number. This implies that the simulations of

field 1–3 might have a higher capability to create BC-BCBP interactions than the real

data. If the number of synapses in fields 1–3 were reduced, then the peaks in the cross

DRP, see next section, would become less pronounced (given the relative friction

force) and a smaller relative friction force would be needed to reproduce the sizes of

the peaks observed in real data. The point of this argument is that the estimated

relative friction forces are not sufficiently accurate to be interpreted as the true

physical relative forces. A more detailed model is needed if such interpretation
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should be valid. Nonetheless, the estimated relative force provides a good first

approximation.

[Figure 9 about here.]

Density recovery profiles

The DRP analysis is the most important analysis performed here, since this is the

analysis which quantifies the correlation between BCs and BCBPs. For each field, five

different DRPs were generated. One DRP for the BCs, two DRPs for the BCBPs

(before and after BCBP migration) and two cross DRPs for the BC-BCBP interaction

(before and after BCBP migration). For a representative field, field 2, the five DRPs are

shown in Figure 10. For the other fields, only the postmigrational cross DRPs are

shown (Figure 11).

In Figure 10, the BC DRP has a characteristic dip at small distances, which

reflects the homotypic exclusion zone. At larger distances the DRP ‘recovers’ to the

macroscopic density (indicated by a horizontal line). The same is the case for the

premigrational BCBP DRP, with the difference that the exclusion zone is smaller and

the macroscopic density is larger (see Table 1). Comparing the premigrational and

postmigrational BCBP DRP, it is seen that the postmigrational dip is smaller. This is

essentially a consequence of the mechanistic model: BCs attract BCBPs, thereby

bringing some BCBPs laterally closer to other BCBPs.

The BC ⇥ BCBP cross DRP shows that before BCBP migration, the two

populations are uncorrelated (shown by the flat DRP) as expected, but after BCBP

migration the cross DRP is significantly non-flat and therefore the two populations are

correlated. In particular, the postmigrational cross DRP has the shape of a Mexican

hat. BCs have attracted some BCBPs from their immediate vicinity, thereby creating a

higher than average density for small distances (< 20 µm) and lower than average

density for distances up to around the maximal dendritic length of lmax = 44 µm. This

non-flat profile is the fingerprint of the correlation between BCs and BCBPs.
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Comparing the results of the Monte Carlo simulation (bars) with the real data

(filled dots) shows that, in general, there is a good fit. In the case of the BC DRP and

the BCBP DRP these results may be expected, given that the parameters of the model

were chosen in order to secure a reasonable fit. However, the cross DRPs are very

interesting. The real data falls quite nicely within the error bars of the simulated

results and the shape of the simulated cross DRP closely follows the shape of the real

data cross DRP.

For the other fields, the findings are qualitatively similar, both in the case of

postmigrational cross DRP (compare Figure 10 and Figure 11), and for the other DRPs

(data not shown). The mechanistic model is therefore capable of reproducing the

observed correlation between BCs and BCBPs; this does not prove the model right,

but it corroborates the underlying assumptions.

Of course, these results depend on the choice of the relative friction-to-string

force (see Table 2) and indeed the relative flat postmigrational cross DRP for field 5

(Figure 11) was the result of a mean relative force of µ f /s = 0.97, somewhat larger

than the mean relative forces for the other fields. Field 2 is the exception to this rule.

Here, µ f /s = 0.90, which is much higher than for field 1 (µ f /s = 0.75) but despite this,

the relative sizes of the peaks of those two fields are similar. Hence, field 2 is

intrinsically more capable of attracting BCBPs to BCs and a higher friction force is

needed to inhibit this mechanism. Within the framework of the model, this can

probably be explained by the fact that the density of BCs and BCBPs are lower in field

2 and thus the BCBPs can migrate more freely towards the BC with less chance of

colliding with other BCBPs (when simulating the model, collision of BCBPs was

assumed to imply that migration stopped, as described in the methods, step 5).

[Figure 10 about here.]

