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Abstract 19 

Assessment of microbial community composition is the cornerstone of microbial ecology. Microbial 20 

community composition can be analyzed by quantifying cell numbers or by quantifying biomass for 21 

individual populations. However, as cell volumes can differ by orders of magnitude, these two approaches 22 

yield vastly different results. Methods for quantifying cell numbers are already available (e.g. fluorescence 23 

in situ hybridization, 16S rRNA gene amplicon sequencing), yet methods for assessing community 24 

composition in terms of biomass are lacking.  25 

We developed metaproteomics based methods for assessing microbial community composition using 26 

protein abundance as a measure for biomass contributions of individual populations. We optimized the 27 

accuracy and sensitivity of the method using artificially assembled microbial communities and found that 28 

it is less prone to some of the biases found in sequencing-based methods. We applied the method using 29 

communities from two different environments, microbial mats from two alkaline soda lakes and saliva 30 

from multiple individuals.  31 
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Introduction 32 

Microbial communities are ubiquitous in all environments on Earth that support life and they play crucial 33 

roles in global biogeochemical cycles, plant and animal health, and biotechnological processes 1. One of 34 

the most basic and crucial parameters that microbial ecologists determine when studying these 35 

communities is their taxonomic composition. Currently, all methods for assessing community composition 36 

provide a direct or indirect measure of cell numbers per taxon. For example, fluorescence in situ 37 

hybridization (FISH) provides direct cell counts 2, while metagenomics or 16S rRNA gene amplicon 38 

sequencing provide a more indirect measure of cell numbers as they essentially measure gene or genome 39 

copy numbers 3. 40 

Cell numbers, however, are often not the best measure for a species’ contribution to a community, because 41 

microbes can differ by several orders of magnitude in biomass and activity. For example, the unicellular 42 

eukaryote Schizosaccharomyces pombe has a cell volume and per cell proteinaceous biomass that is ~6000 43 

fold higher than that of the bacterium Mycoplasma pneumoniae 4. Therefore, the development of methods 44 

for the assessment of biomass contributions of community members is critical. Recently, FISH based 45 

methods for the estimation of biovolume fractions of community members have been developed 5, 46 

however, these methods are limited to a few community members as a separate fluorescently-labeled 47 

probe is needed for each taxon that investigators want to analyze. Currently, there are no methods 48 

available to estimate the biomass contribution and activity of individual community members on a large 49 

scale. 50 

Metaproteomics is an umbrella term for methods for identifying and quantifying proteins in microbial 51 

communities 6 and may represent a suitable approach for assessing the taxonomic composition of a 52 

microbial community based on species biomass contributions. Since proteins contribute a large amount of 53 

biomass in microbial cells e.g. 55% of Escherichia coli dry weight (BNID 104954)7, proteinaceous 54 

biomass can be a good estimator of biomass contributions. Additionally, since proteins are the molecules 55 

that provide the biological activities to cells, metaproteomics may also provide estimates of activities. In 56 

recent years, several studies have been published, including some from our laboratory, which used 57 

metaproteomic data to quantify biomass contributions of community members 8-10. However, methods for 58 

biomass assessment with metaproteomics have not been thoroughly developed and validated, and several 59 

challenges and questions have not been addressed. The major challenge is the so-called protein inference 60 

problem of shotgun proteomic approaches 11. In shotgun proteomics, which is the most widely used 61 

proteomic approach, proteins are identified by matching mass spectrometry derived peptide sequences to 62 

protein sequences. The protein inference problem describes the fact that often the same peptide sequence 63 

can match to multiple different proteins, which can lead to ambiguous protein identifications. This 64 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2017. ; https://doi.org/10.1101/130575doi: bioRxiv preprint 

https://doi.org/10.1101/130575
http://creativecommons.org/licenses/by/4.0/


4 
 

problem was originally noted for eukaryotes, which often have multiple, very similar isoforms of a protein 65 
11; however, the problem can be much more severe in metaproteomics, because in metaproteomic analysis  66 

there are tens to hundreds of species that all have protein sequences sharing peptides with sequences from 67 

other species. The protein inference problem will thus lead to incorrect interpretations of taxonomic 68 

composition of metaproteomes 12 if not properly addressed. In fact, the protein inference problem is so 69 

pervasive that it has been advantageously used in metaproteomics for cross-strain and -species protein 70 

identification by using protein sequences from organisms closely related to the ones in the analyzed 71 

community 13, 14. Other challenges and questions include: How much mass spectrometric data is needed to 72 

accurately quantify species in a community? And how do potentially incomplete protein sequence 73 

databases for protein identification affect the outcome of the quantification? 74 

Here we address these challenges and questions to develop a simple and robust metaproteomics-based 75 

workflow for assessing species biomass contributions in microbial communities. Furthermore, we provide 76 

a large dataset of metaproteomic, metagenomic and 16S rRNA gene amplicon data from three types of 77 

artificial microbial communities for future method development and testing. 78 
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Results 79 

Overall, our method for species biomass assessment is similar to a basic workflow for metaproteomic 80 

protein identification and label-free quantification (Fig. 1). However, in contrast to protein and function 81 

focused metaproteomics, the label-free quantification data (spectral counts or peptide intensities) are not 82 

summed for individual proteins, but rather for individual species or higher level taxonomic groups. 83 

Importantly, the quantification data is summed based on the taxonomic assignment of inferred proteins 84 

and not based on the taxonomic assignment of peptide identifications, because as mentioned above 85 

peptides are frequently associated with multiple proteins from different taxa. Additionally, we assume that 86 

a well annotated protein sequence database, which matches the studied environment as closely as possible, 87 

is used. This database could either be based on metagenomes derived from samples that match the 88 

metaproteomic samples or for well-studied environments, such as the human microbiome, a 89 

comprehensive, non-redundant set of sequences from public databases. 90 

For this study, we used the Proteome Discoverer software (version 2.0, Thermo Scientific) and MaxQuant 91 

for protein identification, inference and quantification 15. However, the methods discussed here are not 92 

platform dependent and can be implemented on many other platforms using the mock community data that 93 

we provide in this study for optimization. 94 

Achieving high specificity on species level protein identification with minimal losses in 95 

sensitivity 96 

Before starting the actual species quantification, we first addressed the above mentioned protein inference 97 

problem. For this we used proteomes from pure culture organisms and simulated metagenomic databases 98 

to test what kind of protein inference parameters can be used to eliminate unwanted cross-strain and -99 

species protein identifications (specificity), while still identifying a large number of proteins for 100 

quantification (sensitivity) (Fig. 2). We tested a variety of protein inference methods for the following four 101 

scenarios: the simulated metagenomic database contained the protein sequences of the analyzed organism 102 

and the sequences of (a) a very closely related strain from the same species, (b) several closely related 103 

species from the same genus, (c) several related species from closely related genera, (d) no other 104 

representative from the same domain (analyzed organism for (d) is an archaeon). 105 

Commonly used protein inference filters that filter protein identifications simply for a false discovery rate 106 

(FDR) of 5% based on target-decoy database searches (SQ 5% FDR) fail to identify proteins from the 107 

analyzed organisms with high specificity for all scenarios except scenario (d) (Fig. 2). The same remains 108 

true when another commonly used criterion of requiring two unique peptides is added (2 UP ⊂ SQ 5% 109 

