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Abstract

Motivation: Pairwise alignment of nucleotide sequences has been calculated in practice by the seed-
and-extend strategy, where we enumerate seeds (shared patterns) between sequences and then extend
the seeds by a Smith-Waterman-like semi-global dynamic programming to obtain full pairwise alignments.
With the advent of massively parallel short read sequencers, algorithms and data structures for efficiently
finding seeds had been explored extensively. However, recent advances in single-molecule sequencing
technologies enabled us to obtain millions of reads, each of which is orders of magnitude longer than those
output by the short-read sequencers, demanding a faster algorithm for the extension step that dominates
the computation time in pairwise local alignment. Our goal is to design a faster extension algorithm which
overcomes the two major drawbacks of the single-molecule sequencers that the sequencing error rates
is high (e.g., 10-15 %) and insertions and deletions are more frequent than substitutions are.

Results: We propose an adaptive banded dynamic programming (DP) algorithm for calculating pairwise
semi-global alignment of nucleotide sequences that allows a relatively high insertion or deletion rate while
maintaining the band width to some small constant (e.g., 32 cells). On every band advancing operation,
cells at the forefront of the band are calculated simultaneously without mutual dependencies, allowing
an efficient Single-Instruction-Multiple-Data (SIMD) parallelization. We show by an experiment that our
algorithm runs approximately 8 times faster than the extension alignment algorithm in NCBI BLAST+
retaining the similar sensitivity and accuracy. The results indicate that the algorithm is capable of replacing
extension alignment routines in the existing nucleotide local alignment programs.

Availability: The implementation of the algorithm and the benchmarking scripts are available at
https://github.com/ocxtal/adaptivebandbench.

Contact: mkasa@k.u-tokyo.ac.jp

1 Introduction of reads longer than 20 kb, but fast algorithms for such long reads were not

In the past decade, technological improvement in the DNA sequencing explored well before the third generation sequencers became common.

field has been remarkable. Single-molecule sequencers, often called third
generation sequencers, achieved more than ten-fold improvement in their

As most genome analyses using massively parallel sequencers start
with aligning reads against themselves (for de novo assembly in whole

read lengths. The commercially available third generation sequencers such genome re-sequencing researches) or reference sequences (for other

as PacBio Sequel and Oxford Nanopore MinION can yield reads of 20 kb
or even longer, whereas the longest practical read lengths of the Sanger

reference-guided analyses, e.g. exome sequencing and RNA-seq), faster
algorithms for pairwise alignment are crucial in accelerating most types of
sequencers were around 1 kbp. They demand us to process huge amount genome. an.a]yses. However, it has 'been recerlltly.proved that the near-
quadratic time bounds for computing the edit distance cannot not be
improved and would be tight (unless strong exponential time hypothesis

is false; Backurs and Indyk (2015)). Thus, it is reasonable to design
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fast heuristic algorithms for pairwise alignment. Current typical heuristic
algorithms for pairwise local alignment first find short exact matches called
“seeds” and then extend them using a semi-global variant of pairwise local
alignment algorithms such as Smith-Waterman-Gotoh algorithm (SWG;
Smith and Waterman (1981); Gotoh (1982)). This idea, the seed-and-
extend strategy, was employed in classical Basic Local Alignment Search
Tool (BLAST; Altschul et al. (1990)) and also recently in long-read
alignment programs for third-generation sequencers, such as BWA-MEM
(Li, 2013), BLASR (Chaisson and Tesler, 2012), DALIGNER (Myers,
2014), and GraphMap (Sovi¢ et al., 2016).

In the era of second generation sequencers, such as Illumina and Ion
Torrent, fast algorithms for finding seed matches were explored because
the most time consuming step was in the seed matching stage. Approximate
string matching algorithms based on Baeza-Yates algorithm (Navarro and
Ricardo, 1998) were used in the early days (MAQ (Li et al., 2008) and
BFAST (Homer et al., 2009)), and later an exact substring matching
algorithm based on Burrows-Wheeler transform (Burrows and Wheeler,
1994) and an auxiliary data structure proposed by Ferragina and Manzini
(Ferragina and Manzini, 2000) were adopted in many sequence alignment
programs, such as BWA (Li and Durbin, 2009) and Bowtie2 (Langmead
and Salzberg, 2012).

