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Abstract  

We introduce an R software package for condition-specific gene regulatory network analysis 

based on DC3NET algorithm. We also present an application of it on a real prostate dataset 

and demonstrate the benefit of the software. We performed genome-wide differential gene 

network analysis with the software on the LnCap androgen stimulated and deprived prostate 

cancer gene expression datasets (GSE18684) and inferred the androgen stimulated prostate 

cancer specific differential network. As an outstanding result, CXCR7 along with CXCR4 

appeared to have the most important role in the androgen stimulated prostate specific 

genome-wide differential network. This blind estimation is strongly supported from the 

literature. The critical roles for CXCR4, a receptor over-expressed in many cancers, and 

CXCR7 on mediating tumor metastasis, along with their contributions as biomarkers of tumor 

behavior as well as potential therapeutic target were studied in several other types of cancers. 

In fact, a pharmaceutical company had already developed a therapy by inhibiting CXCR4 to 

block non-cancerous immuno-suppressive and pro-angiogenic cells from populating the 

tumor for disrupting the cancer environment and restoring normal immune surveillance 

functions. Considering this strong confirmation, our inferred regulatory network might reveal 

the driving mechanism of LnCap androgen stimulated prostate cancer. Because, CXCR4 

appeared to be in the center of the largest subnetwork of our inferred differential network. 

Moreover, enrichment analyses for the largest subnetwork of it appeared to be significantly 

enriched in terms of axon guidance, fc gamma R-mediated phagocytosis and endocytosis. 

This also conforms with the recent literature in the field of prostate cancer.  

We demonstrate how to derive condition-specific gene targets from expression datasets on 

genome-wide level using differential gene network analysis. Our results showed that 

differential gene network analysis worked well in a prostate cancer dataset, which suggest the 

use of this approach as essential part of current expression data processing.  

Availability: The introduced R software package available in CRAN at 

https://cran.r-project.org/web/packages/dc3net  and also at https://github.com/altayg/dc3net  

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2017. ; https://doi.org/10.1101/129742doi: bioRxiv preprint 

mailto:altay@lji.org
https://cran.r-project.org/web/packages/dc3net
https://github.com/altayg/dc3net
https://doi.org/10.1101/129742
http://creativecommons.org/licenses/by-nc/4.0/


 2 

Background 

Prostate cancer is the second most common cancer in the male population, with an estimated 

417,000 new cases diagnosed each year in Europe (Ferlay, 2013). The activation of androgen 

receptor (AR) through androgens plays a crucial role in the development and progression of 

prostate cancer (Kaur, 2016; Anantharaman, 2015; Choudhary, 2011; Massie, 2011). For 

early detection of prostate cancer, prostate specific antigen (PSA) screening method has been 

used widely as a diagnostic tool (Karatas, 2015). However, PSA fails to discriminate indolent 

disease which results in over-diagnosis and this may lead to poor prognosis (Abou-Ouf, 2015; 

Ma, 2015; Myers, 2015). Furthermore, there is no evidence showing that the PSA screening 

reduces the incidence of death and the underlying mechanism of prostate cancer progression 

remains largely unknown (Cannistraci, 2014 ;Ren, 2015). 

Nowadays, the identification of novel oncogenes or tumor suppressor genes has become 

popular in tumorigenesis studies in understanding molecular mechanisms that drive disease 

progression (Ren, 2015). Understanding the working mechanism of molecules in normal cell 

physiology and pathogenesis allows subtle drug development and helps treatment of a disease, 

such as cancer (Altay, 2010; Rual, 2005; Schadt, 2009). The advent of systems and network 

biology enable us to capture interactions occurring within a cell, which can be represented as 

gene networks. Computational analysis of the networks provides key insights into biological 

pathways and cellular organization (Altay, 2011).  

The biological processes at the gene level are very complex structures as genes dynamically 

interact with each other. The interactions of these molecules have been changing significantly 

over time and in different cell conditions such as from normal to cancer (Emmert-Streib, 

2012; Califano, 2011). A single gene can participate in different biological processes and 

regulate different genes at different times. However, diseases are usually consequences of 

interactions between multiple molecular processes, rather than an abnormality in a single 

gene (Menche, 2015). 

Gene regulatory networks hold the potential to identify specific subnetworks that are 

dysfunctional in the disease state of a cell. The identification of differences between disease 

and healthy tissues may provide key insights into the underlying mechanisms of diseases (de 

la Fuente, 2010; Ideker, 2012). For this purpose, several methods have been proposed in the 

literature. However, none of these methods, to our knowledge, provided direct physical 

interactions in the inferred differential network. Differential C3NET (DC3NET) algorithm 

was introduced to match that need (Altay, 2011), which is based on the very conservative 

gene regulatory network (GRN) inference algorithm C3NET (Altay, 2010). In order to ease 

the usage of DC3NET, we developed an R software, dc3net, and introduce it along with its 

application on a real dataset in this paper. 