FDR). Here it is important to note that different protein identification platforms implement “unique 110 

peptides” differently. While, for example, a “unique peptide” in Proteome Discoverer and MaxQuant 111 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2017. ; https://doi.org/10.1101/130575doi: bioRxiv preprint 

https://doi.org/10.1101/130575
http://creativecommons.org/licenses/by/4.0/


6 
 

refers to a peptide that is unique to a group of highly similar protein sequences (protein group), it can also 112 

refer to a peptide that is unique to a single protein sequence in other protein identification platforms. This 113 

shows that to obtain high specificity on a taxonomic level protein inference has to be done differently 114 

from common practices. 115 

We tested five additional protein inference and filtering strategies (Fig. 2) and found that there are 116 

multiple strategies that result in high specificity down to the species level i.e. removing almost all cross-117 

species protein identifications, while at the same time maintaining a high sensitivity i.e. the number of 118 

identified proteins for the target organism is only slightly reduced as compared to the less specific 119 

approaches (Fig. 2). As expected, the approaches tested were unable to resolve cross-strain protein 120 

identifications in scenario (a) because protein sequences from the two strains were nearly identical in 121 

many cases. This suggests that it might be beneficial to remove highly similar sequences by sequence 122 

clustering when creating metaproteomic databases. Such a clustering would reduce database size, 123 

redundancy and the number of ambiguous strain level protein identifications, thus providing clearer 124 

species level identifications. 125 

Going forward, we used two protein inference strategies for this study. The first strategy relies on the 126 

SEQUEST algorithm for peptide identification and the Fido method for protein inference 16(2 PU ⊂ SQ 127 

Fido). Fido is available as a standalone program (https://noble.gs.washington.edu/proj/fido/) and as an 128 

advanced implementation with convolution trees in Proteome Discoverer (FidoCT) 17. For this strategy, 129 

only proteins that are identified by FidoCT with an FDR of 5% and have at least two protein unique 130 

peptides, are considered. The second strategy (SQ Fido ∩ (MQ || 3 PU), only considers proteins as 131 

confidently inferred if they are identified by both FidoCT (FDR of 5%) and MaxQuant (FDR of 1%, at 132 

least one unique peptide). Additionally, proteins are considered as confidently inferred if they have at least 133 

three protein unique peptides in the FidoCT result even if not identified by MaxQuant. 134 

We are confident that many more strategies can be devised with the pure culture proteome data and the 135 

simulated metagenomic database, which we provide through the PRIDE repository (PXD006118). 136 

Label-free quantification enables accurate measurement of relative species protein 137 

abundance (proteinaceous biomass contribution per species) 138 

We used three types of mock communities to test and validate the methods for quantifying species 139 

biomass contribution in microbial communities. The three communities were assembled using 32 species 140 

and strains of Archaea, Bacteria, Eukaryotes and Bacteriophages (Fig. 3a, Supplementary Tables 1 to 3). 141 

Some of the bacterial strains were very closely related, but still distinguishable at the protein and 142 

nucleotide sequence level. These included the Rhizobium leguminosarum and Staphylococcus aureus 143 
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strains. The three Salmonella enterica serotype typhimurium strains, however, only differed by a few 144 

mutations or the presence of an additional plasmid. The UNEVEN mock community was designed to cover 145 

a large range of species abundances both at the level of cell number and proteinaceous biomass to test for 146 

the dynamic range and detection limits of the quantification methods (Fig. 3a). The EQUAL PROTEIN 147 

AMOUNT and EQUAL CELL NUMBER mock communities contained either the same amount of protein for all 148 

community members with varying cell numbers or the same number of cells for all members with varying 149 

amounts of protein. Since the bacteriophages yield very little protein even if high particle numbers are 150 

used we mixed them at a 10x lower ratio into the EQUAL PROTEIN AMOUNT community. 151 

We tested three of the most commonly used label-free quantification methods for their accuracy in 152 

measuring proteinaceous biomass contributions of individual species (Fig. 3b and 3c). These methods 153 

included counting and summing of peptide-spectrum matches (PSMs), summing of peptide ion intensities 154 

using only unique peptides (u intensities), and summing of peptide ion intensities using razor and unique 155 

peptides as implemented in MaxQuant (r+u intensities) 15. The input for these quantification methods were 156 

two 8 hour long 1D-LC-MS/MS runs per sample (see methods). 157 

All three methods produced a good representation of the diversity in the mock communities and detected 158 

almost all species. The only exceptions were some of the bacteriophages and N. ureae, which were mixed 159 

into the samples in low total protein amounts (Fig. 3b). As expected it was impossible to distinguish the 160 

three Salmonella enterica strains and thus they are represented in Fig. 3b as one row. All three methods 161 

performed similarly well when comparing the protein input amounts for the communities with the actual 162 

measurements (Fig. 3c). In most cases the values for the measured % divided by the input % centered on 163 

the expected value of 1, with the median values being very close to 1. Differences between the 164 

quantification methods became apparent only for the UNEVEN community. Both peptide-intensity based 165 

methods deviated strongly from the expectation and underestimated the abundance for many species. The 166 

PSM based method was more robust for estimating abundances for the UNEVEN community which is 167 

characterized by large differences in cell numbers and total protein amount between species. 168 

Metaproteomics is more accurate in assessing relative proteinaceous biomass 169 

contributions as compared to metagenomics and amplicon sequencing methods 170 

We subjected subsamples of the above described mock communities to shotgun metagenomic sequencing 171 

and 16S rRNA gene amplicon sequencing to test how well these commonly used methods for community 172 

composition assessment estimate the proteinaceous biomass and cell number of species in communities in 173 

comparison to the metaproteomic method presented here.  174 

We sequenced 16S rRNA gene amplicons for four biological replicates of each community type yielding 175 

an average of 5356 high-quality amplicon sequences per replicate (minimum 1686 and maximum 9986 176 
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sequences). The amplicon sequences were clustered into 21 operational taxonomic units (OTUs) using the 177 

MetaAmp pipeline (version 1.3) 18. Four of these OTUs were identified as Illumina in-run cross 178 

contaminants from unrelated samples that were sequenced on the same lane. The remaining 17 OTUs 179 

were taxonomically classified by MetaAmp at the genus level. A species level classification was not 180 

possible because of the limited information content of the amplicon sequences. This meant, for example, 181 

that there were three OTUs that were classified as Pseudomonas. Therefore, we had to assign the OTUs to 182 

their respective species using BLASTn against the NCBI nr database and the prior knowledge about the 183 

content of our mock communities. As expected none of the bacteriophages were detected by amplicon 184 

sequencing due to the absence of a 16S rRNA gene in these phages (Fig. 3d). We also did not detect the 185 

Archaeon N. viennensis, the eukaryotic green algae Chl. reinhardtii and six of the bacterial species by 186 

amplicon sequencing. The primer pair that we used to generate the amplicons is optimized for the greatest 187 

possible coverage of the bacterial domain 19, therefore it was not surprising that N. viennensis and Chl. 188 

reinhardtii were not detected, although we successfully amplified at least the chloroplast sequence of 189 

green algae using this primer pair in the past (data not shown). The failure to detect some of the bacteria in 190 

all replicates is harder to explain. We have successfully generated amplicons from pure cultures of N. 191 

europaeae, N. ureae and N. multiformis in the past with the primer pair used here (data not shown), thus 192 

we have to assume that these species were not detected due to their low abundance in the UNEVEN 193 

community samples or due to a primer bias leading to preferential amplification of the other bacterial 194 

species. Such primer biases are a known problem for 16S rRNA gene amplicon sequencing 3, 20. For the R. 195 

leg. bv. viciae and S. aureus strains the amplicon sequences did not distinguish between each of the two 196 

strains in the samples and thus only a minimum of one strain detection per species could be corroborated. 197 