[Figure 11 about here.]
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Discussion

A key reason for studying retinal mosaics is to reveal the developmental mechanisms

that drive pattern formation. In this study, a mechanistic model for the interaction

between BCs and BCBPs has been developed, simulated and assessed. The

cornerstone of the model is that a BCBP can migrate due to a compromise between a

string-like force exerted by the dendrite, connecting the BCBP with a BC, and friction

forces within the INL. Using DRP analysis, it has been showed that the mechanistic

model is capable of reproducing the empirically observed pattern of BC-BCBP

interactions, as well as accounting for the properties of the homotypic mosaics and

the number of synapses formed. Thus we propose our model as a candidate for the

mechanism that generates the BC-BCBP correlation.

Other candidate models have previously been described. It has been suggested

that a BC and a BCBP are daughters from a common progenitor cell (Chiu & Nathans,

1994), i.e. they are born at the same place and migrate radially. This hypothesis,

however, fits poorly with the DRP results which shows that the correlation is far from

perfect. At least this hypothesis should be supplemented by some explanation of why

the BCs and BCBPs are not perfectly correlated. This explanation could be random

fluctuations, but it is hardly satisfactory to explain a mechanism by referring to

randomness as a key driver. Also, this model would probably not produce a Mexican

hat shaped DRP but instead simply a DRP with a density that decreases

monotonically with increasing distance. Finally, as pointed out by Kouyama &

Marshak (1997), the fact that some BCBPs make two dendritic contacts seems to be at

odds with the idea that they should connect only to sister BCs. Another candidate

model was that of cell death, although this was already rejected as needing far too

much cell death to generate the observed patterns (Kouyama & Marshak, 1997).

These considerations led Kouyama & Marshak (1997) to favour an explanation

based on dendritic interactions and relative migration of BCs and BCBPs. They did

not, however, develop an explicit model of this interaction. This gap has now been

filled.
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Another interesting empirical observation, which fits into the framework of the

model, is that in marmoset (a New World monkey) BCs and BCBPs are positioned

randomly in the ONL and INL, respectively, but conditionally on the positions of BCs,

the BCBPs are nonrandom (Luo et al., 1999). In other words, BCs and BCBPs are also

correlated in marmoset, but this correlation does not rely on either BC or BCBP

neurons being arranged in regular mosaics. This is in accordance with the model

developed here: the BCs are ‘leaders’ and via dendritic interactions with BCBPs, they

induce BCBPs to migrate, i.e. to become ‘followers’, and this mechanism does not

depend on the cells forming homotypic mosaics.

This notion of ‘leaders’ and ‘followers’ is supported by the observation that

bipolar cells differentiate after cone photoreceptors (Rapaport, 2006). Hence, at the

time of presumptive BCBP migration, the BCBPs may be more flexible and mobile

than BCs, which is exactly what has been assumed in this study. BCBPs could

therefore be thought of as ‘add-ons’, which adjust to the already established BC array.

In the framework of the model developed here, the migration of BCBPs can

conceptually be decomposed into two parts: (i) migration caused by dendritic

interactions with BCs and (ii) migration before a dendritic connection to a BC is made.

A sanity check on the model developed here, is that it should not predict migration

distances above 100 µm. (Estimates of migration distances for some cell types, but not

BCBPs, suggest lateral movement to be well under 100 µm (Reese et al., 1999).)

According to the output from the model, migration caused by dendritic interactions is

only around 15 µm.

Based on these considerations, we suggest that the model developed in this

study should be considered in future experimental and theoretical work on the

developing retina. Future theoretical work might include conducting a sensitivity

analysis of the parameters of the model, particularly of the relative friction-to-string

force. Information about the sensitivity of the output with respect to the relative force

would be valuable for future experimental work.

On the experimental side, techniques for measuring cellular forces are now
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available (such as optical tweezers) and measurements of dendritic string forces and

retinal friction forces would provide a test of the model. In general, future

experiments could provide tests of the assumptions made in this model. With a

mechanistic model, testable hypotheses emerge much more naturally than in the case

of a purely statistical model, and this is a strong argument for mechanistic models.