However, as the read length increases, the proportion of the extension
step in the computation time of pairwise alignment has been getting larger
and therefore a faster extension algorithm is demanded. Not only the longer
read length leads to a longer computation time for the extension step, it
also forces us to use a smaller seed length to allow an order of magnitude
more frequent insertions and deletions in alignments, putting a significant
computational burden on the extension step. Commonly used techniques
for accelerating the extension alignment only calculate the values of the
cells in a small region of the matrix in the SWG algorithm; we first estimate
by heuristic a region where the optimal path of the pairwise alignment
may go through, and only compute the values of the cells in the region.
As the region gets smaller and smaller, we run a higher risk of missing
the optimal path (alignment) but the computation time for the extension
step also becomes smaller. This technique is first proposed by Chao e al.
(1992), and is later adopted in many local alignment programs (BWA-
MEM (Li, 2013) and BLASR (Chaisson and Tesler, 2012)) as “banded
DP”.

Another heuristic for the extension step was introduced in BLAST,
which we denote by the “BLAST X-drop DP algorithm”. The BLAST
X-drop DP algorithm continues to extend alignments until all the cells
in the forefront have a score less than the current maximum minus X
by implicitly assuming that valid alignments do not include a part of
alignments that scores to a value under — X . The algorithm successfully
reduces the region in the DP matrix to be calculated when the X is
sufficiently small.

Another approaches previously taken to accelarate the SWG algorithm
by a constant factor include utilizing Single-Instruction-Multiple-Data
(SIMD) operations that increases the number of cells processed per unit
operation. Examples of such approaches include the Wozniak’s (Wozniak,
1997), Rognes’s (Rognes and Seeberg, 2000), and Farrar’s (Farrar, 2007)
approach. The Farrar’s striped vectorization (parallelization) successfully
accelerated calculation of a rectangular DP matrix of the SWG algorithm,
and it was adopted in many local alignment programs (MOSAIK2 (Lee
et al., 2014), BWA (Li and Durbin, 2009) and Bowtie2 (Langmead and
Salzberg, 2012)) and libraries (SSW library (Zhao et al., 2013), Parasail
(Daily, 2016)).

Here, we propose a new algorithm, adaptive banded DP. It uses
SIMD instructions on general-purpose processors in a different way from
previous ones, and supports a X-drop-like heuristic to accurately identify
the end of alignments. We demonstrate that it is the fastest affine-gap
penalty semi-global alignment algorithm. It calculates the semi-global

alignment of nucleotide sequences with a 4 X 4 substitution matrix and an
affine-gap penalty function 8 times faster than the X-drop DP algorithm
implemented in the BLAST. The algorithm successfully reports the optimal
alignment score and its corresponding alignment path at nearly 100 %
of probablity when aligning sequences with the error mode of single-
molecule sequencers with common substitution matrices and gap penalties.
Notably, the indel tolerance is so high that a simulation with our algorithm
(the cell width: 32) were able to successfully align reads with a 27 base
contiguous gap without missing matches after the gap.

2 Methods
2.1 Semi-global alignment of nucleotide sequences

First we give a definition of the nucleotide semi-global alignment problem.
Leta = apai...ajq|—1 and b = bobi...bj| 1 be strings over an alphabet
> = {A, C, G, T}. The problem formulation is to calculate a coordinate
(n, m) and a corresponding “alignment”, or an edit path from (0, 0) to
(n, m) which consists of {match, insertion, deletion}, that maximizes
the sum of substitution scores and gap penalties. The substitution scores
are defined over a pair of alphabets: s(p, ¢) where p, ¢ € X (called “score
matrix”), and the gap penalty function is expressed in an integer linear
form: g(k) = Go + k - Ge where G, > 0, Ge > 0 and k is the length
of contiguous gaps (called “affine-gap penalty function”). The problem
appears as a subproblem in the extension stage of the seed-and-extend
algorithm.

This formulation of the semi-global alignment problem is usually
solved with a variant of the Smith-Waterman-Gotoh (Smith and Waterman,
1981; Gotoh, 1982) algorithm, where the initial values (the scores at the
top and left edges in the DP matrix) are modified to the gap penalties from
the origin. This modification fixes the staring cell of resulting alignments
to the origin of the matrix. The end of alignments remains open (not fixed)
as in the original SWG algorithm; it starts traceback from the cell with
the maximum score. We use a general 4 X 4 score matrix throughout the
paper unless specified, but the match-mismatch scoring model, where a
score matrix is characterized by a pair of integers, (M, X), where M is
a match score and X is a penalty score, is a special case of the general
score matrix, and therefore most discussions hereafter hold true also for
the match-mismatch scoring model. The recurrence relations of the DP
matrices used in the SWG algorithm are shown in Equation 1, 2, and 3,
where S is a score matrix, £/ and F' to calculate gap penalities in the
horizontal and vertical directions respectively.

