Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Escalation of Memory Length in Finite Populations

View ORCID ProfileKyle Harrington, Jordan Pollack
doi: https://doi.org/10.1101/130583
Kyle Harrington
aDEMO Lab, Department of Computer Science, Brandeis University, Waltham, MA
bCurrent Address: Virtual Technology and Design, University of Idaho, Moscow, ID
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kyle Harrington
Jordan Pollack
aDEMO Lab, Department of Computer Science, Brandeis University, Waltham, MA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The escalation of complexity is a commonly cited benefit of coevolutionary systems, but computational simulations generally fail to demonstrate this capacity to a satisfactory degree. We draw on a macroevolutionary theory of escalation to develop a set of criteria for coevolutionary systems to exhibit escalation of strategic complexity. By expanding on a previously developed model of the evolution of memory length for cooperative strategies by Kristian Lindgren, we resolve previously observed limitations to the escalation of memory length. We present long-term coevolutionary simulations showing that larger population sizes tend to support greater escalation of complexity than smaller population sizes. Additionally, escalation is sensitive to perturbation during transitions of complexity. In whole, a long-standing counter-argument to the ubiquitous nature of coevolution is resolved, suggesting that the escalation of coevolutionary arms races can be harnessed by computational simulations.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted April 25, 2017.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Escalation of Memory Length in Finite Populations
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Escalation of Memory Length in Finite Populations
Kyle Harrington, Jordan Pollack
bioRxiv 130583; doi: https://doi.org/10.1101/130583
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Escalation of Memory Length in Finite Populations
Kyle Harrington, Jordan Pollack
bioRxiv 130583; doi: https://doi.org/10.1101/130583

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Evolutionary Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4685)
  • Biochemistry (10362)
  • Bioengineering (7682)
  • Bioinformatics (26343)
  • Biophysics (13534)
  • Cancer Biology (10694)
  • Cell Biology (15446)
  • Clinical Trials (138)
  • Developmental Biology (8501)
  • Ecology (12824)
  • Epidemiology (2067)
  • Evolutionary Biology (16867)
  • Genetics (11402)
  • Genomics (15484)
  • Immunology (10621)
  • Microbiology (25226)
  • Molecular Biology (10225)
  • Neuroscience (54482)
  • Paleontology (402)
  • Pathology (1669)
  • Pharmacology and Toxicology (2897)
  • Physiology (4345)
  • Plant Biology (9254)
  • Scientific Communication and Education (1587)
  • Synthetic Biology (2558)
  • Systems Biology (6781)
  • Zoology (1466)