Some assumptions could prove wrong and should be discarded, some might need an

adjustment or more detail and some might be perfectly supported by experiments. In

this manner, future experiments could spur new theoretical ideas which could then be

built into future mechanistic models of the BC-BCBP interaction.
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Figure 1: Example of BC differentiation (filled blue circles) from undifferentiated cones
(filled light grey circles) for a simulation of field 1. Each BC has an individual exclu-
sion zone. Circle diameter matches approximate size of BC (cone diameter is roughly
10 µm). Scale bar is 100 µm.
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Figure 2: Diagram of the mechanistic model. BC pedicles (top, shown in blue) are fixed
in the OPL, whereas BCBPs which are less than 3 · rBCBP = 12 µm (threshold shown
by dotted line) from the INL-OPL interface can migrate laterally. BCBPs which are
located deeper in the INL (e.g. the open circle) are assumed to be immobile because
their dendrites will potentially not contact a BC pedicle in a straight line because of
other BCBPs blocking the way. The filled red BCBP can move and is connected to the
central BC pedicle. The BCBP is under the influence of a dendritic string force Fs and
an opposing friction force F f . As BCBPs are constrained to move only laterally, the
BCBP migrates from an initial position l0 to postmigrational position l⇤ (indicated by
inset ruler). The thick arrow indicates the migration. Relevant depth parameters (dgap,
dINL and dv) are indicated.
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Figure 3: Comparison of a real data field (field 3, left) and a corresponding simulated
field (right). Filled blue circles indicate BCs and open circles indicate BCBPs. In both
fields, both BCs and BCBPs are arranged in mosaics; also the simulated field looks
similar to the real data field. The relative sizes of cells and field are to scale. Scale bar
is 100 µm.
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Figure 4: Nearest-neighbour regularity index of each mosaic. Bars show the mean
across simulations, and error bars denote the mean ±1.96 times the SD across simula-
tions (N = 99 simulations). The filled dots indicate the observed regularity index for
that field. (A) Regularity of BC mosaic. (B) Regularity of BCBP mosaic before (black
bars) and after migration (grey bars).
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Figure 5: BCBP migration and dendritic contacts with BCs for one simulation of field
3 (central 1/4 of field shown). BCs are indicated as filled blue circles, BCBPs as open
circles and the initial positions of those BCBPs that migrate are indicated as red circles.
Postmigrational dendrites are illustrated with solid lines and BCBP migration is illus-
trated with dotted lines. Most BCBPs do not migrate and those which do move closer
to the nearest BC. The relative sizes of cells and field are to scale. Scale bar is 50 µm.
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Figure 6: Proportion of BCBPs that migrate in each field. Bars show the mean across
simulations, and error bars denote the mean ±1.96 times the SD across simulations
(N = 99 simulations).

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 22, 2017. ; https://doi.org/10.1101/129643doi: bioRxiv preprint 

https://doi.org/10.1101/129643
http://creativecommons.org/licenses/by/4.0/


0

5

10

15

20

25

F1 F2 F3 F4 F5

L
a

te
ra

l d
e

n
d

ri
tic

 le
n

g
th

 (
µ

m
)

Figure 7: Pre- (black bars) and postmigrational (grey bars) dendritic lengths for all
BCBPs for each field. Bars show the mean across simulations, and error bars denote
the mean ±1.96 times the SD across simulations (N = 99 simulations).
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Figure 8: Migration distances for BCBPs in each field. Only BCBPs that migrate are
considered here. Bars show the mean across simulations, and error bars denote the
mean ±1.96 times the SD across simulations (N = 99 simulations).
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Figure 9: Number of synapses created in each of the five fields. The number of
synapses in the real data fields is indicated by filled dots. Bars show the mean across
simulations, and error bars denote the mean ±1.96 times the SD across simulations
(N = 99 simulations).
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Figure 10: DRP results for field 2. Left column shows DRPs before migration, and
right column shows DRPs after BCBP migration. Top row: DRP for BCs (as BCs do
not migrate, the DRPs before and after migration are identical). Middle row: DRPs
for BCBPs. Bottom row: cross DRPs for BC ⇥ BCBPs. Filled dots indicate real data
results and horizontal lines indicate macroscopic densities. Bars show the mean across
simulations, and error bars denote the mean ±1.96 times the SD across simulations
(N = 99 simulations).
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Figure 11: Postmigrational cross DRP results for fields 1, 3, 4 and 5. Cross DRPs are
shown in the same format as in Figure 10.

