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Position Effect Variegation in natural populations not
explained by common variation in known modifiers
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ABSTRACT Changes in chromatin state may drive changes in gene expression, and it is of growing interest to understand the
population genetic forces that drive differences in chromatin state. Here, we use the phenomenon of position effect variegation
(PEV), a well-studied proxy for chromatin state, to explore the genetic architecture of natural variation in factors that modify
chromatin state. While previous mutation screens have identified over 150 suppressors and enhancers of PEV, it remains
unknown to what extent allelic variation in these modifiers mediates inter-individual variation in chromatin state. Is natural
variation in PEV mediated by segregating variation in known Su(var) and E(var) genes, or is the trait polygenic, with many
variants mapping elsewhere in the genome? We designed a mapping study that directly answers this question and suggests
that the bulk of the variance in PEV does not map to genes with prior annotated impact to PEV. Instead, we find enrichment of
top P-value ranked associations that suggest impact to active promoter and transcription start site proximal regions. This work
provides a quantitative view of the role naturally segregating autosomal variants play in modifying PEV, a phenomenon that
continues to shape our understanding of chromatin state and epigenetics.
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Chromatin states, through their impact on chromatin accessi-
bility and gene expression have clear evolutionary impor-

tance (Schulze and Wallrath 2007). The ModEncode project has
generated valuable data for use in understanding determinants
of chromatin states (modENCODE Consortium et al. 2010). This
has generated genome-wide assessment of chromatin features
and led to identification of broad chromatin features with func-
tional consequences (Filion et al. 2016; Kharchenko et al. 2011;
Ernst and Kellis 2012). Despite rapid progress in chromatin bi-
ology, we still know little about naturally segregating variants
and involvement in generating differences in chromatin states
among individuals. Any natural variant that serves to impact
chromatin state may be a target of natural selection, and it is of
great interest to understand population genetic forces that drive
differences between chromatin features of individuals.

Originally discovered by H. J. Muller, PEV has long been
studied in Drosophila melanogaster and is widely accepted as a
valuable tool in understanding dynamics of chromatin state and
gene expression, especially with regards to the boundary be-
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tween heterochromatin and euchromatin. The most commonly
used form of PEV is the result of a specific X chromosome in-
version, whitemottled-4 or simply wm4 (Muller 1930), that relocated
the normally euchromatic white gene next to pericentromeric
heterochromatin. The molecular impact of this relocation is now
understood to be a spreading of chromatin factors that results in
altered chromatin structure and gene silencing of white without
known modification to coding sequence (Wallrath and Elgin
1995). Depending on the genomic background, the phenotypic
manifestation of this particular silencing is mosaic across the
facets of the eye, resulting in a “mottled” eye phenotype with
local clones of cells in each eye showing an apparently stochastic
response. Of significance, PEV is triggered by gene-chromosome
rearrangements in many organisms, producing modified gene
expression as a result of modified chromatin environment (Gir-
ton and Johansen 2008; Elgin and Reuter 2013).

Manifestation of PEV in the Drosophila eye allows for ease
of visible phenotyping and has generated a large body of work
leading to the discovery of numerous PEV modifying factors,
both genetic and environmental, that also impact chromatin
states. These modifiers are typically described as positively in-
fluencing gene expression at the wm4 locus, termed suppressor
of variegation, or Su(var), or negatively influencing gene expres-
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sion at wm4, termed enhancer of variegation, or E(var). Screens
for modifiers have identified over 150 loci that modify PEV
(Ebert et al. 2004). Two such well characterized modifiers of PEV
and chromatin include Su(var)3-9 and Su(var)2-5. Su(var)3-9, a
histone methyltransferase with action on histone H3 at lysine 9,
helps to form heterochromatin (Schotta et al. 2002). Su(var)2-5
or HP1a interacts with Su(var)3-9 to uniquely bind distinct re-
gions of the genome (Greil et al. 2003) and is required for the
spread of heterochromatin (Hines et al. 2009). It is important to
understand, however, that the vast majority of these modifiers
have been identified through mutation screens and may or may
not represent loci harboring natural variation that impact the
PEV phenotype. Despite the extensive literature on modifiers of
PEV, there is currently little information on natural variation and
impact to chromatin state between individuals and populations.

Genome-wide association studies (GWAS) initially gained
favor in human studies as a way to perform a relatively unbiased
search for common natural variants involved in a phenotype of
interest. Using sets of inbred reference lines of D. melanogaster,
GWAS has proven to be a powerful resource for generating un-
biased, data-driven hypotheses, where a genome-wide search of
candidate loci may be coupled with the extensive functional an-
notation and genetic tools already available. The Drosophila Ge-
netic Reference Panel (DGRP), a collection of genome-sequenced
inbred lines of D. melanogaster (Mackay et al. 2012; Huang et al.
2014), has become a handy resource for initial GWAS screens
with Drosophila. Several groups have already successfully used
the resource to identify novel variants involved in a wide range
of traits, including; sleep (Harbison et al. 2013), leg development
(Grubbs et al. 2013), sperm competition (Chow et al. 2012), host-
microbiota interaction (Dobson et al. 2015), fecundity and fitness
(Durham et al. 2014) and nutritional indices (Unckless et al. 2015).

To better understand the underlying genetic architecture of
segregating natural variants involved in heterochromatin dy-
namics, we performed GWAS on F1 progeny of DGRP lines
crossed to wm4, a line bearing an X-linked inversion that dis-
plays PEV of the white eye phenotype. PEV was quantified by
novel digital image analysis of visible images captured with a
dissecting microscope. Despite this detailed work, we find little
evidence of association for segregating variants within known
Su(var) and E(var) genes. However, we do find variants having
association with PEV to be over-represented in regions having a
chromatin state indicative of active promoter and transcription
start site (TSS)-proximal features. Furthermore, a comprehen-
sive search across binding sites for factors that modify chromatin
state link numerous binding sites to PEV-associated variants, em-
phasizing regions with bi-stable chromatin states. Altogether,
the evidence suggests autosomal natural variation interacts with
PEV through numerous, small effect loci that are enriched for TF
binding and sites of open chromatin, implying influence through
gene expression or subtle changes to chromatin balance.