Metagenomic sequencing of 3 biological replicates of each community type yielded on average 33.5 M 75 198 

bp reads (max. 37 M, min. 21 M). The same DNA was used for the metagenomic sequencing and the 16S 199 

rRNA gene sequencing, however, only 3 of the 4 available biological replicates were metagenome 200 

sequenced. For quantification, we mapped the metagenomic reads to the reference genomes and 201 

assembled bins of the mock community members and normalized to the respective genome sizes. 202 

All, except for one, organisms in the mock samples were detected by shotgun metagenomics, even 203 

including the single-stranded DNA bacteriophage M13. As expected, the only organism not detected by 204 

shotgun metagenomics was the single-stranded RNA bacteriophage F2, because the DNA extraction and 205 

sequencing library preparation methods used effectively exclude RNA from being sequenced. 206 

Surprisingly, the metagenomic sequencing yielded only a small number of reads for the green algae Chl. 207 

reinhardtii, which was in no way representative of the input cell number for the mock communities (Fig. 208 

3d). Chl. reinhardtii was much better represented in the metaproteomic data. One potential explanation for 209 

the underrepresentation of Chl. reinhardtii in the sequencing data could be a bias of the DNA extraction 210 
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method used. The bead beating method used for DNA extraction, however, was quite rigorous. The 211 

metagenomic data provided by far the best representation of the bacteriophages in the samples, with the 212 

exception of the F2 phage, which was only detected in the metaproteomes. 213 

Comparing all three methods, metaproteomics provided the most accurate estimates of proteinaceous 214 

biomass for each species in the samples (Fig. 3e and 3f). The average x fold deviations of the measured 215 

abundances from the expected abundance based on protein input were significantly lower for 216 

metaproteomics as compared to metagenomic and amplicon sequencing (p-value <0.01, Supplementary 217 

Table 4). Both the metagenomic and the amplicon based quantifications deviated from the actual values 218 

when it came to assessing proteinaceous biomass. Particularly the metagenomic quantification produced 219 

some extreme outliers (Fig. 3e, Supplementary Table 4).  220 

All three methods performed badly, when it came to estimating the species cell numbers in the samples 221 

(Fig. 3g), as they showed major deviations from the actual values in at least some of the mock 222 

communities. Overall, metagenomic sequencing provided the estimates closest to the actual cell number 223 

values, while the amplicon based quantification deviated the most from the actual numbers. The average x 224 

fold deviations of the measured abundances from the expected abundance based on cell input were 225 

significantly lower for metagenomics as compared to metaproteomics and amplicon sequencing (p-value 226 

<0.01, Supplementary Table 4). The general overestimation of cell numbers by amplicon sequencing was 227 

in part due to the fact that the amplicon sequencing failed to detect many of the species in the mock 228 

communities driving up the relative abundances of the remaining ones. 229 

Interestingly, the accuracy with which the three methods estimated the relative cell numbers in the mock 230 

communities depended very much on the range of species abundances in them. All three methods 231 

estimated the relative cell numbers quite well for the EQUAL CELL NUMBER community, but failed to 232 

estimate them well for the EQUAL PROTEIN AMOUNT and UNEVEN communities, which represent a large 233 

range of species abundances (Fig. 3a and 3g). This is likely due to the more inaccurate quantification of 234 

low abundant strains/species that are close to the detection limit of the methods (see below and Fig. 4b). 235 

Low detection limit and high quantification accuracy with relatively little data 236 

To test the impact of the number of spectra acquired on the detection limit and dynamic range of species 237 

proteinaceous biomass quantification, we ran five different LC-MS experimental setups for the four 238 

biological replicates of the UNEVEN mock community (Fig. 4, Supplementary Table 5). These setups 239 

provided varying numbers of MS2 spectra for peptide identification. They included two basic 1D-LC-240 

MS/MS approaches of 260 min and 460 min run time. For each of these two approaches the amount of 241 

data was doubled by running technical replicates. The fifth approach was a 2D-LC-MS/MS experiment in 242 
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which the sample was fractionated into 12 fractions using salt pulses on an SCX column followed by 120 243 

min separations on a reverse phase column. 244 

Each of the five approaches led to the detection of 27 out of the 30 distinguishable strains and species in 245 

the community when the biological replicates were combined. We observed some small differences 246 

between approaches in their detection sensitivity when looking at the data for individual biological 247 

replicates. While we detected 25 to 26 species/strains (average 25.25) in the single 260 min runs, we 248 

detected 26 to 27 (average 26.5) in the duplicate 460 min runs. From this follows that for the species 249 

diversity and abundance distribution of the UNEVEN mock community a single 260 min (~130,000 MS2 250 

spectra) run provides a similar detection limit as compared to approaches that provide much more data 251 

(e.g. 2x 460 min runs = ~390,000 MS2 spectra). The detection limit for all five approaches was similar 252 

and, interestingly, differed by organism group. The Archaeon N. viennensis, the Eukaryote Chl. 253 

reinhardtii and all Bacteria were detected with all five approaches. The Bacterium N. europaeae was 254 

mixed into the UNEVEN community with the lowest protein abundance of 0.08%, which suggests that at 255 

least for Bacteria the detection limit is below 0.08%. Three out of the five bacteriophages in the 256 

community were not detected by any of the approaches (Supplementary Table 6) even though they were 257 

mixed into the community at protein abundances higher than that of N. europaeae, between 0.08 to 0.15%. 258 

This is surprising, because these phages consist of only a few dominant proteins (e.g. capsid proteins), 259 

which should enhance their detectability. Currently we do not have a good explanation for this result. 260 

Surprisingly, all approaches had a similar accuracy in terms of quantifying species abundances (Fig. 4a). 261 

Our expectation was that an increased number of MS2 spectra would increase the accuracy of the 262 

abundance estimates. Our data suggests that with a 260 min run we already reached saturation in terms of 263 

accuracy for the UNEVEN mock community type. Interestingly, all five approaches underestimated the 264 

abundances of species/strains that are present in the samples in low amounts (Fig. 4a). If low-abundance 265 

species (<0.5% in all approaches) are removed from the dataset resulting in 18 species remaining, then the 266 

deviation of the measurement from the actual protein input amount becomes much smaller (Fig. 4b, 267 

Supplementary Table 6). This suggests that, as with most other analytical methods, the accuracy of the 268 

measurement is lower for quantities close to the detection limit and thus the proteinaceous biomass 269 

estimates for low abundant species should be treated as less precise. 270 

In summary, a single 260 min 1D-LC-MS/MS run on a QExactive Plus Mass Spectrometer provides 271 

enough data to detect most species in a community that contains 30 distinguishable species and features a 272 

range of proteinaceous biomass abundances of more than two orders of magnitude. The limit of detection 273 

can be slightly lowered using longer peptide separations and by increasing the amount of data generated 274 

per sample. 275 
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Estimation of absolute biomass contribution is possible even with incomplete sequence 276 

databases 277 

One potential drawback of metaproteomics based biomass quantification of species in a microbial 278 

community is that proteomic protein identification relies on the availability of a protein sequence 279 

database. Proteins can only be identified and quantified if protein sequences are present in the database 280 

that have a high similarity to the actual proteins in a sample. Analogous to the primer bias based exclusion 281 

or incorrect estimation of species abundances in 16S/18S rRNA gene amplicon sequencing 19, 21, the 282 

incompleteness of the protein sequence database used for protein identification can lead to the exclusion 283 

or incorrect estimation of species abundances. However, the metaproteomic data in theory allows 284 

estimating how incomplete the sequence database used is based on the number of available mass spectra 285 

and the known proportion of how many of these mass spectra lead to PSMs in a search with a mock 286 

community for which all protein sequences are known. This should allow to correct the relative abundance 287 

estimates to absolute estimates. 288 

To test the influence of database incompleteness on quantification results and if the error in abundance 289 

estimates resulting from it can be corrected for, we used two sequence databases of varying 290 

incompleteness to quantify the species in the UNEVEN community. In the first incomplete database 291 