In the present study, differential gene network analysis has been performed to detect the 

differences between androgen stimulated and androgen deprived prostate cancer cells. We 

have used differential network inference software tool, dc3net, based on the algorithm 

DC3NET (Altay, 2011) and used it to infer androgen stimulated prostate cancer specific 

differential network which can be seen in Figure 1. We have performed validation study on 

our results via pathway analysis and with direct support from literature that substantiate our 

blind estimation on prostate cancer. 
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2. Materials and methods 

2.1. Microarray data and data preprocessing 

In order to investigate the alterations in androgen stimulated prostate cancer cells compared 

with androgen deprived prostate cancer cells, the microarray dataset, GSE18684 generated by 

Massie et al. (2011), was obtained from the Gene Expression Omnibus (GEO, 

http://www.ncbi.nlm.nih.gov/geo). The expression profile included 96 samples, comprising 

20 androgen deprived tissue samples and 76 tissue samples with androgen stimulated prostate 

cancer. Sample size 76 is sufficient to infer gene network with maximum performance but 

sample size 20 may provide reduced performance according to (Altay, 2012). 

The raw microarray data were analyzed using R software v.3.2.2 (http://www.r-project.org) 

and further processed using Affy package in Bioconductor (Gautier, 2004). The background 

correction, quantile normalization, and probe summarization processes were performed by the 

Robust Multi-array Average (RMA) algorithm to obtain gene expression matrix for each 

datasets (normal and tumor) (Irizarry, 2003).  

In microarray technology, multiple probes can represent a single gene. In theory and mostly 

in practice those kinds of probes have highest association scores among them which cause an 

error for the inference algorithm c3net as it infers only the highest correlated pair for each 

significant gene. When one works at the probe level data, one should address this issue. In 

order to eliminate this problem, we filter the association matrix by setting zero for the mutual 

information score for those probe pairs that correspond to the same gene (Altay, 2010). We 

have developed a function in the package to practically ease to overcome this issue. 

2.2. Differential network analysis 

In order to perform genome-wide differential gene network analysis, we used the software 

tool dc3net which is available in CRAN (https://cran.r-project.org/web/packages/dc3net). 

Briefly, the dc3net algorithm takes two different microarray gene expression data sets as input 

(e.g. one as tumor and the other as control). Then, two different gene networks are inferred by 

applying C3NET (Altay, 2010, Altay, 2010) to each of the data sets. In order to compute 

dependency scores among genes, we used PBG that computes mutual information values that 

provide sufficient performance with very low complexity (Kurt, 2014).  

In the final step, these two networks are compared and tumor differential network and 

common network are inferred. The tumor differential network, difnet, is inferred by selecting 

only the interactions of tumor differential network that does not strong association scores in 

the control network. The common network, comnet, is determined by selecting the 

overlapping or closer interactions in value or rank between the two networks (Altay, 2011). 

In this study, we used the differential network inference all-in-one function dc3net with those 

parameters as follows, where the further details can be seen in the CRAN repository: 

“dc3net(test_data, control_data, probe_names, gene_names, method="cutoff", 

methodValue=0, itNum=1, rankDif=2000, percentDif=0.3, rankdCom=100, 

percentCom=0.6, probFiltered=FALSE, visualization=TRUE)” 

2.3. Gene ontology analysis 

Gene Ontology (GO) enrichment analysis based on Gene Ontology database 

(http://www.geneontology.org) was performed to investigate the biological roles of the genes 

in the differential network (da Huang, 2009). To further assess the signalling pathway of the 
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genes, we subsequently performed Kyoto Encyclopedia of Genes and Genomes (KEGG, 

http://www.genome.jp/kegg) pathway enrichment analysis. The two analysis were performed 

using The Database for Annotation, Visualization and Integrated Discovery (DAVID, 

https://david.ncifcrf.gov) which is a powerful bioinformatics tool to find out functions of 

interested genes (Dennis, 2003). The enrichment analyses required >5 genes to be present and 

p<0.05 for a term to be considered significant. 
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Figure 1. Genome-wide androgen stimulated prostate specific differential network with 891 interactions
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3. Results 

3.1. Inferring differential network 

The androgen stimulated prostate cancer differential gene network with 891 interactions was 

inferred using the dc3net tool where details of its usage can be seen in the Supplementary File. 

The largest independent subnetwork with 119 interactions were also extracted from the 

differential network and plotted as in Figure 3. 

3.2. Functional enrichment analysis 

To investigate the functions of the genes in the androgen stimulated prostate cancer 

differential gene network, GO and KEGG pathway analysis were performed. A total 184 

terms were retrieved from the DAVID online analytical tool.  

The top ten GO terms ranked by statistical significance were listed in Table 1. GO analysis 

revealed that genes associated with sterol biosynthetic process (GO:0016126; p=5.05 e-08), 

protein transport (GO:0015031; p=2.57 e-07) and establishment of protein localization 

(GO:0045184; p=3.80 e-07) were significantly enriched top three GO terms among biological 

processes, while for molecular functions, nucleotide binding (GO:0000166; p=7.08 e-05), 

purine nucleotide binding (GO:0017076; p=5.22 e-04) and purine ribonucleotide binding 

(GO:0032555; p=9.11 e-04) were significantly enriched, and with regards to cellular 

components, genes associated with endoplasmic reticulum (GO:0005783; p=2.66 e-13), 

endoplasmic reticulum part (GO:0044432; p=1.16 e-06) and organelle membrane 

(GO:0031090; p=1.48 e-04) were significantly enriched (Table 1, Fig. 2A).  
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Table 1. GO terms of differential network (top 10). 