Materials and Methods

Drosophila stocks
Lines from the Drosophila Genetic Reference Panel (DGRP)
(Mackay et al. 2012) were a gift of the Mackay lab. 1712 (Bloom-
ington), which harbors the whitemottled-4, In(1)wm4 or simply, wm4,
locus on the X chromosome and a second chromosome deletion
and balancer, Df(2L)2802/CyO, was used to assess variegation
across the DGRP population. Canton-S and mutant eye color
stocks, 245 (bw1) and 3605 (w1118) (Bloomington) provided bio-
logical context in our eye color phenotype assay. All flies were

maintained on a standard cornmeal-molasses-sucrose-yeast me-
dia and kept at 25°C on a 12-hour light/dark cycle.

Experimental cross
In each of two replicate vials, ten males from each DGRP line
were crossed to three virgin females of the 1712 stock and al-
lowed to mate for one day. Mated 1712 females were then trans-
ferred to new food, allowed to lay eggs, and removed from the
vial after five days. Variegating male progeny segregated into
two phenotypic classes based on the second chromosome, curly
winged (CyO) and non-curly winged (Df(2L)2802), and were
aged at least four to eight days before imaging.

Image capture and eye color quantification
The left or right eye was randomly selected from each adult male
and imaged using an Olympus SMZ-10 dissecting microscope
with an attached Cannon Rebel 6 megapixel digital camera in
a windowless room. Images were captured and stored using
software from the camera manufacturer. On average, 17.5 eyes
(standard deviation = 9.2) were imaged from each line, resulting
in a total of 3966 images across all lines and second chromo-
some combinations. A standard gray card (Kodak, 18% gray)
was imaged before and after each set of conditions to normalize
against fluctuating light conditions. Ommatidia from images
were isolated using a pipeline built in Cell Profiler 2.0 (Lam-
precht et al. 2007) and visually inspected. Images that failed to
process were individually assessed and isolated in Photoshop.
Isolated ommatidia and standard gray card images were then
processed using custom scripts in R (R Development Core Team
2008). Ommatidia image files were separated into red, green,
and blue color channels and values were bounded between 0
and 1. Color channel values from each pixel of every image were
normalized against the mean value of individual color channels
from matched gray card pairs according to a generalized gamma
adjustment using the formula,

Vγ = Vout; where γ =
log 0.82

log s

where s is the individual mean color channel (red, green or blue)
for the gray card imaged before and after samples. 0.82 refers to
the idealized 18% gray card value in RGB color space. V is the
color channel value for an individual pixel within the image, γ is
the normalizing function, and Vout is the normalized color value.
The final summarized output for each eye and image resulted in
three values, including the mean of each normalized red, green
and blue color channel. We show that these descriptive values
sufficiently separate individuals for our purposes.

Statistical analysis of phenotype
All subsequent analysis was performed in R (R Development
Core Team 2008). The mean red, green and blue color values
for each image were used input for Principal Component Analy-
sis (PCA). Eye groups were assessed using MANOVA and the
formula,

Ypc1,pc2,pc3 = µ + S + e

where Y is PC1, PC2 and PC3 from each image, and S is the stock
of origin (Canton-S, 1712, 245 or 3605). Differences between
experimental groups were assessed using a linear model to fit
the principal components from each image with the formula,

Y = µ + L + C + V + LxC + e

2 K. Kelsey et al.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 24, 2017. ; https://doi.org/10.1101/129999doi: bioRxiv preprint 

https://doi.org/10.1101/129999
http://creativecommons.org/licenses/by-nc/4.0/


where Y is either PC1, PC2 or PC3, L is the DGRP line of origin,
C is the second chromosome background (CyO or Df(2L)2802),
and V is the replicate vial (A or B). Proportion of variance for
each effect is calculated as,

eta2 =
SSe f f ect

SStotal

where SS is the sum of squares. Broad-sense heritability (H2)
was calculated using,

H2 =
Vg

Vp

and based on the linear model,

Y = µ + L + e

where Y is a single principal component and single second chro-
mosome background combination, and L is the DGRP line of
origin. The proportion of variance explained by line differences
was considered the variance attributed to genetic components
(Vg), and the total variance of the sample was considered the
variance attributed to phenotype (Vp). For each second chromo-
some background, H2 was summed across the three principal
components and weighted according to the proportion of vari-
ance explained by each PC (Table S1).

Genotypes and association testing
Genotypes and annotation for DGRP lines were downloaded
from the website, dgrp.gnets.ncsu.edu, and all variants and find-
ings are reported using build BDGPR5/dm3. As others have
observed, the DGRP lines display small amounts of cryptic ge-
netic relatedness (Huang et al. 2014; He et al. 2014). Here, we
used GEMMA (Zhou and Stephens 2012) to both estimate a cen-
tered genetic relatedness matrix (GRM), accounting for cryptic
relatedness, and implement the univariate mixed linear model
(MLM). PC1 from each of the two experimental populations
(CyO and Df(2L)2802 second chromosome backgrounds) was
used as separate input, providing two independent sources of
association values. Males were regressed on each variant using
single marker association (SMA). Variants were treated as a fixed
effect and the GRM was included as a random effect. Effect size
was determined using the function, pes, within the R package
compute.es (Del Re 2013). 107 lines were used with a CyO sec-
ond chromosome background and 109 lines were used with a
Df(2L)2802 second chromosome background. Testing was per-
formed across 775,689 (CyO) and 928,587 (Df(2L)2802) bi-allelic
variants (SNPs and indels) with a MAF of 0.05 or greater. Due
to the high correlation between phenotype and top associations
of the two experimental populations, subsequent analysis was
performed using only the Df(2L)2802 GWA data. Bootstrap anal-
ysis was used to generated expected site class frequencies. Site
classes were counted from 1,000 randomly selected common
variants, and an expected distribution was achieved through
10,000 iterations of resampling. For variants with more than one
annotated class, only one class was selected and priority was
ranked as follows; nonsynonymous > ncRNA > synonymous >
UTR > intronic > intergenic. The prop.test in R was used to as-
sess the proportion of exonic variants that were nonsynonymous
between observed counts in the variants with top associations
and expected counts through sampling.

Candidate gene analysis
Candidate genes were selected based on known involvement
in chromatin modification. Genes were identified in Flybase
using the term “Modifier of Variegation.” Location of each gene
was extracted from Flybase and SNPs within the gene and +/-
2 kb of the gene were examined using the above mixed linear
model for each SNP. Bootstrap analysis was used to generate
an expected Site Frequency Spectrum. Proportions of variant
frequencies were tallied by selecting 1,000 variants at random
and then binning into allele frequency groups of 0.05. An ex-
pected distribution was achieved through 10,000 iterations of
resampling. Bootstrap analysis was used to generate an expected
distribution of segregating sites with sets of genes. Total number
of segregating sites (within ±2 kb) were counted within sets of
105 randomly selected genes throughout the autosomal genome
and normalized by number of base pairs summed across the full
set. The expected distribution of proportion of segregating vari-
ants was then achieved through 10,000 iterations of resampling.