(INCOMPLETE1) the protein sequences for Pseudomonas denitrificans, Pseudomonas fluorescens and 292 

Rhizobium leguminosarum  bv. viciae strain 3841 were removed leaving the sequences of the closely 293 

related species/strains Pseudomonas pseudoalcaligenes and Rhizobium leguminosarum  bv. viciae strain 294 

VF39 in the database. In the second incomplete database (INCOMPLETE2) the remaining Pseudomonas and 295 

Rhizobium sequences as well as the Salmonella enterica typhimurium LT2 sequences were removed. 296 

As expected, the number of detected organisms dropped for the quantification with the incomplete 297 

sequence databases (Fig. 5a). In the quantification with the INCOMPLETE1 database the number of PSMs 298 

for the remaining R. leg. VF39 and P. pseudoalcaligenes increased and thus their relative abundance. This 299 

increase in PSM number is due to the fact that in the absence of the protein sequences of the correct 300 

species/strain some of the MS2 spectra match to peptides from closely related species/strains. As expected, 301 

for the very closely related R. leguminosarum strains a larger fraction of PSMs shifted from one strain to 302 

the other as compared to the Pseudomonas species for which only a smaller fraction of PSMs shifted over. 303 

The PSM number for most remaining organisms remained very similar across the database completeness 304 

range with the exception of E. coli, which obtained a large number of additional PSMs from the closely 305 

related S. enterica in the quantification based on the INCOMPLETE2 database. As expected, the drop in the 306 

total number of PSMs led to an increase of relative organism abundance when more protein sequences 307 

were removed from the database (Fig. 5a and 5b). We corrected these relative biomass estimates by 308 

calculating the number of PSMs lost due to database incompleteness based on the known proportion of 309 
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MS2 spectra to PSMs in the quantification with the complete database. The corrected relative abundance 310 

estimates for the quantification with the INCOMPLETE2 database were in most cases very similar to the 311 

quantification with the complete database (Fig. 5b). Therefore, the proteinaceous biomass abundances 312 

adjusted for database incompleteness can be used as an approximation of absolute proteinaceous biomass 313 

abundances. 314 

Case studies 315 

To demonstrate the power and application of the metaproteomics based methods for assessing species 316 

biomass contributions in microbial communities, we applied the methods developed here to microbial 317 

communities from two widely different environments. 318 

For the first application example, we generated both metaproteomic data, as well as 16S rRNA gene 319 

amplicon data from two phototrophic biomats from soda lakes in the Canadian Rocky Mountains (Fig. 320 

6a). We summarized organism abundances at the phylum level. Even on this high taxonomic level major 321 

differences between the lakes and the two approaches become apparent. While the 16S rRNA gene 322 

amplicon data suggests that the lakes were rather similar in taxonomic composition on the phylum level, 323 

the metaproteomes painted a very different picture. The metaproteomes indicate that the major 324 

phototrophs between the lakes were different. Lake 1 was dominated by Cyanobacteria, whereas lake 2 325 

was dominated by green algae. Additionally, we detected dsDNA viruses in lake 2, which despite the fact 326 

that they contribute only a small amount of proteinaceous biomass could play an important ecological 327 

role. Interestingly, some bacterial groups that made up a significant amount of the 16S rRNA gene 328 

amplicons (e.g. Bacteroidetes/Chlorobi group) contributed only a minor amount based on the 329 

metaproteomic data. Since, the cell lysis method used for both approaches was identical an extraction bias 330 

is unlikely, suggesting that a primer bias may be responsible for the discrepancy. 331 

For the second application example, we re-analyzed a recently published saliva metaproteome that 332 

provided extensive insights into the diurnal and inter-individual variation of the oral microbiome 9. Grassl 333 

et al. provided two independent datasets in their study on the presence and abundance of specific taxa in 334 

the oral microbiomes. The first dataset (Fig. 4 in the original publication) provides presence/absence 335 

patterns of taxa based on unique peptide matches and cultivation results. The second dataset provides 336 

quantification of taxa based on peptides identified by metaproteomics, however, without the specificity 337 

increasing step of protein inference (Fig. 6 c in the original publication). Our results from the re-analysis 338 

of the proteomic data corresponded well with the taxonomic presence and absence patterns inferred by 339 

Grassl et al.. However, our metaproteomic quantification of the data showed very different abundance and 340 

presence profiles for bacterial genera, as compared to the original metaproteomic analysis. We observed a 341 

much larger inter-individual variation for organism abundances (Fig. 6b). Additionally, several genera that 342 
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were detected in the original analysis to be abundant in the samples were not detected at all or in much 343 

lower abundances (e.g. Enterococcus and Abiotropha), while other genera were much higher in abundance 344 

(e.g. Veillonella, Actinomyces and Rothia) (Fig. 6b). Grassl et al. acknowledged in their study that the 345 

quantification method they used could come “at the disadvantage that peptides shared by two genera could 346 

lead to an overestimation of the taxon’s abundance." Our analyses suggest that non-unique matching of 347 

peptides between genera indeed led to the skew in the original quantification data. For example, 348 

Enterococcus and Abiotropha share many peptides with Streptococcus, however, only streptococcal 349 

proteins could be inferred confidently to be present in the samples. This demonstrates that using validated, 350 

highly specific protein inference criteria for metaproteomic based species quantification is crucial and that 351 

peptide identification without subsequent protein inference is not sufficient to achieve high enough 352 

specificity for quantification.  353 

 354 
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Discussion 355 

The metaproteomics-based biomass assessment approach that we demonstrate here is not limited to a 356 

specific set of computational tools and parameters. To make the approach as broadly applicable as 357 

possible, we have chosen to use a route that should make it possible to transfer the approach to many other 358 

platforms. In this manuscript we highlight the most crucial considerations for developing concrete 359 

methods for metaproteomics-based biomass assessment (e.g. protein inference specificity) and supply a 360 

comprehensive dataset to transfer this approach to other computational or experimental platforms for 361 

proteomics. The provided pure-culture derived proteomes (PXD006118), for example, will allow 362 

investigators to determine parameters to achieve sufficient protein inference specificity, while the different 363 

mock community proteomes (PXD006118) will allow assessing parameters based on quantification 364 

accuracy and number of detected species. 365 

As we demonstrate here, metaproteomics-based biomass assessment is a powerful approach that allows to 366 

accurately quantify the proteinaceous biomass of a large number of taxa in a community all at once. This 367 

approach complements existing high throughput approaches for determining community composition 368 

based on DNA sequencing, in that it provides a different, independent measure of community 369 

composition. Our case study on soda lake biomass nicely illustrates that sequencing-based methods and 370 

metaproteomics can provide very different pictures of a community. An added benefit of using 371 

metaproteomes for community composition analyses is that the proteomic information will also provide 372 

insights into which metabolic and physiological functions are expressed and play a major role in the 373 

community. 374 

Recently, there has been a recurring interest in more quantitative methods for microbial ecology for the 375 

absolute quantification of community composition (e.g. cell counts per volume) 22. Metaproteomics-based 376 

abundance estimates can be put into an absolute context by simple assays, for example, by measuring total 377 

protein content of a specified sample volume, wet weight or dry weight. The relative proteinaceous 378 

biomass abundances of community members can then be converted to absolute values after considering 379 

necessary corrections for database incompleteness (see Results). 380 

There are several questions that go beyond the scope of this study that should be addressed in the future. 381 