—Go —i-Ge (j=0)
Fli.j) —inf (:=0) M
7/7] = . .
S[l_luﬂ_Go_Ge . .
max{ A (10,5 #0)
—Go—7-Ge (i=0)
. —inf (1=0)
Fli, j] = . (2)
S[lvj_”_Go_Ge . .
max{ A (i #0,5 #0)
0 (i=0,j=0)
—Go—j-Ge (i=0,5#0)
S[’L ]7 —Go—1-Ge (i5£0:j:0)
I Sli — 1,4 — 1] + s(ai—1,bj-1)
max < FEi,j] (1 #0,5 #0)
Fi, j]
3

We use the minimum or a sufficiently small value within the range of
the integer type used in our implementation, as — inf cannot be represented
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“Phantom traiangles”
outside of the original matrix

(g) Initial vectors are filled
with -oo except for S[0, 0] =0

(a) Three DP vectors:
Sv for scores
Ev for horizontal gaps
Fv for vertical gaps

Subsequence vector for sequence a
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< two edge cells in the previous S vector:

Sv[0] =-1 and Sv[7] =2
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(e) Base ‘A’ is pushed into sequence B vector
from its left corresponding to the downward advance.

Score matrlx is flattened onto a 16-element vector

9 O
(T,T) s(T,G)s(T.C S(GT)S(GG)S(GC) ==+ S(AC
Input vector: V——[10 -1 3 5 21 -7 -3 2] base A C G T
2-bitrep. 00 01 Shuffle
Shuffle V with index J %?%Z A 00 [sAASACKAGISAT)
Index: Pairs of
Indexvector:J77|4 401720 3] C o1 peakcokcolcn  2-bit encoded |TA) (AA) €A (€O (AC) GA) €O T.0)
‘ ‘ ‘ ‘ ‘ ‘ ‘ bases 1100 0000 0100 0101 0001 1000 0101 1101 1o1o
G 10 S(G'A (G,C)B(G,G lf‘T)
Output vector: each Output: Score I T 1 1 11 1 7
element at i has V[J[i]] | 55 2 -310-7 2 21| T 11 [sTARTOT.Gs(T.T) profile vector S(T,A) S(A,A) S(C,A)S(C,C) S(A,C)S(G,A)S(C,C) == s(T,C)s(G.G)|

(i) Shuffle operation on a vector (W = 8 as an example)

(j) Score matrix retrieval with a 16-element vector shuffle operation

Fig. 1. Overview of the adaptive banded DP algorithm, where W = 8. (a) Vector placement: Three DP vectors, Sy, Ev, and Fy, are placed in the anti-diagonal direction of the DP

matrix, holding the corresponding part of the original S, E, and F' matrices. (b, ¢c) Determining the advancing direction of the band: The advancing direction of the band is determined

on every vector update by comparing the two edge cells in the Sy, vector. (d) Vector update procedure: The vector update procedure consists of three update operations, each of which

corresponds to the update formula of the original semi-global alignment algorithm (Eq 1, 2, and 3). (e) Subsequence vectors: Two subsequence vectors are placed on the top and left sides

of the matrix. They move according to the advancing direction of the band. (f, i, j) Score profile vector calculation: The score profile vector, an array of s(-, -) values, is calculated using

a vector shuffle instruction (i), which is an indexed element retrieval on a vector. The index vector and the input element vector are respectively composed of pairs of 2-bit encoded bases,

and the flattened 4 x 4 substitution matrix (j). (g, h) Initialization of vectors: The three, Sy, Ey/, and F'y, vectors and the second-previous Sy, vector are initialized with — inf except

for S0, 0] = 0. This setting results in proper initial values aligning on the two top and left lines.

in regular integer types. Note that the formulation of the SWG algorithm
here might be somewhat different from ones that appear in previous papers,
but it is mathematically equivalent to the corrected version of the original
SWG algorithm (Flouri ef al., 2015).