Genomic analysis
The 9-state genome-wide combinatorial chromatin state an-
notation is described in Kharchenko et al. (2011) and annota-
tion files were sourced from www.modencode.org. Expected
9-state distributions were generated in the experimental popula-
tion through sampling autosomal variants for state assignment.
1,000 variants were randomly selected and chromatin states
were counted. This process was repeated 100 times. ChIP-chip
and ChIP-seq files were also downloaded from ModENCODE
(www.modencode.org). If replicate samples existed, only one
file was randomly selected for analysis and composite files, if
they were made available, were used instead of individual sam-
ples. Comparison between the expected distribution of variants
within binding sites and variants enriched with associations to
PEV was performed as described above. 1,000 autosomal vari-
ants were selected at random and variants within binding sites
were counted. The distribution of counts, as generated through
10,000 iterations, was then compared to observed counts from
1,000 of the top P-value ranked associating variants. A full list
of factors with respective ModENCODE IDs and observed and
expected counts has been made available (File S3).

Data Availability
Original eye images are available upon request. File S1 contains
PEV phenotype values. File S2 contains a full list of variants
with respective association P-values. File S3 contains observed
and expected counts of top PEV associations within annotated
chromatin features.

Results

Image analysis captures multidimensional color space
Pigments in the eye of D. melanogaster are synthesized by two,
well-characterized metabolic pathways (Summers et al. 1982).
These pigments are typically quantified through separate extrac-
tions based on chemical properties (Ephrussi and Herold 1944).
Often, only a single extracted pigment is used to describe eye
color, and, although useful for detecting general differences, this
method results in considerable loss of information. Even casual
inspection of eye color patterns that manifest PEV reveals a far
more complex range of differences, including pigment inten-
sity, different hues of pigmentation including yellow, orange,
brown and red, and variation in patch size and morphology. To
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better capture the multidimensional aspects of eye color and
PEV, and improve mapping, we developed an imaging method
that retains and fully describes eye color within a single assay
(see methods). Eye-color stocks (Figure 1A) were imaged and
Principal Component Analysis (PCA) using the values from the
individual red, green and blue color channels, of each image, suf-
ficiently described the multivariate data. Non-pigmented (white)
and pigmented stocks (bw1, wm4, and Canton-S) exhibited large
differences described by principal component 1 (PC1), and pig-
mented stocks (bw1, wm4, and Canton-S) exhibited differences
primarily described across principal component 2 (PC2) (Figure
1B). PC1 accounted for 87.4% (s.d. = 24.4%) of variance in the
data and PC2 accounted for 12.5% (s.d. = 9.2%). Component
loadings provide detail on how each color channel contributes to
the dispersion of the data, where blue and green channels have
a similar impact on PC1 (-0.72 and -0.68, respectively) while
the red channel has a minor impact (-0.12). This is in contrast
to PC2, where the red channel is the primary driver (0.94) and
blue and green channels have minor roles (-0.30 and 0.15, re-
spectively). MANOVA using PC1 and PC2 from each individual
image highlights the ability of this approach to discriminate
across eye groups of the four stocks (P-value < 2.2x10-16).

Natural variation in background genetic effects on white-
mottled-4 expression
To quantify natural variation in PEV, we made use of the
Drosophila Genetic Reference Panel (DGRP). The PEV pheno-
type was expressed by crossing males from inbred DGRP lines
to virgin females carrying the white-mottled-4 (wm4) allele on the
X chromosome. F1 variegating males were identical across a
single X, third and fourth chromosome, segregating according to
one of two second chromosomes and varying with respect to a
full haplotype from each of the DGRP lines assayed (Figure S1).
The two second chromosomes differ primarily with respect to
an approximate 200 kb deletion in 25F2-25F5 (Df(2L)2802) on the
non-balancing chromosome and an inversion on the balancing
chromosome (CyO). Experimental F1 progeny exhibited a wide
range of eye pigmentation differences, showing variation that
spanned a complete lack of pigmentation to eyes that were heav-
ily pigmented (Figure S2). The quantitative image assay further
detailed a broad phenotypic spread in PEV with PC1 and PC2
values spanning between an eye mutant that lacks pigmentation
(white) and mutants of known pigment deficiencies (Figure 1B).
Reapplying PCA to just the mean red, green and blue color val-
ues of images from each of the F1 variegation males, indicates
that PC1 captures the vast majority of variance in the experimen-
tal data, 97.4% (s.d. = 18.6%), while PC2 and PC3 only describe
a small proportion of variance, 2.4% (s.d. = 2.9%) and 0.2% (s.d.
= 0.9%). Using PCA on color images of PEV individuals, effec-
tively allows the simplification of a multivariate data source to
a single describing variable, PC1, with minimal, 2.6%, loss of
data and provides a robust univariate phenotype for association
mapping.

ANOVA using individual PCs provides an assessment of
importance ascribed to each of three experimental variables;
among line differences, second chromosome differences and
replicate environments (Table 1). Adjusted values show that
combined genetic components explain 79.6% of the phenotypic
variance, where second chromosome differences separately ex-
plained 49.5% of the variance, among-line variation (our source
of natural variation) explained 27.4% of the variance and 2.7%
of the variance was explained through genetic interactions of

Figure 1 (A) Examples of imaged eyes from various Drosophila
melanogaster alleles; (a) w1118, (b) wm4 with the Df(2L)2802 sec-
ond chromosome, (c) wm4 with the CyO second chromosome,
(d) bw1, (e) wm4 with Df(2L)2802/CyO, and (f) Canton-S. (B)
Scatter plot of PC1 and PC2 values for mutant and experimen-
tal PEV eyes. Black and white points represent individual
images and average values of eye colors from stocks; (a) wm4,
(d) bw1, (e) wm4 with Df(2L)2802/CyO, (f) Canton-S. Experi-
mental individuals with just the Df(2L)2802 (periwinkle), in
general, show greater variegation and eyes that are closer to
the w1118 allele (a), an eye that lacks pigmentation. Experimen-
tal siblings with the CyO allele (red) show less variegation, or
more pigmentation. (C) Boxplot of PEV summarized by line
(x-axis) and separated by second chromosome, Df(2L)2802
(periwinkle) vs. CyO (red). PEV is represented PC1 (y-axis),
where lower values indicate less pigmented eyes and higher
values indicate more pigmented eyes. Among-line variance is
greater than within-line variance, suggesting natural genetic
variation is involved in observed differences in PEV.

second chromosome background and individual lines. Partition-
ing the sample by presence/absence of the second chromosome
deficiency provides two separate measures of broad-sense heri-
tability (H2) given different genetic backgrounds. Among-line
differences explained over half of the phenotypic variance, 59.4%
and 57.4%, for each of the populations with CyO and Df(2L)2802
second chromosome backgrounds (Table S1). These data suggest
that the bulk of the observed variation in PEV is attributed to
segregating genetic variants among the naturally derived DGRP
haplotypes.