First, is proteinaceous biomass an accurate representation of the total biomass of a species? We would 382 

argue that in many cases, proteinaceous biomass is a good estimate of total biomass. However, as always 383 

we expect exceptions, where proteinaceous biomass is not a good predictor of total biomass, which would 384 

for example be the case of microorganisms that store large amounts of carbon in form of 385 

polyhydroxyalkanoates or glycogen. Second, a likely much more difficult question to answer is, if and 386 
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under what circumstances proteinaceous biomass of a community member can be used as an 387 

approximation of the biological activity of that community member? 388 
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Online methods 389 

Assembly of mock communities 390 

Cultures of 32 Archaea, Bacteria, Eukaryotes and Bacteriophages (Supplementary Table 1) were donated 391 

to us by very kind colleagues. Cells were washed using phosphate buffered saline pH 7.4 (Sigma-Aldrich) 392 

to remove the cultivation medium. Cell counts of washed cells were determined by microscopy using a 393 

Neubauer improved counting chamber. Cells were aliquoted and pelleted by centrifugation  at 21,000 xg 394 

for 5 min to create cell aliquots with known cell number. Bacteriophages were purified by filtration and 395 

polyethylene glycol (PEG) precipitation as described in Kleiner et al. (2015) 23. Phage titers were 396 

determined as particle forming units (PFUs) per ml using the soft-agar overlay method 24. Liquid aliquots 397 

with known titer were made for all phages. Cell pellets and phage aliquots were stored at -80°C. 398 

We quantified the protein content of cell and phage aliquots for each strain using duplicate aliquots. For 399 

this, 300-600 ul SDT-lysis buffer (4% (w/v) sodium dodecyl sulfate (SDS), 100 mM Tris-HCl pH 7.6) 400 

were added to each pellet according to pellet size.  The pellets in SDT-lysis buffer were vortexed and 401 

transferred to lysing matrix tubes (Matrix A, MP Biomedicals, Santa Ana, CA, USA) and lysed using a 402 

Bead Ruptor 24 (Omni International, https://www.omni-inc.com/) at 6 m/s for 45 seconds. The samples 403 

were heated for 10 minutes to 95°C and then centrifuged for 10 minutes at 21,000g. Dilutions of each 404 

sample were prepared and sample protein amounts were quantified using the Pierce bicinchoninic acid 405 

(BCA) assay (Thermo Scientific Pierce). 406 

We assembled three types of mock communities by resuspending the frozen cell pellets of each 407 

microorganism in 150 ul ultrapure water and then combining varying amounts of each organism. The 408 

composition of each mock community type is detailed in Supplementary Tables 1 to 3. Four biological 409 

replicates of each mock community type were made and each replicate was divided into 20 aliquots. The 410 

UNEVEN mock community was designed to cover a large range of species abundances both on the level of 411 

cell number and proteinaceous biomass to test for the dynamic range and detection limits of the 412 

quantification methods (Fig. 3a). The EQUAL PROTEIN AMOUNT and EQUAL CELL NUMBER mock 413 

communities contained either the same amount of protein for all community members with varying cell 414 

numbers or the same number of cells for all members with varying amounts of protein. Since the 415 

bacteriophages yield very little protein even if high particle numbers are used, we mixed them at a 10x 416 

lower ratio into the EQUAL PROTEIN AMOUNT community. 417 

Sampling of soda lake biomats 418 

Benthic microbial mats were sampled from two soda lakes located on the Cariboo Plateau, British 419 

Columbia, in June 2014 for 16S rRNA gene amplicon sequencing and metaproteomics and in May 2015 420 
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for metagenomic sequencing. Lake1 herein refers to Goodenough Lake (51°19'47.64"N 121°38'28.90"W) 421 

and Lake2 refers to Last Chance Lake (51°19'39.3" N 121°37'59.3"W). Collected microbial mats from 422 

each lake were pooled and immediately placed on ice in the field and frozen at -80 ○C within two days of 423 

sampling for DNA extraction.  424 

DNA extraction 425 

For the mock community samples DNA was extracted from one aliquot of each of the four biological 426 

replicates of each community type using the FastDNA Spin Kit (MP Biomedicals, Santa Ana, CA, USA) 427 

according to the manufacturer’s protocol with small modifications. Following addition of CLS-TC to each 428 

aliquot, samples were homogenized in lysing matrix tubes (MP Biomedicals FastDNA Spin Kit, tube A) 429 

for 45 seconds at 6 m/s using a Bead Ruptor 24 (OMNI). In addition, the DNA elution steps was repeated 430 

twice. DNA concentrations were measured using a NanoDrop 2000 spectrophotometer (Thermo 431 

Scientific). 432 

DNA was extracted from the 2014 and 2015 Lake1 and Lake2 samples using the FastDNA Extraction Kit 433 

for Soil (MP Biomedicals) with 10 minute centrifugation times for the spin filter steps and an additional 434 

purification using 5.5 M guanidine thiocyanate as described in Sharp et al. (2017) 18. 435 

16S rRNA gene amplicon sequencing and analysis of mock communities and soda lake 436 

biomats 437 

DNA from all mock community samples and the 2014 soda lake biomats from Lake1 and Lake2 was used 438 

for 16S rRNA gene amplicon libraries preparation as described in Sharp et al. (2017) 18. We used the S-D-439 

Bact-0341-a-S-17 (also known as b341, 5’-440 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGAGGCAGCAG-3’) 25 and S-D-441 

Bact-0785-a-A-21 (also known as Bakt_805R, 5’-442 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3’) 26 443 

primers with added Illumina overhang adapters for the amplification of the HV regions 3-4 resulting in 444 

427 bp amplicons (excluding the primers). Based on the evaluation by Klindworth et al. (2013) 19 this 445 

primer pair yields a large coverage of the domain Bacteria. Libraries were pooled and normalized for 446 

sequencing on the Illumina MiSeq Sequencer (San Diego, CA) using the 2 x 300 bp MiSeq Reagent Kit 447 

v3. The resulting amplicon sequences were analyzed with MetaAmp 18. Operational taxonomic units 448 

(OTUs) were identified with a threshold of 97 % sequence similarity.  449 

Metagenomic sequencing of mock communities 450 

Shotgun metagenomic sequencing (2x75 bp) of 3 replicates of each mock community type was performed 451 

using the Illumina NextSeq 500 sequencer. The NEBNext Ultra II DNA Library Prep Kit (New England 452 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2017. ; https://doi.org/10.1101/130575doi: bioRxiv preprint 

https://doi.org/10.1101/130575
http://creativecommons.org/licenses/by/4.0/


18 
 

Biolabs) was used for library preparation. Ten to nineteen million paired-end reads were generated for 453 

each sample. We confirmed the library content using PhyloFlash (https://github.com/HRGV/phyloFlash) 454 

and the quality of the data using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). We 455 

used BBsplit from the BBmap package (version 35.85, http://sourceforge.net/projects/bbmap/) to map raw 456 

reads against the mock community reference genomes to quantify the read coverage for each organism. 457 