GO ID GO term No. of genes p 

Biological processes    

GO:0016126 sterol biosynthetic process 14 5.05E-08 

GO:0015031 protein transport 82 2.57E-07 

GO:0045184 establishment of protein localization 82 3.80E-07 

GO:0046907 intracellular transport 73 3.96E-07 

GO:0006695 cholesterol biosynthetic process 11 1.25E-06 

GO:0016125 sterol metabolic process 21 1.87E-06 

GO:0006886 intracellular protein transport 47 2.61E-06 

GO:0008104 protein localization 87 4.16E-06 

GO:0034613 cellular protein localization 49 6.76E-06 

GO:0008203 cholesterol metabolic process 19 7.26E-06 

Cellular components     

GO:0005783 endoplasmic reticulum 117 2.66E-13 

GO:0044432 endoplasmic reticulum part 46 1.16E-06 

GO:0031090 organelle membrane 97 1.48E-04 

GO:0005789 endoplasmic reticulum membrane 33 2.11E-04 

GO:0042175 nuclear envelope-endoplasmic reticulum network 34 2.63E-04 

GO:0005739 mitochondrion 92 9.73E-04 

GO:0005829 cytosol 109 9.89E-04 

GO:0005792 microsome 28 1.24E-03 

GO:0005624 membrane fraction 71 1.61E-03 

GO:0042598 vesicular fraction 28 1.90E-03 

Molecular Function    

GO:0000166 nucleotide binding 174 7.08E-05 

GO:0017076 purine nucleotide binding 147 5.22E-04 

GO:0032555 purine ribonucleotide binding 140 9.11E-04 

GO:0032553 ribonucleotide binding 140 9.11E-04 

GO:0000287 magnesium ion binding 42 4.10E-03 

GO:0001883 purine nucleoside binding 119 5.75E-03 

GO:0003924 GTPase activity 23 6.81E-03 

GO:0001882 nucleoside binding 119 7.19E-03 

GO:0005524 ATP binding 110 7.74E-03 

GO:0004674 protein serine/threonine kinase activity 39 8.48E-03 

FDR: false discovery rate; GO: gene ontology. 

 

Next, the genes found in the androgen stimulated prostate cancer differential gene network 

were submitted to DAVID server to identify significantly enriched KEGG pathways 

(Kanehisa, 2000; Kanehisa, 2012). The KEGG pathways that were found significantly 

enriched (p<0.05) are shown in Table 2. Pathway analysis revealed that the genes in the 

androgen stimulated prostate cancer difnet were significantly enriched in ten terms. The most 

significant three terms were those involved in steroid biosynthesis (p=2.80 e-07), synthesis 

and degradation of ketone bodies (p=1.646523 e-03), and amino sugar and nucleotide sugar 

metabolism (p=1.73 e-03) processes (Fig. 2B). 
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Figure 2. Functional annotation of significantly enriched genes in differential network. (A) The top 10 

enriched gene ontology categories for biological processes; (B) The enriched Kyoto Encyclopedia of 

Genes and Genomes pathways. 

 

Table 2. Significant KEGG pathways in the androgen stimulated prostate cancer specific 

differential network 

KEGG ID KEGG term 
No. of 

genes 
p Genes 

hsa00100 Steroid biosynthesis 10 2.80E-07 
TM7SF2, CEL, EBP, SQLE, LSS, SC5DL, 

DHCR24, FDFT1, SC4MOL, NSDHL 

hsa00072 
Synthesis and degradation of 

ketone bodies 
5 1.69E-03 

HMGCS2, HMGCS1, ACAT2, ACAT1, 

HMGCL 

hsa00520 
Amino sugar and nucleotide 

sugar metabolism 
10 1.71E-03 

PGM2, GMPPB, GALK1, PGM3, GNPDA1, 

CMAS, GFPT1, GFPT2, HK2, GALE 

hsa00900 
Terpenoid backbone 

biosynthesis 
6 1.95E-03 

HMGCS2, HMGCS1, FDPS, MVK, ACAT2, 

ACAT1 

hsa04115 p53 signaling pathway 12 3.94E-03 

CCNE2, BID, PPM1D, TSC2, SIAH1, CDK6, 

CCNG1, GADD45B, THBS1, IGFBP3, 

GADD45A, SESN3 

hsa00650 Butanoate metabolism 8 5.33E-03 
ACSM3, HMGCS2, ALDH5A1, HMGCS1, 

ABAT, ACAT2, ACAT1, HMGCL 

hsa00250 
Alanine, aspartate and 

glutamate metabolism 
7 1.32E-02 

ASS1, ALDH5A1, GFPT1, GLUD1, GFPT2, 

ABAT, ALDH4A1 

hsa00051 
Fructose and mannose 

metabolism 
7 2.05E-02 

MTMR2, GMPPB, SORD, PFKFB2, HK2, 

PFKM, MTMR6 

hsa05120 
Epithelial cell signaling in 

Helicobacter pylori infection 
10 3.03E-02 

IGSF5, ATP6V0E1, LYN, ATP6V1E1, 

MAP2K4, NFKB1, PAK1, JAM3, ATP6V0A2, 

ATP6V0B 

hsa04360 Axon guidance 15 3.89E-02 

NRP1, EFNB3, EFNA1, EFNB2, DPYSL2, 

EPHA1, SEMA6A, NCK2, PAK2, CXCR4, 

PPP3CC, EFNA5, PAK1, SEMA4D, SEMA4A 

KEGG: Kyoto Encylopedia of genes and genomes 
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In order to further evaluate the biological roles of the genes in the independent subnetworks 

of the genome wide androgen stimulated prostate cancer difnet, we performed KEGG 

analysis for the largest subnetwork. As shown on Figure 3, this subnetwork comprises 119 

interactions with CXCR7, STK39, ELOVL3 and ACSL3 at the center of the largest hubs. 