When comparing second chromosome backgrounds, lines
showed strong positive correlation in PEV between PC1 val-
ues (Pearson correlation of 0.84), where the Df(2L)2802 second
chromosome acts a clear E(var) with respect to the CyO second
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Table 1 Partitioning the variance in PEV attributed to genetic and environmental factors

Principal Component 1 Principal Component 2 Adjusteda

Variable Proportion of
variance

P-value Proportion of
variance

P-value Proportion of
variance

Among line 27.7% < 1.0x10-22 15.3% < 1.0x10-22 27.4%

Second chromosome 50.9% < 1.0x10-22 < 0.1% 0.88 49.5%

Vial < 0.1% 0.33 < 0.33% 1.6x10-6 < 0.1%

Among line x second chromosome 1.9% < 1.0x10-22 31.2% < 1.0x10-22 2.7%

Within line and Residuals 19.5% - 53.2% - 20.4%

a Adjusted values are calculated by summing across each specific variable as weighted by the proportion of the variance explained by each PC; 97.4% (PC1), 2.4% (PC2) and
0.2% (PC3). PC3 is not shown above as it explains a negligible amount of the variance in the data.

chromosome balancer; showing greater variegation, or less pig-
mented eyes, in nearly all lines (Figure S3). Although not the
focus of this study, it is important to recognize that individuals
differing only by second chromosome accounted for almost half
(49.5%) of the phenotypic variance observed, considerably more
than explained through natural variation. The consequences
of this highlight two potential scenarios. First is the possibility
of an unannotated mutation in either a Su(var) or E(var) be-
tween the second chromosomes. A second possibility is that the
totality of the deletion on Df(2L)2802, an approximate 200 kb
deletion, acts to enhance variegation through a sponge or sink
model, similar to what is proposed to occur with the Y chromo-
some (Francisco and Lemos 2014); suggesting general amounts
of DNA (or chromatin) can act to suppress or enhance the PEV
phenotype. We cannot distinguish these possibilities.

Genome-wide Association testing
To assess the contribution of segregating variants to PEV, sin-
gle marker analysis (SMA) was performed genome-wide using
variegating F1 males from crosses between DGRP lines and the
wm4 reporter. Full haplotypes from each of the distinct DGRP
lines provided source variation for association mapping. PC1
from each of the two second chromosome populations were
used as separate input into a univariate mixed linear model
(MLM) accounting for cryptic relatedness (He et al. 2014). Test-
ing was performed across common bi-allelic variants (SNPs and
indels, MAF ≥ 0.05) using haplotypes extracted from DGRP
chromosomes 2, 3 and 4. The X chromosome, carrying the
wm4 reporter, was invariant across experimental populations.
Quantile-quantile (Q-Q) plots indicate P-values from each exper-
imental population overall conform well to the null distribution
(Figure S4). Effect sizes follow a trend where Cohen’s d increases
as MAF decreases (Figure S5). A comparison of the P-value rank
ordered 1,000 top associations shows 75.3% overlap between
the two experimental populations, consistent with a strong cor-
relation in PEV between the two groups. The top-ranked as-
sociations are enriched for variants that are located in exons,
UTRs and ncRNAs, with reduced representation within intronic
and intergenic regions (Figure S6). A comparison of exonic sites
further shows no significant difference between proportions
of nonsynonymous variants in top associations compared to
expected (proportion test, P-value = 1), suggesting a broad in-
fluence to functional elements of the genome and not strictly
toward nonsynonymous variants. In addition, of the 10 variants
with the smallest P-values in both sets of associations, only two

variants were identified as resulting in a missense mutation and
both variants showed weakened association between the inde-
pendent GWAS samples. Among the smallest P-values, only two
variants were identified as resulting in a missense mutation and
both showed reduced association across independent GWAS
samples (Figure S2). Despite many variants identified as having
an effect size greater than or equal to 1 and with enrichment
proximal to functional regions, our small sample sizes, substan-
tial background effect on phenotype, as noted through second
chromosome differences, and abundance of multiple variant
classes in top associations reduce confidence in traditional func-
tional follow-up. A full list of variants with association P-values
has been made available (File S2)

Common variants within known autosomal PEV modifiers fail
to fully account for among-line differences
Despite low power to identify individual causal variants with
high confidence, an extensive literature on known genic mod-
ifiers of PEV affords the opportunity to assess significance of
ensembles of variants. To quantify the impact of naturally occur-
ring polymorphism in known modifiers of PEV, we identified
variants in Su(var) and E(var) genes. The term, “Modifier of
Variegation” was searched within FlyBase, and over 200 genes
satisfied this criterion. As our experimental setup resulted in
individuals sharing a common X chromosome, the set of modi-
fiers was reduced to 105 autosomal genes (Table S3). Variants
within, or extending ±2 kb of identified autosomal modifiers
were grouped and results from the above SMA were used. 16,640
total variants (6,153 having MAF ≥ 0.05) were identified in
autosomal modifiers of PEV within the 109 lines having the
Df(2L)2802 second chromosome background. Importantly, of
common variants (MAF ≥ 0.05) in this reduced set of PEV genes,
only 5 were also identified in the top 1,000 genome-wide SMA
hits, making up less than 0.5% of top associated variants. These
five variants hold overall P-value ranks of 379, 553, 772, 820 and
821, indicating that a majority of natural variants with likely im-
pact to phenotypic variance of PEV do not reside in or near genes
with known impact to PEV. GCTA was used to assess cumulative
statistical explanation of phenotypic variance (Yang et al. 2011).
Top variants identified through GWA, rank-ordered by P-value,
explained a far greater proportion of among-line variance than
variants within known genic modifiers (Figure 2 and Figure S7).
The 1,000 top ranking overall variants statistically explained
93.7% of variance due to genetic differences and the 1,000 top
ranking variants in known PEV genes explained considerably
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less at 56.0%. These sets are both compared to variants randomly
drawn from the autosomal genome which explained, on average,
2.3% (standard deviation = 2.7%) of phenotypic variance.