The reference genomes that were used are listed in Supplementary Table 7. Read mapping statistics for 458 

each reference genome were generated using BBsplit’s default parameters and by setting the ‘refstats’ 459 

parameter. Relative read abundances for each organism were normalized to their genome sizes. 460 

No reference genomes were available for AK199 and Chromobacterium violaceum CV026 in public 461 

databases. Therefore we generated genomes for these two strains from the metagenomes using an iterative 462 

assembly and binning strategy. All read files were trimmed for quality and adapters using BBduk from the 463 

BBmap package (http://sourceforge.net/projects/bbmap/). The trimmed reads for the UNEVEN samples 464 

were concatenated and assembled with metaSPAdes (version 3.8.1) 27. The assembly quality was checked 465 

by running metaQUAST (version 4.1) with the mock community reference genome set 28. Metawatt 466 

(version 3.5.2) was then used to create bins for AK199 and C. violaceum CV026 using default settings 29. 467 

The bins were checked with metaQUAST to ensure that none of the included contigs aligned with any of 468 

the other reference genomes for the mock community. The trimmed reads from all samples were 469 

concatenated and BBmap was used to retrieve reads mapping to the AK199 and C. violaceum bins. 470 

SPAdes (version 3.8.1) was used to assemble the mapped reads for AK199 and C. violaceum 30. The 471 

assembly quality was checked with metaQUAST, QUAST, and CheckM 31. The AK199 genome was of 472 

sufficient quality after this assembly round. The C. violoceum assembly was further improved by two 473 

more rounds of read mapping and assembly. The AK199 and C. violaceum genomes were annotated using 474 

the RAST server 32 and annotated protein sequences were retrieved for the construction of the protein 475 

identification database. 476 

Soda lake biomat metagenomes, sequencing, assembly and annotation 477 

DNA (250 ng) from the 2015 soda lake biomats from Lake1 and Lake2 was randomly sheared to a 478 

fragment size of approximately 300 bp using a S2 focused-ultrasonicator (Covaris, Woburn, MA). The 479 

fragmented DNA was then converted into an Illumina compatible sequencing library using the NEBNext 480 

Ultra DNA Library Prep Kit according to the vendor’s standard protocol. This included a size selection 481 

step with SPRIselect magnetic beads and PCR enrichment (8 cycles) with NEBNext Multiplex Oligos for 482 

Illumina. The libraries were measured using qPCR and the Kapa Library Quant Kit for Illumina and then 483 

pooled in equal amounts for sequencing. A 1.8 pM solution was then sequenced on an Illumina NextSeq 484 

500 sequencer using a 300 cycle (2x150 bp) high-output sequencing kit as per the Illumina protocol in the 485 

Center for Health Genomics and Informatics in the Cumming School of Medicine, University of Calgary. 486 
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All raw Illumina reads were passed through an in-house Illumina read quality control program that filters 487 

out known Illumina sequencing and library preparation artifacts. Specifically, all reads were removed that: 488 

(i) matched the spike-in PhiX sequence; (ii) were shorter than 30 bp after clipping off the partial primer, 489 

adapters, and the low-quality ranging at the ends; or (iii) were of low complexity. Reads that passed the 490 

quality control stage were assembled into contigs using MEGAHIT v1.0.3 with options “--k-list 491 

51,77,99,127 --min-count 2 –min-contig-len 500” 33. The assembled contigs were merged into scaffolds 492 

based on paired-end information using the SOAP v2.04 package 34. The GapCloser v1.12 package was 493 

applied to further close the gaps between contigs in scaffolds. All the scaffolds longer than 500 bp after 494 

GapCloser post-processing were run through Prodigal v2.6.1 to identify coding sequences 35. The coding 495 

sequences (>= 60 aa) were annotated using DIAMOND 36 with options “-k 1 --seg no” to search against a 496 

protein sequence reference database generated by GenomeDatabase 497 

(https://sourceforge.net/projects/genomedatabase/) and the eggNOG database 37.  Best-hit matches 498 

were filtered by query coverage >= 70% and percent identity >= 30%. Taxonomic assignments for protein 499 

sequences were made on the basis of the filtered best-hit matches. The taxonomically annotated protein 500 

sequences were then used to generate the protein identification database, by combining them with protein 501 

sequences from several eukaryotic genomes and transcriptomes, which were chosen based on the results 502 

from a 18S rRNA amplicon library. CD-HIT was used to remove redundant sequences from the database 503 

using an identity threshold of 95% 38. The cRAP protein sequence database (http://www.thegpm.org/crap/) 504 

containing protein sequences of common laboratory contaminants was appended to the database. The final 505 

database contained 4,171,024 protein sequences and is available from the PRIDE repository 506 

(PXD006343). 507 

Protein extraction, quantification and peptide preparation 508 

Samples were lysed in SDT-lysis buffer with 0.1 M DTT. SDT-lysis buffer was added in a 1:10 509 

sample/buffer ratio to the sample pellets. Cells were disrupted in lysing matrix tubes A (MP Biomedicals) 510 

for 45 seconds at 6 m/s using the OMNI Bead Ruptor 24 and subsequently incubated at 95° C for 10 511 

minutes followed by pelleting of debris for 5 min at 21,000 x g. We prepared tryptic digests following the 512 

filter-aided sample preparation (FASP) protocol described by Wisniewski et al. (2009) 39. In brief, 30 µl of 513 

the cleared lysate were mixed with 200 µl of UA solution (8 M urea in 0.1 M Tris/HCl pH 8.5) in a 10 514 

kDa MWCO 500 µl centrifugal filter unit (VWR International) and centrifuged at 14,000 x g for 40 min. 515 

200 µl of UA solution were added again and centrifugal filter spun at 14,000 x g for 40 min. 100 µl of 516 

IAA solution (0.05 M iodoacetamide in UA solution) were added to the filter and incubated at 22° C for 517 

20 min. The IAA solution was removed by centrifugation and the filter was washed three times by adding 518 

100 µl of UA solution and then centrifuging. The buffer on the filter was then changed to ABC (50 mM 519 

Ammonium Bicarbonate), by washing the filter three times with 100 µl of ABC. 1 to 2 µg of MS grade 520 
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trypsin (Thermo Scientific Pierce, Rockford, IL, USA) in 40 µl of ABC was added to the filter and the 521 

filters were incubated overnight in a wet chamber at 37° C. The next day, peptides were eluted by 522 

centrifugation at 14,000 x g for 20 min, followed by addition of 50 µl of 0.5 M NaCl and further 523 

centrifugation. Peptides were desalted using Sep-Pak C18 Plus Light Cartridges (Waters, Milford, MA, 524 

USA) or C18 spin columns (Thermo Scientific Pierce, Rockford, IL, USA) according to the 525 

manufacturer’s instructions. Approximate peptide concentrations were determined using the Pierce Micro 526 

BCA assay (Thermo Scientific Pierce, Rockford, IL, USA) following the manufacturer’s instructions. 527 

1D-LC-MS/MS and 2D-LC-MS/MS 528 

The four biological replicates of each mock community type were analyzed using a block-randomized 529 

design as outlined by Oberg and Vitek (2009) 40 using several LC-MS/MS methods. Two wash runs with 530 

100% eluent B (80% acetonitrile, 0.1% formic acid) and one blank run were done between samples to 531 

reduce carry over. For the 1D-LC-MS/MS mock community runs, 2 µg of peptide were loaded onto a 5 532 

mm, 300 µm ID C18 Acclaim® PepMap100 pre-column (Thermo Fisher Scientific) using an UltiMateTM 533 