KEGG analysis of the genes included in the subnetwork revealed a highly significant 

association with axon guidance pathway (p=1.71 e-03), which was also found significantly 

enriched in the whole differential network. Furthermore, pathways involved in Fc gamma R-

mediated phagocytosis (p=2.69 e-02) and Endocytosis (p=3.62 e-02) were also highly 

enriched (Table 3). Interestingly, these two pathways were not found significantly enriched in 

the whole differential network. 

 

Figure 3. The largest connected subnetwork of the androgen stimulated prostate cancer difnet. 

This subnetwork might have an important role in human prostate cancer as being the largest connected 

subnetwork with 119 edges in tumor difnet.  
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Table 3. Significant KEGG pathways in the largest subnetwork of the androgen 

stimulated prostate cancer specific differential network 

 

KEGG ID 
KEGG term 

No. of 

genes 
p Genes 

hsa04360 Axon guidance 6 1.71E-03 
SEMA6A, CXCR4, EFNA1, PPP3CC, 

EFNA5, PAK1 

hsa04666 
Fc gamma R-mediated 

phagocytosis 
4 2.69E-02 PRKCA, MAP2K1, PAK1, DNM2 

hsa04144 Endocytosis 5 3.62E-02 EPS15, CXCR4, RAB5A, PARD6G, DNM2 

KEGG: Kyoto Encylopedia of genes and genomes 

 

4. Discussion 

By employing differential gene network analysis approach, the present study aims to 

investigate the molecular mechanisms that may drive disease progression in prostate cancer 

using our presented software dc3net.  

Top four hub nodes, identified in the present study, have been strongly associated with 

prostate cancer metastatic process, including CXCR7, STK39, ELOVL7 and ACSL3. Hub 

nodes are genes that are highly connected with other genes and they were proposed to have 

important roles in biological development. Since hub nodes have more complex interactions 

than other genes, they may have crucial roles in the underlying mechanisms of disease (Guo, 

2015). Identification of hub genes involved in progression of prostate cancer may lead to the 

development of better diagnostic methods and providing therapeutic approaches. 

 

According to our analysis, CXCR7 (chemokine (C-X-C motif) receptor 7) is by far the top 

hub gene in the androgen stimulated differential network and it is also part of the largest 

independent subnetwork as seen in Figure 3. In (Wang, 2008), it is reported that staining of 

high-density tissue microarrays shows that the levels of CXCR7/RDC1 expression increase as 

the tumors become more aggressive. Also, In vitro and in vivo studies with prostate cancer 

cell lines propose that alterations in CXCR7/RDC1 expressions are associated with enhanced 

invasive and adhesive activities in addition to a survival advantage. Along other papers on 

CXCR7 (Zheng, 2010), it was shown that increased CXCR7 expression was found in 

hepatocellular carcinoma (HCC) tissues. Knockdown of CXCR7 expression by transfected 

with CXCR7shRNA significantly inhibited SMMC-7721 angiogenesis, adhesion and cells 

invasion. Moreover, down-regulation of CXCR7 expression leads to a reduction of tumor 

growth in a xenograft model of HCC (Zheng, 2010). Another study demonstrated that the IL-

8–regulated Chemokine Receptor CXCR7 stimulates EGFR Signaling to promote prostate 

cancer growth (Singh, 2011). In a study conducted by Yun et al., it is reported that CXCR7 

expression is increased in most of the tumor cells compared with the normal cells and is 

involved in cell proliferation, migration, survival, invasion and angiogenesis during the 

initiation and progression of many cancer types including prostate cancer (Yun, 2015). A 

more recent study indicated that there appeared to be disconnect of the effect of DHT on 

CXCL12/CXCR4/CXCR7 chemokine axis between transcriptional and translation machinery 

in androgen-responsive LnCaP cell line. There are many other studies that showed the strong 

role of CXCR7 in metastatic type cancer that strongly validates our blind foremost prediction 

is very likely to be true and thus needs further experimental work on its targets that we 

inferred in this study. However,  
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It was also observed that CXCR7/RDC1 levels are regulated by CXCR4 (Singh, 2011). This 

is a very interesting supporting information from literature for our blind estimation because in 

our predicted largest independent subnetwork, as shown in Figure 3, CXCR7 and CXCR4 

appear to be very close and interacting over only one gene. Although CRCX4 is not a hub 

gene, it appears to be as a bridge that connects both halves of the largest subnetwork. 

According to KEGG analysis, CXCR4 was found in the gene list of two different 

significantly enriched KEGG pathways, axon guidance and endocytosis which are strongly 

associated with prostate cancer (Table 3). Considering the prediction was made on global 

level, this literature confirmation seems assuring but not a coincidence. Therefore, this 

relation is worth experimenting in LnCap cancer too. It is also reported (Shanmugam, 2011) 

that inhibition of CXCR4/CXCL12 signaling axis by ursolic acid leads to suppression of 

metastasis in transgenic adenocarcinoma of mouse prostate model and CXCR4 induced a 

more aggressive phenotype in prostate cancer (Miki, 2007). In another study, it is reported 

that CXCR4 and CXCR7 have critical roles on mediating tumor metastasis in various types of 

cancers as both being a receptor for an important α-chemokine, CXCL12 (Sun, 2010). 