Figure 2 Proportion of between-line phenotypic variance ex-
plained within the Df(2L)2802 second chromosome population
using GCTA. Comparisions between SNP groupings include;
the most significant GWA variants (black line), top hits exclud-
ing variants from known PEV modifiers (red line), variants
within know PEV modifiers only (blue line), and randomly
selected autosomal variants (gray line).

Although there is strong evidence for involvement of genes
from table S3 in PEV, there is little data indicating natural vari-
ation within these genes is responsible for differences in PEV
among lines. This is not completely surprising however, as
many known Su(var) and E(var) genes show conservation across
species (Fodor et al. 2010), suggesting little room for variation
in coding sequence. Indeed, two additional pieces of data fur-
ther explain the lack of association with variants in known PEV
modifiers and suggest purifying selection within the modifiers.
The observed site frequency spectrum (SFS) within the experi-
mental population shows an increase in low MAF variants and a
decrease in variants ≥ 0.05, compared to sets of genes randomly
selected from the autosomal genome (Figure 3A). Finally, known
PEV modifiers exhibit a paucity of segregating sites compared
to an expected distribution, having fewer segregating sites than
99.7% of gene sets randomly selected from autosomes (Figure
3B).

Chromatin and feature enrichment of top associations
As we see little evidence for association within known Su(var)s
and E(var)s, we then ask if other genomic features show an
over-representation of association with PEV. Chromatin features
correlate with functional elements of the genome (modENCODE
Consortium et al. 2010), and are a natural link to PEV. We next
asked if particular chromatin states were over or underrepre-
sented in the top P-value ranked associations. Using a previ-
ously built combinatorial 9-state (c1-c9) chromatin assignment

Figure 3 Variants within known autosomal PEV modifiers
compared to expected distibutions. (A) Site Frequency Spec-
trum (SFS) of variants within known autosomal modifiers of
PEV (black) and variants within sets of randomly selected au-
tosomal genes (gray). Error bars reflect the standard deviation.
(B) Proportion of known autosomal PEV modifiers that con-
tain segregating sites compared to sets genes drawn randomly
10,000 times. The shaded area highlights 95% of the expected
distribution. 99.7% of randomly selected gene sets contain a
greater proportion of segregating sites than 105 known genic
PEV modifiers.

from S2 and BG3 cells (Kharchenko et al. 2011), we queried all
chromatin states for an over-representation of associations to
PEV. First, we generated an expected proportion of chromatin
states using all autosomal variants (Figure S8). We then selected
the top 1,000 SMA variants, as rank-ordered by P-value, and
compared the represented chromatin state proportions to the
genome-wide distribution. We found an over-representation of
chromatin state c1 using data from both BG3 and S2 cells (> 1
standard deviation) and lowered representation of chromatin
state c4, c6 and c7 (< 1 standard deviation). Chromatin state c1
is described as representing active promoter and transcriptional
start site (TSS)-proximal regions and consists of regions having
H3K4me2, H3K4me3 and H3K9ac histone marks.

Given that chromatin states are correlated with factors that
influence function across the genome, we next performed an
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unbiased query of individual ChIP-chip and ChIP-seq data also
made publicly available through the modENCODE project (mod-
ENCODE Consortium et al. 2010; Kharchenko et al. 2011). This
dataset is comprised of hundreds of factors sampled across a
full range of developmental stages, with a bulk of the data com-
ing from S2 and BG3 cells. Again, for each chromatin factor
with prior data, we generated the null distribution of variants
expected to exist within each site if randomly drawn from the all
autosomes (Figure S9). Variants from the top ranked associations
were then compared to expected and assessed for enrichment.
We note that several features displayed a strong enrichment
with PEV associated variants, including histone modifications,
transcription factors and non-transcription factors. We repeated
these tests for an over-representation of chromatin state, c1,
where sites from all three histone marks, H3K4me2, H3K4me3
and H3K9ac are enriched with top associations (Figure 4). We
also observed enrichment for binding sites of know PEV factors,
such as JIL-1 (Lerach et al. 2006), LSD1 (Di Stefano et al. 2007),
BEAF-32 (Gilbert et al. 2006), among others. Further, we note
enrichment of top ranked associations in sites that suggest natu-
ral variation has a particular impact on TSS regions that show
a "balanced" or "bistable" chromatin state. Bistable chromatin
sites are sites that may be influenced to either exhibit active or
repressed gene expression. We note statistically significant dif-
ferences in nearly all bound factors that strongly characterize
bistable sites; ASH1, H3K4me1, H3K4me2, H3K4me3, RNA Pol
II, including depletion of H3K27me3 (Kharchenko et al. 2011).
The over-representation of associations in sites bound by known
chromatin modifiers suggests that natural autosomal variation
interacts with chromatin dynamics and PEV through influenc-
ing genome-wide expression rates or chromatin state occupancy
and balance, not through altering protein function of individual
genic modifiers.

Remarkably, these findings have precedent in the PEV sys-
tem and fit extremely well with prior findings indicating a key
driver behind mosaic features of variegation is a bistable equilib-
rium between TF binding and heterochromatin content (Ahmad
and Henikoff 2001). Here, it was found that by simply varying
levels of a GAL4 transcriptional activator to a heterochromatin-
embedded promoter, heterochromatin state could be disrupted.
In the model proposed, termed The Site Exposure Model of
Variegated Silencing (Widom 1999; Ahmad and Henikoff 2001),
kinetics of DNA-histone contact dictate ability of a TF to bind a
promoter or enhancer feature, and thus influence gene expres-
sion. Features that increase contact between TF binding and
activator, include changes to TF abundance or changes to TF
binding efficiency such as through mutated underlying binding
sequence, changes to nucleosome occupancy (observed through
histone and chromatin marks), or changes to abundance of TF
guide molecules. Applied to our study, this suggests that each
individual shows differences in PEV due to a large number of
sites that impact expression rates of factors that then impact
binding efficiency of TFs at the wm4 locus. This model also
predicts that changes to chromatin content, i.e. an increase or
decrease in heterochromatin, can in turn impact sensitive loci
throughout the genome and influence gene expression. Indeed,
this fits with observations that differing natural Y chromosomes,
a giant source of heterochromatin, impact gene expression in
autosomes (Lemos et al. 2008, 2010).