3000 RSLCnano Liquid Chromatograph (Thermo Fisher Scientific) with loading solvent A (2% 534 

acetonitrile, 0.05% TFA), eluent A (0.1% formic acid in water) and eluent B. After loading, the pre-535 

column was switched in line with a 50 cm x 75 µm analytical EASY-Spray column packed with PepMap 536 

RSLC C18, 2µm material (Thermo Fisher Scientific), which was heated to 45° C. The analytical column 537 

was connected via an Easy-Spray source to a Q Exactive Plus hybrid quadrupole-Orbitrap mass 538 

spectrometer (Thermo Fisher Scientific). Peptides were separated on the analytical column at a flow rate 539 

of 225 nl/min and mass spectra acquired in the Orbitrap as described by Petersen et al. (2016) 41. A 260 540 

min (from 2% B to 31% B in 200 min, in 40 min up to 50% B, 20 min at 99% B) and a 460 min gradient 541 

(from 2% B to 31% B in 363 min, in 70 min up to 50% B, 27 min at 99% B) were used for 1D-LC. For the 542 

2D-LC-MS/MS runs, 11 µg of peptide were loaded onto a 10 cm, 300 µm ID Poros 10 S SCX column 543 

(Thermo Fisher Scientific) using the UltiMateTM 3000 RSLCnano LC with loading solvent B (2% 544 

acetonitrile, 0.5% formic acid). Peptides were eluted from the SCX column onto the C18 pre-column 545 

using 20 µl injection of salt plugs from the autosampler with increasing concentrations (12 salt plugs, 0 to 546 

2000 mM NaCl). After each salt plug injection the pre-column was switched in line with the 50 cm x 75 547 

µm analytical EASY-Spray column and peptides separated using a 120 minute gradient (from 2% B to 548 

31% B in 82 min, in 10 min up to 50% B, 9 min at 99% B, 19 min at 2% B). Data acquisition in the Q 549 

Exactive Plus was done as described by Petersen et al. (2016) 41. 550 

The two soda lake samples were analyzed in technical quadruplicates by 1D-LC-MS/MS (1x 260 min and 551 

3x 460 min runs for each). Two blank runs were done between samples to reduce carry over. For each 260 552 

min run ~1 µg of peptide and for each 460 min run 2-4 µg of peptide were loaded onto a 2 cm, 75 µm ID 553 

C18 Acclaim® PepMap 100 pre-column (Thermo Fisher Scientific) using an EASY-nLC 1000 Liquid 554 
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Chromatograph (Thermo Fisher Scientific) with eluent A (0.2% formic acid, 5% acetonitrile) and eluent B 555 

(0.2% formic acid in acetonitrile). The pre-column was connected to a 50 cm x 75 µm analytical EASY-556 

Spray column packed with PepMap RSLC C18, 2µm material (Thermo Fisher Scientific), which was 557 

heated to 35° C via the integrated heating module. The analytical column was connected via an Easy-558 

Spray source to a Q Exactive Plus. Peptides were separated on the analytical column at a flow rate of 225 559 

nl/min using either a 260 min (from 0% to 20% B in 200 min, in 40 min to 35% B, ending with 20 min at 560 

100% B) or a 460 min gradient (from 0% to 20% B in 354 min, in 71 min to 35% B, ending with 35 min 561 

at 100% B). Eluting peptides were ionized with electrospray ionization and analyzed in the Q Exactive 562 

Plus as described by Petersen et al. (2016) 41. 563 

Protein identification and quantification 564 

For protein identification of the mock community samples a database was created using all protein 565 

sequences from the reference genomes of the organisms used in the mock communities (Supplementary 566 

Table 7). The cRAP protein sequence database (http://www.thegpm.org/crap/) containing protein 567 

sequences of common laboratory contaminants was appended to the database. The final database 568 

contained 123,100 protein sequences and is available from the PRIDE repository (PXD006118). For 569 

protein identification of the soda lake mats we used the database described above.  For protein 570 

identification of the human saliva metaproteomes we used the same public databases as described in 571 

Grassl et al. 9 as a starting point. Namely the protein sequences from the human oral microbiome database 572 
42 and the human reference protein sequences from Uniprot (UP000005640). CD-HIT was used to remove 573 

redundant sequences from the database using an identity threshold of 95% 38. The saliva metaproteome 574 

database contained 914,388 protein sequences and is available from the PRIDE repository (PXD006366). 575 

For peptide identification and protein inference the MS/MS spectra were searched against the databases 576 

using the Sequest HT node in Proteome Discoverer version 2.0.0.802 (Thermo Fisher Scientific) or the 577 

MaxQuant software version 1.5.5.1 15. 578 

Data availability 579 

The mass spectrometry metaproteomics data and protein sequence databases have been deposited to the 580 

ProteomeXchange Consortium via the PRIDE 43 partner repository with the dataset identifier PXD006118 581 

for the pure culture and mock community data, with dataset identifier PXD006343 for the soda lake 582 

biomats, and with dataset identifier PXD006366 for the re-analyses of the saliva metaproteomes by Grassl 583 

et al. 9. Public release of the PRIDE projects will be requested as soon as a citable pre-print is online, 584 

so it might take a few days for these identifiers to show up in the database. A detailed overview of the 585 

pure culture and mock community metaproteomic data for method development can be found in 586 

Supplementary Table 5. 587 
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The sequencing data for the mock community metagenomes and 16S rRNA gene amplicons is available 588 

from the European Nucleotide Archive with study accession number PRJEB19901. 589 

The 16S rRNA gene amplicon sequencing data has been submitted to the NCBI short read archive (SRA) 590 

with the following accession numbers SRR5291562 (Lake1) and SRR5291553 (Lake2). 591 
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Figure 1: Workflow for assessing species biomass contributions using metaproteomics. 712 
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 713 

Figure 2: Specificity and sensitivity of protein identification using different protein inference 714 

strategies. Proteins from different pure cultures were identified using a simulated metagenomic database 715 

that contained the protein sequences of 30 species and strains. For each pure culture, mass spectrometric 716 

data was acquired with a 260 minute long 1D-LC-MS/MS run (SEE METHODS). The database contained 717 

the sequences of the pure culture organism and sequences of organisms of various degrees of taxonomic 718 

relatedness. For the alphaproteobacterium Rhizobium leguminosarum bv. viciae 3841 the closest relative 719 

in the database was a highly similar strain of the same species (a), for the gammaproteobacterium 720 

Pseudomonas denitrificans the closest relatives in the database were other Pseudomonas species (b), for 721 

the betaproteobacerium Nitrosospira multiformis the closest relatives in the database were from the related 722 

betaproteobacterial genus Nitrosomonas (c), and for the archaeum Nitrososphaera viennensis the closest 723 

relatives in the database were bacteria (d). The same selection of protein inference strategies is shown for 724 

all cultures: SQ 5% FDR; SEQUEST search filtered based on search engine scores for 5% false discovery 725 

rate (FDR) using standard Target-Decoy strategy (implemented as Protein FDR Validator Node in Protein 726 