Furthermore, a more recent study concluded that CXCR4 plays a crucial role in cancer 

proliferation, dissemination and invasion and the inhibition of CXCR4 strongly affects 

prostate cancer metastatic disease (Gravina, 2015). The chief officer of Massachusetts based 

X4 Pharmaceuticals company recently stated that CXCR4 protein “acts as a beacon to attract 

cells to surround a tumor, effectively hiding the tumor from the body’s T cells that would 

otherwise destroy them”. He indicated that X4 company is beginning human trials using 

CXCR4 inhibitors which aims to develop a therapy to block the protein, CXCR4 

(http://pharmaceuticalintelligence.com/2015/12/15/are-cxc4-antagonists-making-a-comeback-

in-cancer-chemotherapy, 2015). 

The second most likely prediction was STK39 (serine threonine kinase 39). Among others, in 

(Hendriksen, 2006) it is reported that lower mRNA expression of STK39 in primary prostate 

tumors was correlated with a higher incidence of metastases after radical prostatectomy.  In 

(Balatoni, 2009), it is stated that STK39 encoded protein SPAK, regulates cell stress 

responses, and microarray studies identified reduced SPAK expression in treatment-resistant 

breast cancers and metastatic prostate cancers, suggesting that its loss may play a role in 

cancer progression. They showed that epigenetic silencing of STK39 in B-cell lymphoma 

inhibits apoptosis from genotoxic stress in cancer. STK39 is also identified as hypertension 

susceptibility gene (Wang, 2008). 

ELOVL7 (fatty acid elongase 7) was reported that it could be involved in prostate cancer cell 

growth and survival through the metabolism of SVLFAs and their derivatives, could be a key 

molecule to elucidate the association between fat dietary intake and prostate carcinogenesis, 

and could also be a promising molecular target for development of new therapeutic or 

preventive strategies for prostate cancers (Tamura, 2009). 

ACSL3 (acyl-CoA synthetase long-chain family member 3) was reported to be one of the 

androgen-regulated genes and it is shown that ACSL3 is slightly up-regulated in primary 

prostate tumors and strongly repressed in metastatic cancer (Marques, 2011). It also states 

that ACSL3, ELOVL5 and GLUD1 play a role in the production of prostatic fluid and in 

secretory function of the prostate. From this literature information, it worth mentioning that 

we blindly predicted ACSL3, ELOVL7 and GLUD1 as in top eight tumor-specific hubs, 

which may suggest their collaborative role in this disease from this biological process. There 

is also a patent that reports that the fusion genes ACSL3 and ETV1 and their expression 
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products can be used as prognostic and diagnostic markers for prostate cancer and as clinical 

targets for the treatment of prostate cancer (Attard, 2008). 

In order to investigate biological functions of the genes in the differential network, GO and 

KEGG pathway enrichment analyses were performed. The pathway analysis is important 

since it improves disease classification and reveals novel insights about a disease (Myers, 

2015). The results showed that sterol biosynthetic process was the most significantly enriched 

GO term for biological process. To further evaluate the biological roles of the genes in the 

differential network, KEGG pathway analysis was performed. According to the KEGG 

analysis, Steroid biosynthesis was the most significant pathway (p=2.80 e-07). It contains ten 

genes in our network: TM7SF2, CEL, EBP, SQLE, LSS, SC5DL, DHCR24, FDFT1, 

SC4MOL and NSDHL. The relation of Steroid biosynthesis and prostate cancer is reported in 

many studies. The ligand activation of the androgen receptor plays an important role in the 

progress of castration-resistant prostate cancers. The similarities and differences from 

glandular androgen synthesis provide direction for the development of new treatments 

(Migita, 2009; Sharifi, 2012; Auchus, 2012; Ferraldeschi, 2013).  

The pathway with the second highest significance was the synthesis and degradation of 

ketone bodies pathway (p=1.63 e-03), which contains five genes: HMGCS2, HMGCS1, 

ACAT2, ACAT1 and HMGCL. In the study conducted by Lin et. al. (2005), synthesis and 

degradation of ketone bodies pathway found as up-regulated pathway in androgen-

independent CL1 cells (model for late-stage prostate cancer) when compared to androgen-

dependent LnCaP (model for early-stage prostate cancer) cells.  

We have also examined the other significant pathways, and found that Amino sugar and 

nucleotide sugar metabolism (Priolo, 2014), p53 signaling pathway (Chappell, 2012; Gupta, 

2012; Stegh, 2012), Butanoate metabolism (Stoss, 2008; Romanuik, 2010), Alanine, aspartate 

and glutamate metabolism (Priolo, 2014), and Axon guidance (Choi, 2014) pathways were 

shown to be associated with the prognosis of prostate cancer. In these pathways, the p53 

signaling pathway plays a critical role in cancer’s response to chemotherapy and tumor 

growth. Inactivation of the tumor suppressor gene p53 is widely observed in more than 50% 

of human cancers including prostate cancer. The disruption of the p53 signaling pathway is 

one of the vital turning point for the survival of advanced prostate cancer cells during 

therapies. By enabling DNA repair, it was observed that p53 blocks cancer progression by 

provoking transient or permanent growth arrest (Chappell, 2012; Gupta, 2012; Stegh, 2012). 