2.2 Adaptive banded DP

In 1992, Chao et.al. proposed a method called banded DP as an acceleration
technique for the global alignment DP algorithms (Chao et al., 1992). It
reduced the time and memory necessary in computation by narrowing the
region of the DP matrix to calculate. The idea was later simplified to fill a
pre-determined, diagonally placed rectangle band with a constant width,
which we call “static banded DP” hereafter. The simplified algorithm is
applied to many semi-global alignment implementations such as SeqAn

(Doring et al., 2008) and recently Parasail library (Daily, 2016), the
refinement alignment in SSW library (Zhao et al., 2013), and the extension
alignment in BWA-MEM (Li, 2013) and BLASR (Chaisson and Tesler,
2012). A vector-oriented parallelization of the static banded DP was
proposed by Kimura et.al. (Kimura ez al., 2012) in their static-banded
edit-distance algorithm. They adopted anti-diagonally placed vectors
with a constant width (e.g., 64 cells) to calculate the cells in a vector
simultaneously.

Our adaptive banded DP algorithm adopts a similar band-narrowing
approach, but in contrast to the static banded DP where the narrowed
region is determined statically (i.e., before filling cells in the DP matrix),
our algorithm determins the narrowed region dynamically as we calculate
cells in the DP matrix in our algorithm. Figure 1 illustrates the overview
of our algorithm. The banded region with a constant width (the number
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of anti-diagonally aligned cells; denoted as W) is created by pushing
the forefront DP vectors (the anti-diagonally placed vectors) toward the
diagonal direction. The forefront DP vectors, Sy, Ey -, and Fy hold the
cells in an anti-diagonal line (Fig 1(a)). At each step, the three forefront DP
vectors move to either of the two directions, rightward or downward. On
every step, the advancing direction of the forefront vectors is determined
by comparing the two edge cells (Sy [0] and Sy [W — 1)) to keep the
difference between the two edge cells in the next forefront Sy vector
smaller. In other words, the next vectors are placed rightward when
Sy [0] > Sy[W — 1] and downward when Sy [0] < Sy [W — 1]
(Fig 1(b, ¢)). When the forefront vectors move, the Ey -, Fy, or Sy
are updated according to the formula (Fig 1(d)). First, the new Ey, and
Fy, vectors are derived from the previous Ey/, Fy, and Sy vectors, then
the new Sy vector is calculated from the current E'y, and Fy, vectors,
the second-previous Sy, vector, and a score profile vector (an array of
substitution scores). As each operation has no dependencies between
the cells in the forefront vectors, the whole update procedures can be
implemented with Single-Instruction-Multiple-Data (SIMD) instructions
keeping the vectors on SIMD registers.

In our algorithm, the score profile vector is also generated in a SIMD-
vectorized manner leveraging a vector shuffle operation. The vector shuffle
operation can retrieve multiple elements (e.g., 16 elements) from a given
array of the fixed size (e.g., 16) in a single operation; it does a simple
table-lookup from the 16-element array multiple times (e.g., 16 times) in
parallel (Fig 1(i)). We concatenate the pair of 2-bit encoded bases into
one value ranging from O to 15, and use the array of such values as the
index vector and a flattened 4 X 4 score matrix as the input vector of the
shuffle operation (Fig 1(f, j)). To efficiently generate the index vector, we
retain two subsequences of length W on vector registers with each base
represented in a 2-bit binary encoding, where {A, C, G, T} is mapped
to {00, 01,10, 11} respectively. Every time the forefront vector moves,
either of the two sequence vectors is shifted left or right by one according to
the advancing direction (Fig 1(e)). The conversion from an ASCII code to
the 2-bit encoded binary is performed when a base comes into the sequence
vector; the conversion is done with a well-known simple formula 0x03 -
((¢>2) @ (¢> 1)) where c is a 8-bit ASClII-encoded character and -,
@, and > are respectively bitwise AND, bitwise XOR, and logical shift
operations. To our knowledge, the technique is not published in literature,
nor could we find the origin of the technique. Note that the conversion
works correctly regardless of the case of an input character since the output
2-bit pattern only depends on a subset of the input bits that are identical
between an uppercase character and its corresponding lowercase character.

The head of the band, the top-left triangular corner of the matrix, is
handled in a special way. We added two phantom traiangular regions to
reshape the corner to have a constant width. The initial vectors are placed
at the top-left edge of the augumented band, whose center cell! is aligned
to the cell at the origin (0, 0). The initial values in the vectors are set to
— inf, or a sufficiently small value in the range of the cell variable, except
that the cell at (0, 0) is set to 0 in order to derive proper initial values
on the first column (¢ = 0) and the first row (j = 0) in the DP matrix.
Figure 1(f) shows an example of the initial and derived values with the
score parameters (M, X, Go, Ge) = (2,3,5,1).