Discoverer). 2 UP ⊂⊂⊂⊂ SQ 5% FDR; same as previous, but only the subset of proteins identified with at 727 

least two unique peptides (UP) was considered. SQ Fido; Fido results filtered at 5% FDR based on 728 

protein q-value. 2 PU ⊂⊂⊂⊂ SQ Fido; same as previous, but only the subset of proteins identified with at least 729 

two protein unique (PU) peptides was considered. SQ Fido ∩ MQ; Only proteins considered that were 730 

identified both by Sequest-Fido (FDR 5%) and MaxQuant (1% protein FDR, at least 2 razor+unique 731 

peptides). (2 PU ⊂⊂⊂⊂ SQ Fido) ∩ MQ; Same as previous, but for Sequest-Fido only the subset of proteins 732 
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identified with at least two protein unique (PU) peptides was considered. SQ Fido ∩ (MQ || 3 PU); Only 733 

proteins considered that were identified both by Sequest-Fido and MaxQuant. Additionally, Sequest-Fido 734 

identified proteins were retained even if they were not identified by MaxQuant if they had at least three 735 

protein unique peptides 736 
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Figure 3: Quantification of mock community using three proteomic quantification methods and two 738 

DNA sequencing based methods; a) Illustration of mock community construction. 32 species and strains 739 

were used for the construction of three distinct community types. b) comparison of three proteomic 740 

quantification methods with the relative protein input amounts. Averages of four biological replicates per 741 

community are shown (full data in Supplementary Table 8). Data from two 460 min long 1D-LC-MS/MS 742 

runs were used per biological replicate. Three different quantification methods were used including sum of 743 

peptide-spectrum matches (PSMs), sum of peptide ion intensities using only unique peptides (u 744 

intensities), and sum of peptide ion intensities using razor and unique peptides (r+u intensities) as 745 

implemented in MaxQuant. The bacteriophages were mixed at a 1:10 ratio into the “equal protein amount” 746 

communities. Based on metagenomic sequencing we found that the B. xenovorans culture was 747 

contaminated with S. epidermidis and thus the input protein amounts and cell numbers for B. xenovorans 748 

were lower than calculated. We used three Salmonella enterica typhimurium strains in the mock 749 

communities that differed only in a small number of genes and thus were de facto indistinguishable on the 750 

proteomic and metagenomic level and thus the inputs for the three strains are reported as one species. The 751 

bubble plot was generated with the bubble.pl script 44. c) Box plots show the x fold deviation of the 752 

amounts measured with the three proteomic quantification methods from the actual protein input amounts. 753 

The box indicates the 1st and 3rd quartile, the line indicates the median and the whiskers indicate the 10th 754 

and 90th percentile. Outliers are indicated as individual points. If measurement and input were equal then 755 

all values would be exactly 0 (indicated by bright blue line). Zeros (species that were not detected i.e. 756 

‘ND’ in panel b) were removed before plotting. 757 

 d) Comparison of metaproteomic, shotgun metagenomic and 16S rRNA gene amplicon based 758 

quantification of the mock communities with the input protein amounts and cell numbers. For 16S rRNA 759 

gene amplicons and metaproteomes averages of four biological replicates per community type are shown. 760 

For the shotgun metagenomic data averages of three biological replicates are shown. For the 761 

metaproteomes the PSM based quantification is shown (see panel b). (gr- or gr+) gram positive or 762 

negative Bacterium, (A) Archaeum, (E) Eukaryote, (V dsDNA, ssDNA or ssRNA) virus specifying 763 

nucleic acid type of genome.  764 

e-g) Box plots show the x fold deviation of the species abundance quantification with metaproteomics, 765 

metagenomics and 16S rRNA gene amplicon sequencing from the actual input amounts for protein e) and 766 

f) and cell number g). f) is an enlargement of the lower part of e). If measured and input species 767 

abundance were equal, then all values would be exactly 0 (indicated by bright blue line). Zeros (species 768 

that were not detected i.e. ‘ND’ in panel d) were removed before plotting. For each community type and 769 

method the method with the significantly lowest x fold deviation (p-value <0.01) is indicated with a bright 770 

blue ‘*’ (see Supplementary Table 4 for details on statistics). 771 
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NA: species not added to this mock community; ND: Not detected with this method. 772 
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 773 

Figure 4: Comparison of quantification accuracy for the UNEVEN mock community depending on 774 

LC method, gradient length and technical replication.  Four biological replicates were run for each 775 

method and the number of peptide-spectrum matches (PSMs) was averaged per organism. The numbers 776 

below the plots give the average total number of PSMs generated for each of the methods. Box plots show 777 

the deviation of the amounts measured by summing of PSMs from the actual protein input amounts. The 778 

box indicates the 1st and 3rd quartile, the grey line indicates the median, the red line the average and the 779 

whiskers indicate the 10th and 90th percentile. If measurement and input were equal, then all values would 780 

be exactly 1 (indicated by bright blue line). The first four methods were 1D-LC-MS/MS runs of the given 781 

length. The ‘2x’ indicates if technical replicates were run. The fifth method was 2D-LC-MS/MS runs with 782 

each of the 12 fractions measured for 120 minutes (detailed data for this Figure is in Supplementary Table 783 

6). In a) the deviation values for all 27 detected strains and species are shown. In b) the deviation values 784 

are only shown for the 18 strains and species that had an abundance >0.5% based on at least one of the 785 

methods. 786 
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 787 

Figure 5: Effect of using incomplete protein sequence databases on quantification results. Species in 788 

the UNEVEN community were quantified using the complete protein sequence database containing the 789 

protein sequences of all species in the community for protein identification and two sequence databases of 790 

varying incompleteness. In the first incomplete database (INCOMPLETE1) the protein sequences for 791 

Pseudomonas denitrificans, Pseudomonas fluorescens and Rhizobium leguminosarum  bv. viciae (strain 792 

3841) were removed leaving the sequences of the closely related species/strains Pseudomonas 793 

pseudoalcaligenes and Rhizobium leguminosarum  bv. viciae (strain VF39) in the database. In the second 794 

incomplete database (INCOMPLETE2) the remaining Pseudomonas and Rhizobium sequences as well as the 795 

Salmonella enterica typhimurium LT2 sequences were removed. In a) the average quantification results 796 

for the four UNEVEN community biological replicates are shown. For the 4th and 5th bar the quantification 797 

results were corrected by considering the percentage of PSMs lost due to database incompleteness, i.e. 798 

based on searches with the complete database the expected fraction of MS2 spectra that yielded PSMs was 799 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2017. ; https://doi.org/10.1101/130575doi: bioRxiv preprint 

https://doi.org/10.1101/130575
http://creativecommons.org/licenses/by/4.0/


37 
 

known and thus we could calculate the difference between the expected number of PSMs and actual 800 

number of PSMs in the quantification with the incomplete databases. In b) the comparison of the 801 

quantification results with the complete and the INCOMPLETE2 databases are shown before and after 802 

correction of the INCOMPLETE2 quantification results. If the quantification results were in perfect 803 

agreement then all values would be 1 (indicated by the bright blue line). The box indicates the 1st and 3rd 804 

quartile, the line indicates the median and the whiskers indicate the 10th and 90th percentile. 805 
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 806 

Figure 6: Two application examples using metaproteomics of estimating species biomass in 807 

communities. a) Comparison of phylum level quantification of two soda lake biomats using 808 

metaproteomics and 16S rRNA gene amplicon sequencing. b) Re-analysis of a published saliva 809 

metaproteome dataset by Grassl et al. (2016) 9 using our method and comparison with the original 810 

analysis. *For the Grassl et al. analyses the abundances are given in % of the summed MS intensities of 811 

the 10 most abundant peptides per genus across all samples. For our analyses the abundances are given as 812 

% of all PSMs from proteins inferred by FidoCT with an FDR of 5% and at least 2 protein unique 813 

peptides. 814 
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