Figure 4 Observed enrichment of variants with association
to PEV and chromatin features from S2 cells only. Black bars
represent 95% of the expected distribution and gray bars rep-
resent the left and right 2.5% tails of the distribution. Numeric
values are the average number of variants expected to fall
within each chromatin feature. Observed counts from variants
within the 1,000 top P-value ranked associations are repre-
sented in red. Only features with observed values in the 5%
tails of the expected distribution are shown. False Discovery
Rate (FDR) was used to assess statistical significance across the
multiple tests, and significant values are noted.

Discussion

We designed an assay to identify autosomal non-recessive vari-
ants involved in differences in PEV between naturally derived
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lines of Drosophila melanogaster. Despite large PEV-induced pig-
mentation differences between phenotyped lines, we find little
evidence for involvement of polymorphic sites within known
Su(var) and E(var) genes that contribute to these differences in
PEV. Our top SMA associations further indicate that natural dif-
ferences in response to PEV are not the primary result of changes
in protein function among lines. We instead find that regions of
enriched association to PEV are over-represented for promoter
and TSS-proximal regions with an additional emphasis on sites
that display bi-stable chromatin features. This suggests that
autosomal interactions with differences in PEV, i.e. differences
in heterochromatin dynamics, are the combined result of many
small effect loci that accumulate differences and are linked to
modified rates of transcription, either through small changes to
specific TF binding sites or broad changes in chromatin state and
chromatin mark distributions. Furthermore, our data fit the Site
Exposure Model of Variegated Silencing (Ahmad and Henikoff
2001), where a variegated state is the result of bistable features
between TF binding and chromatin features. However, as the
effect sizes for all associated variants are small, the combined set
of variants likely do not fully explain differences in PEV across
our sample set; indicating there is yet unobserved genetic vari-
ation that accounts for differences among lines. It is important
to note that this query of natural variation was not exhaustive
and only considered autosomal variants with a particular focus
on common variants. We reasoned that a heterozygous screen
would be informative, because most Su(var) and E(var) allelic
effects are dominant, but we note there is every reason to be-
lieve that recessive genetic modifiers of PEV exist also and were
missed in our screen. Importantly, we did not query GxG in-
teractions or Y-linked variants, known contributors to PEV and
gene expression differences in natural populations (Lemos et al.
2008, 2010). Finally, it is important to consider that the autoso-
mal loci identified here only show correlation with differences
in PEV; it is not known at this time if these loci represent drivers
or are instead the consequence of differences in heterochromatin
dynamics.

Acknowledgments

We thank Dan Barbash and Jason Mezey for thoughtful critique
and comments throughout all stages of the work. Several mem-
bers of the Clark lab provided support through general discus-
sion and expertise, including; Jen Grenier, Clement Chow, Rob
Unckless, Julien Ayroles, Angela Early and Grace Chi. This work
was supported by R01 GM119125.

Literature Cited

Ahmad, K. and S. Henikoff, 2001 Modulation of a transcrip-
tion factor counteracts heterochromatic gene silencing in
Drosophila. Cell 104: 839–847.

Chow, C. Y., M. F. Wolfner, and A. G. Clark, 2012 A large neu-
rological component to genetic differences underlying biased
sperm use in Drosophila. Genetics 193: 177–185.

Del Re, A. C., 2013 compute.es: Compute effect sizes. R Package
http://cran.r-project.org/web/packages/compute.es.

Di Stefano, L., J.-Y. Ji, N.-S. Moon, A. Herr, and N. Dyson, 2007
Mutation of Drosophila Lsd1 disrupts H3-K4 methylation, re-
sulting in tissue-specific defects during development. Current
Biology 17: 808–812.

Dobson, A. J., J. M. Chaston, P. D. Newell, L. Donahue, S. L.
Hermann, D. R. Sannino, S. Westmiller, A. C. Wong, A. G.

Clark, B. P. Lazzaro, and A. E. Douglas, 2015 Host genetic
determinants of microbiota-dependent nutrition revealed by
genome-wide analysis of Drosophila melanogaster. Nat. Com-
mun. 6: 6312.

Durham, M. F., M. M. Magwire, E. A. Stone, and J. Leips, 2014
Genome-wide analysis in Drosophila reveals age-specific ef-
fects of snps on fitness traits. Nat. Commun. 5: 4338.

Ebert, A., G. Schotta, S. Lein, S. Kubicek, V. Krauss, T. Jenuwein,
and G. Reuter, 2004 Su(var) genes regulate the balance be-
tween euchromatin and heterochromatin in Drosophila. Genes
Dev. 18: 2973–2983.

Elgin, S. C. and G. Reuter, 2013 Position-effect variegation, hete-
rochromatin formation, and gene silencing in Drosophila. Cold
Spring Harb. Perspect. Biol. 5: a017780.

Ephrussi, B. and J. L. Herold, 1944 Studies of eye pigments of
Drosophila. I. Methods of extraction and quantitative estima-
tion of the pigment components. Genetics 29: 148.

Ernst, J. and M. Kellis, 2012 ChromHMM: automating chromatin-
state discovery and characterization. Nat. Methods 9: 215–216.

Filion, G. J., J. G. van Bemmel, U. Braunschweig, W. Talhout,
J. Kind, L. D. Ward, W. Brugman, I. J. de Castro, R. M.
Kerkhoven, H. J. Bussemaker, and B. vanSteensel, 2016 Sys-
tematic protein location mapping reveals five principal chro-
matin types in Drosophila cells. Cell 143: 212–224.

Fodor, B. D., N. Shukeir, G. Reuter, and T. Jenuwein, 2010 Mam-
malian Su(var) genes in chromatin control. Annu. Rev. Cell
Dev. Biol. 26: 471–501.

Francisco, F. O. and B. Lemos, 2014 How do Y-chromosomes
modulate genome-wide epigenetic states: genome folding,
chromatin sinks, and gene expression. J. Genomics 1: 94–103.

Gilbert, M. K., Y. Y. Tan, and C. M. Hart, 2006 The Drosophila
boundary element-associated factors BEAF-32A and BEAF-
32B affect chromatin structure. Genetics 173: 1365–1375.