Finally, we describe a heuristic to terminate the band extension, which
is simlilar to an algorithm introduced in the BLAST X-drop DP algorithm.
To avoid unfruitful extension through an unmatched region beyond the
true end of the matches, the BLAST (Altschul et al., 1990) and programs
developed later such as BWA-MEM (Li, 2013) and LAST (Kietbasa et al.,
2011) adopted a heuristic algorithm called X-drop termination in their

I Strictly speaking, we have two center cells when W is odd, but here we
define the center as either of them.

/* initialize sequence vectors */
av <- { 0 }
bv <- { 0 }
for (i <- 0 .. BW / 2) {
av <- shift left av
av[0] <- (a[i]>>2)

(a[i]>>1)
for (j <- 0 .. BW / 2) {

bv <- shift right bv
bv[BW / 2] <= (b[j]>>2) " (b[j]>>1)

/* initialize score vectors */

ppv[0 .. BW] <- -inf

pv[0 .. BW] <- -inf, pv[BW / 2] = 0
ev[0 .. BW] <- -inf

fv[0 .. BW] <- -inf

/* initialize X-drop variable */
center max <- pv[BW / 2]

while (until the end of the band) {
/* X-drop termination test */
if (pv[BW / 2] < center _max - X) {
break

}

/* dynamic direction determination */
if (pv[BW - 1] > pv[0]) {
dir <- DOWN
} else {
dir <- LEFT
}

/* update vectors */
if (dir is DOWN) {
j<-3j+1
bv <- shift right bv
bv[BW - 1] <- 0x03 & ((b[]]>>2) "~ (b[]]>>1))

uv <- pv
lv <- shift right pv
fv <- shift right fv

if (previous direction is down) {
ppv <- shift right ppv

}
} else {
i<-1i+1
av <- shift left av
av[0] <- 0x03 & ((a[i]>>2)

(a[i]>>1))

uv <- shift left pv
lv <- pv
ev <- shift left ev

if (previous direction is right) {
ppv <- shift left ppv
}
}
ev <- max(ev - Ge, lv - Gi - Ge)
fv <- max(fv - Ge, uv - Gi - Ge)
scv <- shuffle(matrix, av | (bv<<2))
cv <- max(ppv + scv, ev, fv)

/* save vectors for use in traceback */
store(cv) store(ev) store(fv)

PPV <- pv

pv <- cv

/* update the X-drop variable */
center_max = max(center_max, pv[BW/2])

Fig. 2. Pseudocode of the Adaptive Banded DP algorithm. The ppv, pv, ev, and fv represent
the second-previous Sy, vector, the previous Sy, Ey,, and Fy, vector, respectively. The
two subsequence vectors are denoted as av and bv. The X-drop threshold is denoted as
X. The three binary operator on vectors, +, —, and max, are element-wise addition,
subtraction, and maximum, respectively. The shift left and shift right operator shift elements
in a vector leftward and rightward by one column. The shuffle operation takes an element
vector as the first argument and an index vector as the second argument. The < operator
in the shuffle represents the bitwise left shift on each element in the vector.

semi-global alignment DP routines. It terminates the extension when all
the forefront cell scores are smaller than the current maximum score by
at least X. Since there is no way to calculate the maximum values in
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(b) Recall rate with different band widths
and sequence identities

(d) Recall rate with different sequence lengths and identities (left: W = 16, right: W = 24)

Fig. 3. Results of the recall benchmarks (a) Statistic profiles of one sample of the simulated read sets: The length and the identity were set to 1, 000 bp and 0.85, with their (SD, max,

min) set to (50, 1050, 950) and (0.01, 0.86, 0.84), respectively. (b) Recall rate (in percent) with different band widths and sequence identities: The mean sequence length L and score

parameters were set to 1, 000 and (1, 2, 2, 1). 100.0 is displayed as 100. (c) Recall rate (in percent) with different gap penalties: The match award and mismatch penalty were fixed at

(M, X) = (2, 2). The mean sequence length and identity were set to 1, 000 and 0.75. 100.0 is displayed as 100. (d) Recall rate (in percent) with different sequence lengths and identities

with two bandwidths: The result of W = 16 is shown in the left and W = 24 in the right. The scoring parameters were set to (1, 2, 2, 1). 100.0 is dispalyed as 100. (e) Recall rate (in

percent) with different gap insertion sizes: The mean sequence length and identitiy were set to 1, 000 and 0.75. A single contiguous gap with the length within [0, 100] was inserted to the

reference-side sequence at a position within [100, 600] from its head. The scoring parameters were setto (M, X, Go, Ge) = (1,2, 2, 1).

a vector efficiently, we adopted a slightly modified version of the X-
drop heuristic to avoid the inefficiency. Our algorithm does not find the
maximum value in the forefront vector as the original X-drop heuristic
does. Instead, the extension is terminated when the score of the center cell
at the forefront of the band becomes smaller than the current maximum
score in the previously calculated center cells by at least X.