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 22, 2017. ; https://doi.org/10.1101/129643doi: bioRxiv preprint 

https://doi.org/10.1101/129643
http://creativecommons.org/licenses/by/4.0/


List of Tables

Table 1 Fixed parameters of the model

Table 2 Free parameters of the model

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 22, 2017. ; https://doi.org/10.1101/129643doi: bioRxiv preprint 

https://doi.org/10.1101/129643
http://creativecommons.org/licenses/by/4.0/


Field 1 Field 2 Field 3 Field 4 Field 5
Number of BCs, nBC 130 86 119 152 129
Number of BCBPs, nBCBP 303 176 268 274 181

Field width, Lx (µm) 602 594 595 603 602
Field height, Ly (µm) 541 534 535 542 558
Area, |A| (mm2) 0.326 0.317 0.318 0.327 0.336
BC density, DBC (mm�2) 399 271 374 465 384
BCBP density, DBCBP (mm�2) 930 555 842 838 539

Cone exclusion zone, dcone (µm) 12 12 12 12 12
Fraction of BCs among cones, a 0.1 0.1 0.1 0.1 0.1
BCBP radius, rBCBP (µm) 4 4 4 4 4

INL depth, dINL (µm) 40 20 40 30 15
Dist. from BC pedicle to INL-OPL int. dgap (µm) 10 10 10 10 10
Dist. from BCBP to BC pedicle (mean), µv (µm) 23.2 16.6 23.2 19.9 14.95
Dist. from BCBP to BC pedicle (SD), sv (µm) 4.4 2.2 4.4 3.3 1.65
Max dendritic length, lmax (µm) 44 44 44 44 44
SD of relative force, s( f /s) 0.1 0.1 0.1 0.1 0.1

Table 1: Values of fixed parameters of the model. Where possible, these parameters
have been estimated from the literature or measured from the real data sets, and were
not changed during model fitting.
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Field 1 Field 2 Field 3 Field 4 Field 5
Mean BC exclusion zone, µBC (µm) 30 38 28 30 37
SD of BC exclusion zone, sBC (µm) 6 5.5 3 6 7
BC truncation, dmin

BC (µm) 13 32 18 18 23

Mean BCBP exclusion zone, µBCBP (µm) 18 18 18 19 22
SD of BCBP exclusion zone, sBCBP (µm) 5 6 5 3 7
BCBP truncation, dmin

BCBP (µm) 8 7 5 5 3

Mean relative friction/string force, µ f /s 0.75 0.90 0.82 0.84 0.97

Table 2: Free parameters for each field. These parameters were found by trial-and-error
exploration of the model.
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1 Postmigrational blue cone bipolar position

The cornerstone of the mechanistic model is the migration caused by a compromise

between a dendritic string force and friction in the INL. In the article, the formula

describing the postmigrational BCBP position was merely stated without derivation.

This section presents the derivation.

BCBP migration is a linear motion and parallel with the INL. Thus, we only need

to consider motion in one dimension. The physical situation is sketched in Figure 2 of

the article.

Let Fs denote the dendritic string force exerted on the BCBP. Assume that the BC

pedicle is immobile1 and that the BCBP can only move in a planar region and that the

distance between the BC pedicle and this plane is dv. In this plane, orient an axis start-

ing from the projection of the BC pedicle and pointing in the direction of the BCBP. Let

l denote the position of the BCBP on this axis, i.e. initially l is positive and corresponds

to the lateral distance between the BC pedicle and the BCBP. Let θ denote the angle

which the connecting line between the BCBP and the BC pedicle forms with the l axis.