Girton, J. R. and K. M. Johansen, 2008 Chromatin structure
and the regulation of gene expression: the lessons of PEV
in Drosophila. Adv Genet. 61: 1–43.

Greil, F., I. van der Kraan, J. Delrow, J. F. Smothers, E. de Wit, H. J.
Bussemaker, R. van Driel, S. Henikoff, and B. van Steensel,
2003 Distinct HP1 and Su(var)3-9 complexes bind to sets of de-
velopmentally coexpressed genes depending on chromosomal
location. Genes & Development 17: 2825–2838.

Grubbs, N., M. Leach, X. Su, T. Petrisko, J. B. Rosario, and J. W.
Mahaffey, 2013 New components of Drosophila leg develop-
ment identified through genome wide association studies.
PLoS one 8: e60261.

Harbison, S. T., L. J. McCoy, and T. F. Mackay, 2013 Genome-
wide association study of sleep in Drosophila melanogaster.
BMC Genomics 14: 281.

He, B. Z., M. Z. Ludwig, D. A. Dickerson, L. Barse, B. Arun, B. J.
Vilhjálmsson, P. Jiang, S.-Y. Park, N. A. Tamarina, S. B. Selleck,
P. J. Wittkopp, and M. Kreitman, 2014 Effect of genetic vari-
ation in a Drosophila model of diabetes-associated misfolded
human proinsulin. Genetics 196: 557–567.

Hines, K. A., D. E. Cryderman, K. M. Flannery, H. Yang, M. W.
Vitalini, T. Hazelrigg, C. A. Mizzen, and L. L. Wallrath, 2009
Domains of heterochromatin protein 1 required for Drosophila
melanogaster heterochromatin spreading. Genetics 182: 967–
977.

Huang, W., A. Massouras, Y. Inoue, J. Peiffer, M. Ràmia, A. M.
Tarone, L. Turlapati, T. Zichner, D. Zhu, R. F. Lyman, et al.,
2014 Natural variation in genome architecture among 205
Drosophila melanogaster genetic reference panel lines. Genome

8 K. Kelsey et al.

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 24, 2017. ; https://doi.org/10.1101/129999doi: bioRxiv preprint 

https://doi.org/10.1101/129999
http://creativecommons.org/licenses/by-nc/4.0/


Research 24: 1193–1208.
Kharchenko, P. V., A. A. Alekseyenko, Y. B. Schwartz, A. Minoda,

N. C. Riddle, J. Ernst, P. J. Sabo, E. Larschan, A. A. Gorchakov,
T. Gu, et al., 2011 Comprehensive analysis of the chromatin
landscape in Drosophila melanogaster. Nature 471: 480–485.

Lamprecht, M. R., D. M. Sabatini, A. E. Carpenter, et al., 2007 Cell-
profiler™: free, versatile software for automated biological
image analysis. Biotechniques 42: 71.

Lemos, B., L. O. Araripe, and D. L. Hartl, 2008 Polymorphic Y
chromosomes harbor cryptic variation with manifold func-
tional consequences. Science 319: 91–93.

Lemos, B., A. T. Branco, and D. L. Hartl, 2010 Epigenetic effects
of polymorphic Y chromosomes modulate chromatin compo-
nents, immune response, and sexual conflict. Proc. Nat. Acad.
Sci. USA 107: 15826–15831.

Lerach, S., W. Zhang, X. Bao, H. Deng, J. Girton, J. Johansen,
and K. M. Johansen, 2006 Loss-of-function alleles of the JIL-1
kinase are strong suppressors of position effect variegation of
the wm4 allele in Drosophila. Genetics 173: 2403–2406.

Mackay, T. F., S. Richards, E. A. Stone, A. Barbadilla, J. F. Ayroles,
D. Zhu, S. Casillas, Y. Han, M. M. Magwire, J. M. Cridland,
et al., 2012 The Drosophila melanogaster genetic reference panel.
Nature 482: 173–178.

modENCODE Consortium, T., S. Roy, J. Ernst, P. V. Kharchenko,
P. Kheradpour, et al., 2010 Identification of functional elements
and regulatory circuits by Drosophila modENCODE. Science
330: 1787–1797.

Muller, H. J., 1930 Types of visible variations induced by x-rays
in Drosophila. Journal of Genetics 22: 299–334.

R Development Core Team, 2008 R: A Language and Environment
for Statistical Computing. R Foundation for Statistical Comput-
ing, Vienna, Austria, ISBN 3-900051-07-0.

Schotta, G., A. Ebert, V. Krauss, A. Fischer, J. Hoffmann, S. Rea,
T. Jenuwein, R. Dorn, and G. Reuter, 2002 Central role of
Drosophila Su(var)3-9 in histone H3-K9 methylation and hete-
rochromatic gene silencing. The EMBO journal 21: 1121–1131.

Schulze, S. R. and L. L. Wallrath, 2007 Gene regulation by
chromatin structure: Paradigms established in Drosophila
melanogaster. Annu. Rev. Entomol. 52: 171–192, PMID:
16881818.

Summers, K. M., A. J. Howells, and N. A. Pyliotis, 1982 Biology
of eye pigmentation in insects. Advances in Insect Physiology
16: 119–166.

Unckless, R. L., S. M. Rottschaefer, and B. P. Lazzaro, 2015
A genome-wide association study for nutritional indices in
Drosophila. G3 5: 417–25.

Wallrath, L. L. and S. C. Elgin, 1995 Position effect variegation in
Drosophila is associated with an altered chromatin structure.
Genes & Development 9: 1263–1277.

Widom, J., 1999 Equilibrium and dynamic nucleosome stability.
Methods Mol. Biol. 119: 61–77.

Yang, J., S. H. Lee, M. E. Goddard, and P. M. Visscher, 2011
GCTA: a tool for genome-wide complex trait analysis. The
American Journal of Human Genetics 88: 76–82.

Zhou, X. and M. Stephens, 2012 Genome-wide efficient mixed-
model analysis for association studies. Nature Genetics 44:
821–824.