However, three pathways, Terpenoid backbone biosynthesis (hsa00900), Fructose and 

mannose metabolism (hsa00051) and Epithelial cell signaling in Helicobacter pylori infection 

(hsa05120), have not previously been related to prostate cancer.  

KEGG analysis for the largest independent subnetwork revealed much more interesting 

results that may show that it has the most important role in the prostate cancer. Axon 

guidance (hsa04360) pathway, which was also found significantly enriched in the whole 

differential network, is known to have tumor suppressor genes and therefore related with 

tumor growth. Axon guidance molecules are validated as tumor suppressor in the breast 

cancer and show promise as breast cancer diagnostic markers as well as potential therapeutic 

targets (Mehlen, 2011; Harburg, 2011). In the study conducted by Choi, axon guidance 

pathway was shown to be involved in prostate cancer tumorigenesis (Choi, 2014). In addition, 

Savli et al. reported that axon guidance signaling pathway was the most significant down-

regulated canonical pathway in prostate cancer (Savli, 2008). The second significantly 

enriched pathway was Fc gamma R-mediated phagocytosis (hsa04666). This pathway was 
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found as the highest significant pathway in prostate cancer and have been referred as being 

involved in the pathological development of prostate cancer (Jia, 2012). In the literature, the 

pathway endocytosis (hsa04144), was also found related with prostate cancer. The importance 

of understanding the regulation between signal transduction and endocytosis pathways, and 

also how the breakdown of this integrated regulation contributes to cancer development was 

emphasized (Bonaccorsi, 2007). 

In briefly, our top four strongest blind predictions were all validated in the literature. One can 

now experiment these top 4 hubs in LnCap cell lines to elucidate the role of them in prostate 

cancer considering our predicted targets of them. Additionally, KEGG pathway analysis on 

our androgen stimulated prostate cancer specific differential network has revealed outstanding 

results. According to the KEGG pathway analysis results, out of ten most significantly 

enriched pathways, seven of them are already known to have a strong association with 

prostate cancer. We have made our disease specific network inference with a blind prediction 

and it is mostly validated by the pathway analysis. We suggest that the three unrelated 

pathways with prostate cancer are promising candidate pathways that need to be 

experimentally investigated in order to reveal the relation of them with prostate. More 

interestingly, KEGG pathway analysis in the largest independent subnetwork of our androgen 

stimulated prostate cancer difnet, has revealed three pathways where all of them known to 

have strong association with prostate cancer. This shows the highly accurate performance of 

the differential network analysis tool dc3net. We considered that this largest subnetwork as 

the most important mechanism for prostate cancer in our androgen stimulated prostate cancer 

difnet.  

5. Conclusions 

The present study provided significant insight into the molecular mechanisms associated with 

prostate cancer. Furthermore, GO and KEGG pathway enrichment analysis identified 

numerous pathways that may have a role in the prostate cancer, and these findings may 

promote the better understanding about the molecular mechanism of this disease and also 

disclose potential targets for diagnostic and effective therapies. Some of our estimations in the 

androgen stimulated prostate cancer difnet may well be biomarkers or drug targets for 

prostate cancer and awaits biologist to perform wet-lab experiments on them. 
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1. Introduction 

The dc3net is an R package that infers direct physical interactions of differential gene 

networks from gene expression datasets of multiple conditions. This supplementary file 

exemplifies how to use the dc3net package and express detailed information on the several 

workflows with example data sets. The data sets used in this file are available through the 

dc3net R-package. In the below figure, we present the DC3NET algorithm as block diagram: 

 

Fig. 1. Schematic overview of the dc3net  
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2. Installation of the R package DC3NET  

Dc3net requires “R 3.2.x and later” and it depends on “c3net”, “igraph” and “RedeR” 

packages that can be installed from the CRAN and Bioconductor libraries. For the installation 

of dc3net, the user needs to follow some simple installation steps. 

1. To download and install dependent packages c3net, igraph and RedeR from CRAN 

and Bioconductor (execute in R): 

> 

> 

> 

> 

install.packages("c3net") 

install.packages("igraph") 

source("http://bioconductor.org/biocLite.R") 

biocLite("RedeR") 

2. Execute the installation command for dc3net within R from CRAN or as follows: 

> install.packages("https://github.com/altayg/dc3net/raw/master/dc3n

et_1.2.0.tar.gz", type="source", repos=NULL) 

3. For the instructions on the usage of dc3net, please check the user manual dc3net-
manual.pdf 

 

4. To load the library: 

> library("dc3net") 

3. General guidelines for using DC3NET 

A detailed explanation and workflow of DC3NET algorithm can be found in (Altay et al., 

2011). Therefore, we do not reproduce the open access text, but we briefly describe the 

DC3Net algorithm and explain the parameters we used on example data sets. 