Then the projection F̃s on the BCBP plane of the dendritic string force Fs has length F̃s

given by.

F̃s = cos θ |Fs| =
l√

l2 + (dv)2
Fs,

where Fs = |Fs|.
Within the INL, the BCBP cannot move freely, it is subject to a friction force. It is

assumed that the static and dynamic friction forces are identical and have magnitude

Ff . They are obviously directed in the opposite direction of the initial F̃s. Motion

requires that initially F̃s > Ff , so this is assumed in the following derivations. This

assumption is immaterial, since the case of no motion is trivial.

Given this geometry, the equation of motion of the system reads

1If the BC pedicle is also allowed to move, the force exerted on the BCBP will not only depend on
BCBP position but also on BC position, and vice versa. Hence, the equations of motion would become
coupled differential equations, which it is nice to avoid. Immobility of the BC pedicle is supported by
biological observations, see article (methods, step 1) for details.
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m
d2l
dt2 = Ff − F̃s = Ff −

l√
l2 + (dv)2

Fs, (1)

where m is the mass of the BCBP2. From this expression it is clear that it is only valid

as long as the BCBP migrates in the direction of decreasing l, in other words if the

BCBP changes direction at some time t′, then the expression is no longer valid because

the friction force changes sign (it can be made valid again by simply reversing the l

axis or reversing the sign of the friction force). In the following derivations, we shall

assume that the BCBP will not change direction, i.e. no oscillations. We shall deal with

oscillations below.

If we let v denote the velocity, the second derivative on the left hand side of this

equation can be rewritten as

d2l
dt2 =

dv
dt

=
dv
dl

dl
dt

=
dv
dl

v.

Note that it has been assumed that l(t) can be inverted such that we can express v

as a function of l. This requires monotonic motion, but this is exactly what has been

assumed above by ruling out oscillations.

Dividing Eq. (1) by m and using the last expression we obtain

v
dv
dl

=
Ff

m
− Fs

m
l√

l2 + (dv)2
.

In this expression it is possible to separate the variables v and l. Hence,

∫
v dv =

∫ (Ff

m
− Fs

m
l√

l2 + (dv)2

)
dl.

2From this expression it is seen why a velocity dependent friction force is not appropriate. Assume
that the friction force had the form Ff = a + bv. Solving the system requires us to find l such that v = 0
and l̈ = 0. This implies that l∗ = dva/Fs√

1−(a/Fs)2
, i.e. postmigrational dendritic length l∗ is independent of

premigrationel dendritic length l0.
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Performing the integration yields

1
2

v2 =
Ff

m
l − Fs

m

√
l2 + (dv)2 + C.

In order to determine C we can use that at t = 0, l = l0 (initial position) and v = 0.

Inserting this into the above equation yields

C =
Fs

m

√
l2
0 + (dv)2 − Ff

m
l0.

The equation governing the relation between position l and velocity v is therefore

1
2

v2 =
Ff

m
l − Fs

m

√
l2 + (dv)2 +

Fs

m

√
l2
0 + (dv)2 − Ff

m
l0.

Now, we wish to determine the positions l∗ where v = 0. We know that initially

there will be motion (we assumed F̃s > Ff ). Because of the presence of friction, this

motion cannot continue forever, eventually it will slow down and make v = 0, which

means that either the BCBP has come to a stop or it is merely changing direction of

motion. The latter can only be the case if l∗ < 0, since only in this case can there be a

force which will increase l. In this case, there will be oscillations. Because of the friction

force, however, such oscillations will necessarily be damped, and therefore the BCBP

will come to a stop at some point. If there is only one l∗, except for l0, for which v = 0

and if this l”∗ is positive, then we know that l̈ = 0 and oscillations will not be present.

The BCBP will simply come to a stop at this l∗ > 0. We will now show, that indeed

there is only one such l∗ and that this l∗ is positive for realistic parameter values.

Imposing v = 0 in Eq. (1) and rearranging terms yields

Ff l + Fs

√
l2
0 + (dv)2 − Ff l0 = Fs

√
l2 + (dv)2.