Natural Variation in PEV 9

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 24, 2017. ; https://doi.org/10.1101/129999doi: bioRxiv preprint 

https://doi.org/10.1101/129999
http://creativecommons.org/licenses/by-nc/4.0/


Figure S 1 Experimental cross to generate males with unique DGRP haplotypes, i, that also carry wm4 and exhibit PEV. F1 males
segregate into two variegating classes, those with a CyO second chromosome (visible curly wing) and those with Df(2L)2802 second
chromosome (visible straight wing). F1 males were imaged. Females do not display variegation in this cross and were not studied.
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Figure S 2 F1 experimental males show a wide range of visible differences in eye pigmentation, spanning a range that lacks pigmen-
tation (DGRP line 136 with a Df(2L)2802 second chromosome background) to full pigmentation and near-wild-type eyes (DGRP
line 138 with a CyO second chromosome background. To demonstrate the range of pigmentation in F1 progeny, three replicates are
shown from a subset of DGRP line by second chromosome combinations. Even at a gross level, the PEV phenotype shows greater
similarities in pigmentation between replicate individuals than between DGRP line or second chromosome background.
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Table S 1 Heritability of PEV

CyO background Df(2L)2802 background

Variable PC1 PC2 PC3 Adjusteda PC1 PC2 PC3 Adjustedb

Line 59.8% 45.3% 44.0% 59.4% 57.7% 47.8% 55.8% 57.4%

Vial < 0.1% 0.5% < 0.1% < 0.1% < 0.1% 0.2% 0.2% < 0.1%

Residuals 40.2% 54.3% 56.0% 40.6% 42.3% 52.0% 44.0% 42.6%

a Adjusted values are calculated by summing across each specific variable as weighted by the proportion of data explained by each PC; 97.4% (PC1), 2.4% (PC2) and 0.2%
(PC3). PC3 is not shown above as it explains a negligible amount of data.

b See footnote a
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Figure S 3 Comparison between PC1 values of PEV populations with CyO and Df(2L)2802 second chromosome backgrounds. Al-
though there is strong correlation in PEV between the two backgrounds, the CyO second chromosome shows less variegation (more
red eyes and higher PC1 values) with respect to the Df(2L)2802 second chromosome background.
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Figure S 4 Q-Q plots of expected (red line) and observed (black points) P-values from GWAS. (A) Experimental population with
CyO second background. (B) Experimental population with Df(2L)2802 second chromosome background.
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Figure S 5 Effect size (Cohen’s d) with upper and lower confidence limits of variants having association P-values ≤ 0.001. (A) Effect
sizes of 584 variants from the experimental population with CyO second chromosome background. (B) Effect sizes of 770 variants
from the experimental population with Df(2L)2802 second chromosome background. 310 and 369 variants from each respective
background have effect sizes greater than or equal to 1.
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Table S 2 GWAS top ranked associations by P-value

CyO background Df(2L)2802 background

Position Alleles Gene Class AF P-value Rank AF P-value Rank

2L 12252172 T/C Aret Intron NA NA NA 0.095 1.3x10-5 5

2R 11802982 C/T Sli Intron NA NA NA 0.274 1.6x10-5 9

2R 12408574 T/C Sema-2a Intron 0.126 1.8x10-5 6 0.124 1.7x10-5 10

2R 18531570 T/C NA Intergenic 0.051 3.1x10-5 8 0.05 3.5x10-5 19

3L 1775145 A/G CG13933 5’UTR 0.34 5.8x10-6 3 0.344 3.2x10-6 3

3L 2081047 A/G sls Synonymous 0.116 2.4x10-5 7 0.113 2.1x10-5 13

3L 2288054 G/T DmsR-2 Intron 0.198 9.8x10-6 5 0.194 1.3x10-5 6

3L 2568884 T/C msn Intron 0.375 4.0x10-6 2 0.378 1.3x10-5 7

3L 3595434 T/G Eip63E Intron 0.219 1.2x10-6 1 0.214 1.7x10-6 1

3L 5909455 T/C CG13288 Intron 0.202 9.2x10-6 4 0.208 3.2x10-6 2

3L 5909456 G/C CG13288 Intron 0.208 3.5x10-5 11 0.214 1.3x10-5 4

3L 12852675 C/G CG32107 Nonsyn. 0.333 3.4x10-5 9 0.337 1.2x10-4 78

3L 12852676 T/C CG32107 Nonsyn. 0.333 3.4x10-5 10 0.337 1.2x10-4 79

3R 4014584 C/T NA Intergenic NA NA NA 0.116 1.5x10-5 8
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Figure S 6 Distribution of site classes between expected counts (average) and observed counts from the 1000 top associated variants.
All observed counts show a significant difference from expected (two-sided, one sample t-test, Bonferroni corrected P-values all ≤
2.2x10-16. Error bars represent the standard deviation across 10,000 randomly drawn samples.
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Table S 3 Known autosomal genic modifiers of PEV

Chromosome

2L 2R 3L 3R

abo Asx AGO2 Ace

aub Atf-2 asf1 Acf1

barr BEAF-32 ash1 Bin1

CG8677 bw brm bon

Chd1 Cap-G E(z) cav

chm Dcr-2 FRG1 D1

dp dom HP4 Dcr-1

Etl1 Dp1 Jarid2 E(var)3-9

glu E(Pc) JIL-1 E2f

Hel25E egg msl-3 Fmr1

kis LamC not gpp

lid lat Pc His2Av

lt Nap1 pzg Invadolysin

lwr Pcl rept jumu
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Figure S 7 Proportion of between-line phenotypic variance explained within the Df(2L)2802 second chromosome population using
GCTA. Comparison of SNP groupings include; the most significant GWA variants (black line), top hits excluding variants from
known PEV genic modifiers (red line), variants within know PEV genic modifiers only (blue line), and randomly selected autoso-
mal variants (gray line).
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Figure S 8 Counts of continuous 9-state chromatin assignments in randomly select autosomal variants (expected) and the top 1,000
P-value ranked SMA variants (observed). (A) Counts of chromatin state assignments in S2 cells. (B) Counts of chromatin state
assignments in BG3 cells.
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Figure S 9 Expected and observed counts of variants within binding sites of chromatin-associating factors (y-axis) and across vari-
ous developmental stages (x-axis), as defined through ChIP-chip and ChIP-seq binding assays. For each factor and developmental
stage, expected distributions were generated through 10,000 iterations of randomly sampling 1,000 variants from all autosomes,
and the number of variants residing within marked binding locations were counted. This expected distribution was then compared
to the number of variants residing within marked binding locations from the set of 1,000 top ranked associations. Observed counts
with respect the expected distribution are as follows; green represents observed counts that are > 97.5% of the expected distribution,
red represents observed counts that are < 2.5% of the expected distribution, black represents observed counts that are within 95% of
the expected mass, and gray represents missing sample data.
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