The required inputs of the package are two different gene expression data sets, probe 

names and gene names. Users can also use pre-computed test and control mutual information 

(adjacency) matrices as input. Otherwise, the algorithm takes the two data sets and generates 

the matrices itself. The data sets need to be normalized together (e.g. using RMA) before 

using in dc3net. If the input data sets are precomputed mutual information matrices, then the 

algorithm skip this preprocessing step. The MI matrices are square adjacency matrices where 

the MI value corresponds to the weight of interaction for each gene pair. The diagonals are set 

to zero to ignore self-interactions. The next step is computing row wise ranked versions of 

these MI matrices in descending order. Here, rank 1 corresponds to the highest mutual 

information value in a row of the matrix. This ranked matrices will be used in comparing and 

filtering the networks at the comparison step. Then C3NET is applied to the test and control 

MI matrices to infer gene networks of direct physical interactions of test and control datasets 

independently.  

We integrated C3NET algorithm with DC3NET package, so we can use all functions of 

C3NET through DC3NET package’s all in one command. All in one command of DC3NET 

is as follows: 

> dc3net(data1, data2, probes, genes) 

where the first two data set inputs are test and control data sets, e.g. tumor data and healthy 

data, respectively. Optional input parameters, method, methodvalue, itnum, rankdif, percentdif, 
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rankdcom, and percentcom are available to control the network inference and decision 

filtering steps. Furthermore, there are two more parameters, which are probFiltered and 

visualization. We recommend enabling probFiltered function, since it eliminates the 

interactions between the probes of the same gene. Visualization function plots the output 

networks. The visualization parameter takes three values, “0” for disabling the plot, “1” for 

plotting differential network and “2” for plotting common network. Users can adjust the 

parameters through command line. The example command above is the simple usage of 

DC3NET with default parameters. 

The parameters that can be set are as follows: 

method=cutoff 

methodValue=0 

itnum=1 

rankDif=0 

percentDif=0.6 

rankdCom=0 

percentCom=0.85 

probFiltered=FALSE 

visualization=0 

 

The first three parameters, method, methodvalue and itnum, are belong to c3net package 

that are used to eliminate non-significant interactions (Altay and Emmert-Streib, 2010). The 

available options for method parameter are “cutoff”, “justp”, “rank”, “holm”, “hochberg”, 

“hommel”, “bonferroni”, “BH” and “BY”. methodValue and itnum parameters are dependent 

to method parameter. If the method is “cutoff”, methodValue can be zero or predefined cut-off 

value. Zero means that mean of upper triangle will be taken as cutoff. If the method is “justp”, 

methodValue and itnum (iteration number) parameters are need to be adjusted. For the “justp” 

method, methodValue corresponds to alpha value, e.g. 0.05. If the method is “rank”, 

methodValue is the rank number. Rank corresponds to the number of interactions that will be 

taken as significant starting from the highest MI value. The other options, “holm”, 

“hochberg”, “hommel”, “bonferroni”, “BH” and “BY” are multiple testing correction (MTC) 
methods. Users can apply MTC methods easily by setting the name of MTC method to the 

method parameter. If the selected method is one of the MTC method, then methodValue and 

itnum parameters are need to be adjusted as it were in “justp” method. The default method 

was set to “cutoff” that uses mean of upper triangle of MI matrices as a significance threshold.  
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The next four parameters, rankDif, percentDif, rankdCom and percentCom, are for the 

comparison step of dc3net. This is the core part of DC3NET that we compare the two 

networks to find differential networks, difnet and common network. The order of data1 and 

data2 is important since the first data set is test network and the second one is control 

network. If we change the order of input data sets, we find control difnet, which consists of 

interactions that appears only in the control case. It is also crucial since it shows the required 

interactions of healthy cell.  

In the comparison step of DC3NET, there are four conditions that all must be validated at 

the same time for an edge to be included in test difnet. Suppose that we check the potential 

interaction geneA to geneB to be included in difnet or not. As we stated above, we have been 

computed row wise ranked versions of the MI matrices in descending order. So we know the 

rank of interaction geneA to geneB in control MI matrix. The first parameter of DC3NET, 

rankdif, is the predefined cutoff parameter that checks the interaction between geneA and 
geneB is one of the top ranked interactions in control MI matrix or not. If the rank of geneA 

and geneB in the ranked control MI matrix is greater than the predefined cutoff parameter, 

rankdif, then the first condition becomes valid for deciding it as a difnet interaction. rankdif 

parameter can be adjusted to any value between 1 and number of rows of control MI matrix. 

However, if user wants a stricter difnet, then rankdif parameter needs to be adjusted to a 

greater value.  The second condition is the change in MI value of interaction from geneA to 

geneB in the control MI matrix. Here, algorithm uses MIdif value as the cutoff parameter. 
MIdif is defined as percentdif times the maximum MI value of the row of geneA in the control 

MI matrix. Default value for the percentdif parameter is 0.6. Depends on strictness of the 

differential network, user can increase or decrease the second cutoff parameter. The previous 

two conditions compared the interaction of geneA to geneB but we also need to compare the 

interaction of geneB to geneA. So the algorithm validates the first and second conditions also 

for the interaction of geneB to geneA. In this example, if four of the conditions are validated, 

then DC3NET infer this interaction as in test difnet and continue to perform same filtering 

process for all gene pairs in test network. 

Lets now start to describe the way that the algorithm infers the common network. Common 

network can be inferred by looking for all the same interactions between test and control 

network. However, this is a very strict way of inferring common network. So alternatively, 

one may consider the ranks and MI value decreases in the other data set. More broadly, users 

may follow the manner of the difnet process described above but change the comparison 

parameter, rankdif, from greater to less and for the percentdif from less to greater. 