The whole adaptive banded DP algorithm is shown in pseudocode in
Figure 2, where ppv, pv, ev, and fv correspond to the second-previous
Sy vector, previous Sy, Ey, and Fy vectors in Figure 1. The two
subsequence vectors are denoted as av and bv.

2.3 Relation to existing algorithms

Our approach using the anti-diagonal vector for parallelization is similar to
the parallel SWG algorithm with SIMD instructions by Wozniak (1997).
The Wozniak’s algorithm, which mainly targeted protein sequences, had a
bottleneck in its serial (unparallelized) lookups of a score matrix and later
superseded by more efficient parallel algorithms by Rognes and Seeberg
(2000) and Farrar (2007). In the Rognes’s algorithm and the Farrar’s
algorithm, the DP vectors are vertical (or horizontal) in the DP matrix so
that the score profile vector can be calculated by just choosing (loading)
one of the precalculated four (or 20) score profile vectors that corresponds
to the four nucleotides (20 amino acids). The precalculated score profile
vectors were effective in eliminating the serial score-matrix lookups in the
Wozniak’s algorithm, while entailed the precalculation overhead and the
additional memory consumption for the vectors.

The score profile vector calculation with a SIMD shuffle operation
is first proposed by Wang ef al. (2014) in their XSW program, which
adopted the Farrar’s SIMD-vectorized SWG algorithm. They use a pair

of 16-element vector shuffle operations to calculate a 16-element score
vector from a single row of 26 X 26 score matrix in an on-the-fly manner.
The parallel score vector calculation in our algorithm can be considered
a further extension of the Wang’s approach; it accepts arbitrary base
pairs as the input and eliminating the indexed memory access required
in the Wang’s algorithm when fetching a row from the score matrix. We
discovered that the 4 X 4 score matrix for nucleotide alignment perfectly fit
in a single 16-element vector while the score matrix for protein alignment
does not. This enabled us to combine the anti-diagonal-parallel approach
and the vectorized score profile calculation in the efficient way.

We also found that a hardware-based semi-global alignment algorithm
proposed in the patent by McMillen and Ruehle (2015) also adopted
a constant-width band that moves dynamically according to the values
in calculated cells; however, the further details about how to move the
forefront vector are not described in the mode of operation of invention.
‘We speculate that their method moves the forefront vector so that the cell
with the maximum value comes closer to the center so our approach is
likely to be different in that aspect.

3 Results

We implemented our adaptive banded algorithm for x86_64 processors
with Streaming SIMD Extension 4.1 (SSE4.1) instruction sets. We used the
16-bit-wide variables; eight values were retained in a single xmm SIMD
register and they are processed simultaneously during the extension. The
band width W was set to multiple of 8 and determined at the compile
time by passing the constant value as a macro definition to the compiler.
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All the benchmarking programs were implemented in the C programming
language and compiled with gcc-4.9.3.

3.1 Recall benchmarks

Since our algorithm only calculates the cells in the narrowed regions, our
algorithm may miss the optimal alignment that could be identified by the
original semi-global DP algorithm that calculates the full DP matrix. To
show the sensitivity of our algorithm is similar to that of the original semi-
global DP algorithm, we compared by simulation the optimal score and
the corresponding alignment identified by our algorithm and the original
semi-global DP algorithm under several conditions. In the simulation, we
generated simulated reads from a reference genome, and then aligned the
simluated reads against the reference genome using the both algorithms,
mimicking the situation in resequencing studies. We presumed that two
parameters, the band width W and the score parameters (match score
and mismatch score) have strong effects on the accuracy and sensitity
of alignment. Throughout the experiments, we used the simple match-
mismatch score model, which is represented as a tuple of four non-negative
integers (M, X, Go,Ge), where M and X are a match award and a
mismatch penalty and G, and Ge are the coefficients of the affine-gap
penalty function. Remind that the match-mismatch score model is a special
case of the 4 X 4 score matrix model as we described in the method
section. Sets of 1, 000 sequence pairs were generated from the Escherichia
coli reference genome (accession no.: NC000913) with PBSIM, a PacBio
long read simulator (Ono et al., 2013). Each pair consists of a simulated
PacBio read and the corresponding region in the reference genome, to each
of which a random sequence of 200 bp is appended in order to mimick
the situation in semi-global alignment. In the following experiments, we
characterized a set of sequences by the mean read length L and the mean
identity /. The maximum, the minimum and the standard deviation of
these two parametes were set to 1.05L, 0.95L and 0.05L, and I 4 0.01,
1—0.01and 0.01, respectively. The statistics of one of the sets of simulated
reads are shown in Table (a) in Figure 3 as an example.

