Abstract
Controlling the transition from a multicellular motile state to a sessile biofilm is an important eco-physiological decision for most prokaryotes, including cyanobacteria. Photosynthetic and bio geochemically significant cyanobacterium Synechocystis sp. PCC6803 (Syn6803) uses Type IV pili (TFP) for surface-associated motility and light-directed phototaxis. We report the identification of a novel Chaperone-Usher (CU) system in Syn6803 that regulate secretion of minor pilins as a means of stabilizing TFP morphology. These secreted minor-pilins aid in modifying TFP morphology to suit the adhesion state by forming cell to surface contacts when motility is not required. This morphotype is structurally distinct from TFP assembled during motile phase. We further demonstrate by examining mutants lacking either the CU system or the minor-pilins, which produce aberrant TFP, that are morphologically and functionally distinct from wild-type (WT). Thus, here we report that in Syn6803, CU system work independent of TFP biogenesis machinery unlike reported for other pathogenic bacterial systems and contributes to provide multifunctional plasticity to TFP. cAMP levels play an important role in controlling this switch. This phenotypic plasticity exhibited by the TFP, in response to cAMP levels would allow cells and cellular communities to adapt to rapidly fluctuating environments by dynamically transitioning between motile and sessile states.
Significance of this work How cyanobacterial communities cope with fluctuating or extreme environments is crucial in understanding their role in global carbon and nitrogen cycles. This work addresses the key question: how do cyanobacteria modulate external appendages, called Type IV pili, to effectively switch between motile and sessile biofilm states? We demonstrate that cells transition between forming strong cell-surface interactions indispensable for biofilm formation to forming cell-cell interactions that allow for coordinated movement crucial for social motility by functional/ structural modification of same TFP appendage. The second messenger, cAMP and a Chaperone-Usher secretion are indispensible to achieve these structural modifications of TFP and control the complex phenotypic transition. We have uncovered a strategy that Syn6803 has evolved to deal with molecular decision-making under uncertainty, which we call phenotypic plasticity. Here we demonstrate how a single motility appendage can be structurally modified to attain two antagonistic functions in order to meet the fluctuating environmental demands.