Additionally, at this time, we only look at one of the two conditions, rather than all the four 

conditions together, from geneA to geneB or geneB to geneA. In the package, rankdcom, and 

percentcom parameters correspond to rank difference and MIdif for common network. 

Finally, DC3NET infers difnet and common network, and assign them to the output 
environment. Furthermore, the package plots the selected inferred network according to the 

visualization parameter. 
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4. Data structure 

4.1. Test data set 

Load the example test data set contained in the dc3net package: 

> data(tumorData) 

The object tumorData is a tumor data matrix that contains gene expression data for the 

prostate cancer patients. The sample size is 52. This data was obtained from Broad Institute 

(Sing et. al., 2002). Since the size of the original data set is more than 1 GB, we added 

randomly selected 500 gene subset of the original prostate cancer data set to the package. This 

data set can be found in data folder of the package with the filename “tumorData.rda”. The 

rows of the data set correspond to probes and the columns of the data set correspond to 

samples.  

The dimension of the TEST data set: 

> dim(tumorData) 

[1] 500   52 

4.2. Control data set 

Load the example control data set contained in the dc3net package: 

> data(normalData) 

The object normalData is a normal data matrix that contains gene expression data for the 

prostate cancer patients. The sample size is 50. This data was also obtained from Broad 

Institute (Sing et. al., 2002). The data set can be found in data folder of the package with the 

filename “normalData.rda”. The rows of the data set correspond to probes and the columns of 

the data set correspond to samples.  

The dimension of the CONTROL data set: 

> dim(normalData) 

[1] 500   50 

4.3. Probes 

Load the gene annotation using one of the input data set. Assign gene annotation to probes 

parameter: 

> probes <- rownames(tumorData) 

  

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2017. ; https://doi.org/10.1101/129742doi: bioRxiv preprint 

https://doi.org/10.1101/129742
http://creativecommons.org/licenses/by-nc/4.0/


 25 

4.4. Gene names 

Load the example vector of gene names contained in the dc3net package: 

> data(geneNames) 

The object geneNames is an R vector that contains the names of the genes inside data sets 

above. The size of the vector should be equal to the number of rows in your data sets. You 

should input gene names that correspond to the probes in data sets otherwise the output 

networks would be produced with probe names. If you can’t obtain the names of the genes, 

then you should run the dc3net command with putting gene annotation to third and fourth 

parameters e.g. Run dc3net without gene names: 

> dc3net(tumorData, normalData, probes, geneNames) 

5. LnCap example 

Here, we show step by step, how to reproduce Figure 2 of the main paper. In this example, the 

default parameters were used.  

> 

> 

> 

> 

> 

> 

 

 

library(dc3net) 

data(LnCapTumorData) 

data(LnCapNormalData) 

data(geneNames) 

probes <- rownames(LnCapTumorData) 

networks <- dc3net(LnCapTumorData, LnCapNormalData, probes, 

geneNames, method="cutoff", methodValue=0, itNum=1, rankDif=2000, 

percentDif=0.3, rankdCom=100, percentCom=0.6, probFiltered=FALSE, 

visualization=TRUE)  

This will compute differential and common networks with the parameters entered through 

command line. Both commands output differential network and common network tables that 

can be accessible by:  

Differential Network Table: 

> networks$DifNet 

Common Network Table: 

> networks$CommonNet 

Users can also access to computed mutual information matrices of test and control data by 

using networks$mimT and networks$mimC. Thus, users can use this precomputed mutual 

information matrices on the next run of the algorithm to save time.  

The example differential network can be seen in Table 1. In this table, first two columns show 

the names of the genes that their interactions are in differential or common network. The third 

column shows the mutual information values between genes. The interactions are sorted 

according to the mutual information values in descending order. So, the higher rank in the 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2017. ; https://doi.org/10.1101/129742doi: bioRxiv preprint 

https://doi.org/10.1101/129742
http://creativecommons.org/licenses/by-nc/4.0/


 26 

table corresponds to higher interaction. The other columns of the tables can be helpful to 

advanced users. The fourth column, i, is the row number of the first gene and fifth column is 

the row number of max partner gene with highest MI value. Sixth and seventh columns are 

probes of the genes. The next columns are control index, MI rate of the first gene, rank of the 

first gene, MI rate of the second gene, rank of the second gene in control matrix, respectively.  

DC3NET package is designed to inform users when operation continues. Some of the 

information are the parameters used, the cutoff value computed and dimensions of computed 

networks. One may easily tune parameters according to this information to obtain better 

results. The results of DC3NET can be validated through literature using R package, ganet. 

(Altay et al., 2013). 

Table 1. An example differential network output table of the dc3net (The first 10 rows) 

Gene1 Gene2 MIval 

LOC729384 SPRYD5 1.67144082 

ABCC4 ACSL3 1.53963137 

ORM1 TUBA3E 1.51528201 

SLC41A1 STK39 1.51417854 

TLL1 BCHE 1.47348983 

GLUD1 SEPP1 1.47247699 

ACSL3 IDH1 1.45508544 

CENPN ORM1 1.45459757 

NCAPD3 CXCR7 1.42480939 

C11orf92 UGT2B17 1.42160968 
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