3.1.1 Effect of the band width on the recall rate

We first evaluated the effect of the band width W on the recall rate of the
algorithm. Sequence pairs with various identities ranging in [0.6, 0.95]
were aligned by the adaptive banded DP algorithm with band widths
ranging from 8 to 64 with a step of 8. The mean sequence length and
the scoring parameters were set to L = 1,000 and (M, X, Go,Ge) =
(1,2, 2,1). The result is shown in Figure 3(b), showing that our algorithm
can perfectly identify the optimal scores and paths when the band width
is greater than or equal to 24 and when the sequence identity is 0.6 or
greater. The results are still nearly perfect when W = 16, while the recall
rate drops significantly with W = 8 and sequence identities lower than
0.75.

3.1.2 Effect of gap penalties on the recall rate

The algorithm examines only the scores of the edge cells in the forefront
vector when deciding the advancing direction. It might be possible that
our algorithm might fail in capturing the optimal path in the narrowed
band especially when the scores in the S vector is almost flat, which
is likely to happen when the gap penalty is small or even zero. We
evaluated the effect of small gap penalties on its recall. Both the gap
open penalty G, and the gap extension penalty G¢ were independently
varied from O to 5, with the match award and the mismatch penalty fixed
to (M, X) = (2,2). The result (Fig 3(c)) shows that setting the gap
extension penalty to zero severely degraded the recall rate. A small but non-
zero gap insertion penalty did not affect on the sensitivity at large when the
gap extension penalty is set to a value larger than or equal to 2, indicating
that the algorithm also works well with the linear-gap-penalty function,

where the gap penalty function is expressed in a form of g(k) = k - G
as well as more general affine-gap-penalty functions. We also note that
the parameter combinations with non-perfect recalls are impractical and
thus will not be used in real analysis; (1) Ge = 0 implies that we can
insert almost arbitrarily large gaps without incurring a good penalty, and
) (Go,Ge) = (0,1),(1,1),(2,1) all have a positive expected score
for alignment of two random sequences (four bases occurring equally and
independently; Vingron and Waterman (1994)).
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Fig. 4. Matrix calculation time (normalized to a single function call) of three algorithms, the
BLAST X-drop DP (BLAST), the SIMD-vectorized BLAST X-drop DP (BLAST-SIMD),
and the 32-cell-wide SIMD-vectorized adaptive banded DP (Adaptive) with different
sequence length L.

3.1.3 Aligning longer sequences

Next we evaluated the effect of the lengths of query seqences on the recall
rate. If we use a statically banded DP, in which the band is determined
before starting to fill in values in cells, the band width we need in
order to capture the optimal path in the narrowed band grows in O(/n)
where n is the expected number of indel errors in a read, assuming that
insertions and deletions occur at the same probability and independently.
We hypothesized that a certain fixed-size band width is sufficient for
capturing the optimal path in empirical settings when we use the adaptive
banded DP algorithm. Sets of simulated sequences of various lengths
ranging [100, 10000] were given to our algorithm with three different band
widths, W = 16, W = 24, and W = 32, and then compared the results
with one given by the full semi-global alignment to see if our algorithm can
output the same result to one by the full semi-global alignment algorithm.
The mean sequence identitiy varied between [0.6,0.95] and the score
parameters were set to (1,2,2,1). The results (Fig 3(d)) show that the
16-cell-wide and 24-cell-wide band may not be sufficient for aligning
long (e.g., > 500) sequences with lower identity (~ 0.7) perfectly. The
32-cell-wide band perfectly output the same result as the full semi-global
alignment algorithm.