This can be rewritten as a quadratic equation in l, and therefore it can have a maximum

of two solutions. The quadratic equation reads
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al2 + bl + c = 0, (2)

where

a = F2
f − F2

s

b = 2Ff

(
Fs

√
l2
0 + (dv)2 − Ff l0

)

c =

(
Fs

√
l2
0 + (dv)2 − Ff l0

)2

− F2
s (dv)

2.

Note that a 6= 0, again because of the assumption that initially (at l0) F̃s > Ff , hence

Fs > Ff . Thus, Eq. (2) will never collapse into a linear equation.

After some tedious algebra, the discriminant of the quadratic Eq. (2) can be written

as

d = 4F2
s

(
Ff

√
l2
0 + (dv)2 − Fsl0

)2

≥ 0,

which is seen to be non-negative. It is only 0 in the case of Ff

√
l2
0 + (dv)2 = Fsl0, in

which case there will be no motion. But this is assumed not to be the case, again by the

assumption F̃s > Ff . Hence d > 0 and there are two different real solutions, of which

l∗ = l0 must be one. The solutions are

l∗± =
−b±

√
d

2a
=





l0
2F( f /s)

√
l2
0+(dv)2−

(
F2
( f /s)+1

)

1−F2
( f /s)

, (3)

where we have introduced the shorter notation F( f /s) = Ff /Fs. Note that the denomi-

nator is always positive. Also note that the first solution l∗+ = l0 is trivial.

Finally, we need to argue that for plausible parameter values, it holds that l∗− > 0,

such that we can be sure that this l∗− is not merely a point, where the BCBP changes

direction (see above).

Hence, we need to know the sign of l∗−. Based on the expression for l∗− in Eq. (3) it
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follows that

l∗− ≥ 0 when l0 ≤
2F( f /s)

|F2
( f /s) − 1|dv

l∗− < 0 when l0 >
2F( f /s)

|F2
( f /s) − 1|dv,

where it has been used that F( f /s) 6= 1.

For the values of F( f /s) and dv used in this study, it will very rarely happen that

l∗− < 0 (e.g. five cases in an arbitrarily selected single simulation of all 1202 BCBPs from

the five fields, i.e. 0.4 % of BCBPs.). For example, for field 2, F( f /s) = 0.9, which implies

that
2F( f /s)

|F2
( f /s)−1|dv ≈ 9.5dv. In turn, dv is almost certainly larger than 10µm. Lateral

dendritic lengths l are never larger than lmax = 44µm (see description of Step 4 in

main article). We can therefore safely ignore the case of BCBP migration beyond the

BC projection. Thus, in almost all cases, l∗− in Eq. (3) is indeed a point, where the BCBP

comes to a stop.

2 Calculation of mean premigrational dendritic length

Prior to BCBP migration, BCs and BCBPs are spatially independent. We now consider

a BCBP known to be migrating and thus known to be located within lmax of a given

BC. Assuming that we know that this BCBP connects to this particular BC, the expected

premigrational dendritic length is given by
∫ lmax

0 lρ(l) dl, where ρ(l) is the density of

BCBPs at a distance l from the BC. Because of the spatial independence between BCs

and BCBPs, ρ(l) = ql2. It also holds that
∫ lmax

0 ρ(l) dl = 1. We can therefore calculate q

∫ lmax

0
ρ(l) dl = q

∫ lmax

0
l2 dl =

1
3

ql3
max = 1 ⇔ q =

3
l3
max

. (4)

The expectation of l can now be expressed in terms of lmax.

〈l〉 =
∫ lmax

0
lρ(l) dl = q

∫ lmax

0
l3 dl =

3
l3
max

l4
max
4

=
3
4

lmax. (5)
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In our case lmax = 44µm, implying that 〈l〉 = 33µm. This analysis does not, how-

ever, take into account that the larger l the smaller is the probability φ(l) that the BCBP

will actually connect to the BC in question. This probability function φ(l) is much

harder to estimate, but it explains why 〈l〉 ≈ 20µm instead of 33µm.
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