3.1.4 Indel tolerance

Our algorithm is anticipated to fail in finding the optimal score when a
large insertion or deletion (indel) appear in the true pairwise alignment
due to the nature of banded DP algorithms. We evaluated the impact of
indels in query sequences on the recall rate. We simulated an insertion
by inserting a random sequence of a length specified by a parameter to
the reference-side sequences. Sequence pairs of a simulated PacBio read
and its corresponding region in the reference genome were generated with
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parameters L = 1,000 and I = 0.75, then a random (the same as before)
sequence with a certain length (denoted by 1) ranging [0, 100] was inserted
to the reference-side sequence at a position within [100, 600] bp from
its 5’-end. Considering that our algorithm runs basically symmetrically
between two sequences to be aligned, only insertion was tested but it does
not lose the generality at large. The score parameters (M, X, Go, Ge) =
(1,2,2,1) were used. The result (Fig 3(d)) suggests that our algorithm
can find the optimal score at an almost 100 % probability when the length
of the inserted gap, [ is less than W — 4.

3.2 Speed benchmark

‘We compared the matrix calculation performance of our algorithm to the
well-known BLAST X-drop DP algorithm found in the NCBI BLAST+
package (version 2.2.31+). Since the original implementation had many
complex arguments and conditional branches, we reimplemented the
algorithm in a simple form for the comparison purpose. We also prepared
a SIMD-vectorized variant of the BLAST X-drop DP. The scoring
parameters and the X-drop threshold passed to the implementations
were (M, X,Go,Ge) = (1,2,2,1) and 30, respectively. The mean
sequence identitiy was set to I = 0.75 and the mean length was varied
within [100, 10000]. The program was compiled by gcc-4.9.3 with an
optimization flag -O3. The result, shown in Figure 4, revealed that our
adaptive banded DP algorithm was the fastest, being uniformly 8 times
and 3-4 times faster than the BLAST X-drop DP and the SIMD-vectorized
X-drop DP.

4 Discussions

‘We proposed the adaptive banded DP algorithm for nucleotide alignment
that calculates only the cells in a dynamically-determined constant-wide
band in the DP matrix. The use of a SIMD shuffle instruction for generating
the score profile vector enabled us to execute the whole update operation
in the vectorized form while adopting anti-diagonally placed vectors to
eliminate dependencies between elements in a single vector, which was not
achieved in the previous SIMD-vectorized DP algorithms. The experiment
showed that our algorithm can output almost perfect alignments in a sense
that the output alignments are equivalent to ones by the full semi-global
alignment.

Although we have not provided integration yet, our algorithm can be
integrated immediately with existing nucleotide local alignment programs
such as nucleotide BLAST (Altschul ez al., 1990), BWA-MEM (Li, 2013),
and BLASR (Chaisson and Tesler, 2012) to accelerate the extension step.
It is also worth mentioning that the 16-bit-wide implementation of our
algorithm, with a small modification, is sufficient for supporting (virtually)
infinitely long query sequences. That is, the actual scores in each vector
can be represented with a pair of a potentially large base value of 64-bits
and an offset value of 16-bits from the base value so that the elements (i.e.,
offset values) in vectors fit within the 16-bit range, as we can guarantee
that the range of scores in each vector can be bounded to a certain (not
so large) range, assuming that the absolute values of score parameters
are small integers. One possible implementation is based on a recusive
function call, where the 64-bit offset value is initially set to O and updated
when an overflow is detected in one of the cells in vectors; the 16-bit
values in the vectors are subtracted by a certain value, e.g. INT16_MAX
(or 32767), and the adjusted difference is accumulated into the base value.
The remaining query sequences will be processed in the next tail recursive
call. This modification also makes it possible for the algorithm to be
applied to alignment in comparative genomics, where the alignment of long
nucleotide sequences (e.g. contigs or chromosomes of a few megabases)
may be required.

On the other hand, an application of our algorithm for protein sequence
alignment has a difficulty in calculating the score vector because the score
matrix for amino acids will not fit in a single SIMD register. Both further
algorithmic engineering and much wider SIMD registers are probably
required to make the adaptive banded DP algorithm run effeciently for
protein alignment.

Finally, we would like to point out that it is possible to port
our implementation to other architectures because we took a care for
portability. Power and AArch64 architectures have their own SIMD
instruction sets, AltiVec and NEON, both of which have basic arithmetic
and 16-element shuffle operations required for our algorithm. The current
GPU architectures (e.g. one by NVIDIA), whose synchronous threads are
regarded as SIMD lanes, are also expected to efficiently handle the adaptive
band DP algorithm without much hassle.

5 Availability of Code

The implementation of the algorithm and the benchmarking scripts are
available at https://github.com/ocxtal/adaptivebandbench.
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